1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _X86_MP_H_
#define _X86_MP_H_
#include <arch/smp/atomic.h>
#include <cpu/x86/smm.h>
#define CACHELINE_SIZE 64
struct cpu_info;
struct bus;
static inline void mfence(void)
{
__asm__ __volatile__("mfence\t\n": : :"memory");
}
/* The sequence of the callbacks are in calling order. */
struct mp_ops {
/*
* Optionally provide a callback prior to kicking off MP
* startup. This callback is done prior to loading the SIPI
* vector but after gathering the MP state information. Please
* see the sequence below.
*/
void (*pre_mp_init)(void);
/*
* Return the number of logical x86 execution contexts that
* need to be brought out of SIPI state as well as have SMM
* handlers installed.
*/
int (*get_cpu_count)(void);
/*
* Optionally fill in permanent SMM region and save state size. If
* this callback is not present no SMM handlers will be installed.
* The perm_smsize is the size available to house the permanent SMM
* handler.
*/
void (*get_smm_info)(uintptr_t *perm_smbase, size_t *perm_smsize,
size_t *smm_save_state_size);
/*
* Optionally fill in pointer to microcode and indicate if the APs
* can load the microcode in parallel.
*/
void (*get_microcode_info)(const void **microcode, int *parallel);
/*
* Optionally provide a function which adjusts the APIC id
* map to CPU number. By default the CPU number and APIC id
* are 1:1. To change the APIC id for a given CPU return the
* new APIC id. It's called for each CPU as indicated by
* get_cpu_count().
*/
int (*adjust_cpu_apic_entry)(int cpu, int cur_apic_id);
/*
* Optionally adjust SMM handler parameters to override the default
* values. The is_perm variable indicates if the parameters to adjust
* are for the relocation handler or the permanent handler. This
* function is therefore called twice -- once for each handler.
* By default the parameters for each SMM handler are:
* stack_size num_concurrent_stacks num_concurrent_save_states
* relo: save_state_size get_cpu_count() 1
* perm: save_state_size get_cpu_count() get_cpu_count()
*/
void (*adjust_smm_params)(struct smm_loader_params *slp, int is_perm);
/*
* Optionally provide a callback prior to the APs starting SMM
* relocation or CPU driver initialization. However, note that
* this callback is called after SMM handlers have been loaded.
*/
void (*pre_mp_smm_init)(void);
/*
* Optional function to use to trigger SMM to perform relocation. If
* not provided, smm_initiate_relocation() is used.
*/
void (*per_cpu_smm_trigger)(void);
/*
* This function is called while each CPU is in the SMM relocation
* handler. Its primary purpose is to adjust the SMBASE for the
* permanent handler. The parameters passed are the current cpu
* running the relocation handler, current SMBASE of relocation handler,
* and the pre-calculated staggered CPU SMBASE address of the permanent
* SMM handler.
*/
void (*relocation_handler)(int cpu, uintptr_t curr_smbase,
uintptr_t staggered_smbase);
/*
* Optionally provide a callback that is called after the APs
* and the BSP have gone through the initialion sequence.
*/
void (*post_mp_init)(void);
};
/*
* mp_init_with_smm() returns < 0 on failure and 0 on success. The mp_ops
* argument is used to drive the multiprocess initialization. Unless otherwise
* stated each callback is called on the BSP only. The sequence of operations
* is the following:
* 1. pre_mp_init()
* 2. get_cpu_count()
* 3. get_smm_info()
* 4. get_microcode_info()
* 5. adjust_cpu_apic_entry() for each number of get_cpu_count()
* 6. adjust_smm_params(is_perm = 0)
* 7. adjust_smm_params(is_perm = 1)
* 8. pre_mp_smm_init()
* 9. per_cpu_smm_trigger() in parallel for all cpus which calls
* relocation_handler() in SMM.
* 10. mp_initialize_cpu() for each cpu
* 11. post_mp_init()
*/
int mp_init_with_smm(struct bus *cpu_bus, const struct mp_ops *mp_ops);
/*
* After APs are up and PARALLEL_MP_AP_WORK is enabled one can issue work
* to all the APs to perform. Currently the BSP is the only CPU that is allowed
* to issue work. i.e. the APs should not call any of these functions.
* All functions return < 0 on error, 0 on success.
*/
int mp_run_on_aps(void (*func)(void), long expire_us);
/* Like mp_run_on_aps() but also runs func on BSP. */
int mp_run_on_all_cpus(void (*func)(void), long expire_us);
/*
* Park all APs to prepare for OS boot. This is handled automatically
* by the coreboot infrastructure.
*/
int mp_park_aps(void);
/*
* SMM helpers to use with initializing CPUs.
*/
/* Send SMI to self without any serialization. */
void smm_initiate_relocation_parallel(void);
/* Send SMI to self with single execution. */
void smm_initiate_relocation(void);
/* Make a CPU wait until the barrier is released */
void barrier_wait(atomic_t *b);
/*
* Make a CPU wait until the barrier is released, or timeout occurs
* returns 1 if timeout occurs before barier is released.
* returns 0 if barrier is released before timeout.
*/
int barrier_wait_timeout(atomic_t *b, uint32_t timeout_ms);
/* Release a barrier so that other CPUs waiting for that barrier can continue */
void release_barrier(atomic_t *b);
#endif /* _X86_MP_H_ */
|