summaryrefslogtreecommitdiff
path: root/src/drivers/spi/tpm/tpm.c
blob: bdd40a8a3428cd94735fb8bb8d18c8f3b712db7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
/*
 * Copyright 2016 The Chromium OS Authors. All rights reserved.
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 *
 * This is a driver for a SPI interfaced TPM2 device.
 *
 * It assumes that the required SPI interface has been initialized before the
 * driver is started. A 'sruct spi_slave' pointer passed at initialization is
 * used to direct traffic to the correct SPI interface. This dirver does not
 * provide a way to instantiate multiple TPM devices. Also, to keep things
 * simple, the driver unconditionally uses of TPM locality zero.
 *
 * References to documentation are based on the TCG issued "TPM Profile (PTP)
 * Specification Revision 00.43".
 */

#include <arch/early_variables.h>
#include <assert.h>
#include <compiler.h>
#include <commonlib/endian.h>
#include <console/console.h>
#include <delay.h>
#include <endian.h>
#include <string.h>
#include <timer.h>
#include <security/tpm/tis.h>

#include "tpm.h"

#define TPM_LOCALITY_0_SPI_BASE 0x00d40000

/* Assorted TPM2 registers for interface type FIFO. */
#define TPM_ACCESS_REG    (TPM_LOCALITY_0_SPI_BASE + 0)
#define TPM_STS_REG       (TPM_LOCALITY_0_SPI_BASE + 0x18)
#define TPM_DATA_FIFO_REG (TPM_LOCALITY_0_SPI_BASE + 0x24)
#define TPM_DID_VID_REG   (TPM_LOCALITY_0_SPI_BASE + 0xf00)
#define TPM_RID_REG       (TPM_LOCALITY_0_SPI_BASE + 0xf04)
#define TPM_FW_VER	  (TPM_LOCALITY_0_SPI_BASE + 0xf90)

#define CR50_TIMEOUT_INIT_MS 30000 /* Very long timeout for TPM init */

/* SPI slave structure for TPM device. */
static struct spi_slave g_spi_slave CAR_GLOBAL;

/* Cached TPM device identification. */
static struct tpm2_info g_tpm_info CAR_GLOBAL;

/*
 * TODO(vbendeb): make CONFIG_DEBUG_TPM an int to allow different level of
 * debug traces. Right now it is either 0 or 1.
 */
static const int debug_level_ = CONFIG_DEBUG_TPM;

/*
 * SPI frame header for TPM transactions is 4 bytes in size, it is described
 * in section "6.4.6 Spi Bit Protocol".
 */
typedef struct {
	unsigned char body[4];
} spi_frame_header;

void tpm2_get_info(struct tpm2_info *info)
{
	*info = car_get_var(g_tpm_info);
}

__weak int tis_plat_irq_status(void)
{
	static int warning_displayed CAR_GLOBAL;

	if (!car_get_var(warning_displayed)) {
		printk(BIOS_WARNING, "WARNING: tis_plat_irq_status() not implemented, wasting 10ms to wait on Cr50!\n");
		car_set_var(warning_displayed, 1);
	}
	mdelay(10);

	return 1;
}

/*
 * TPM may trigger a IRQ after finish processing previous transfer.
 * Waiting for this IRQ to sync TPM status.
 *
 * Returns 1 on success, 0 on failure (timeout).
 */
static int tpm_sync(void)
{
	struct stopwatch sw;

	stopwatch_init_msecs_expire(&sw, 10);
	while (!tis_plat_irq_status()) {
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR, "Timeout wait for TPM IRQ!\n");
			return 0;
		}
	}
	return 1;
}

/*
 * Each TPM2 SPI transaction starts the same: CS is asserted, the 4 byte
 * header is sent to the TPM, the master waits til TPM is ready to continue.
 *
 * Returns 1 on success, 0 on failure (TPM SPI flow control timeout.)
 */
static int start_transaction(int read_write, size_t bytes, unsigned addr)
{
	spi_frame_header header;
	uint8_t byte;
	int i;
	struct stopwatch sw;
	static int tpm_sync_needed CAR_GLOBAL;
	static struct stopwatch wake_up_sw CAR_GLOBAL;
	struct spi_slave *spi_slave = car_get_var_ptr(&g_spi_slave);
	/*
	 * First Cr50 access in each coreboot stage where TPM is used will be
	 * prepended by a wake up pulse on the CS line.
	 */
	int wakeup_needed = 1;

	/* Wait for TPM to finish previous transaction if needed */
	if (car_get_var(tpm_sync_needed)) {
		tpm_sync();
		/*
		 * During the first invocation of this function on each stage
		 * this if () clause code does not run (as tpm_sync_needed
		 * value is zero), during all following invocations the
		 * stopwatch below is guaranteed to be started.
		 */
		if (!stopwatch_expired(car_get_var_ptr(&wake_up_sw)))
			wakeup_needed = 0;
	} else {
		car_set_var(tpm_sync_needed, 1);
	}

	if (wakeup_needed) {
		/* Just in case Cr50 is asleep. */
		spi_claim_bus(spi_slave);
		udelay(1);
		spi_release_bus(spi_slave);
		udelay(100);
	}

	/*
	 * The Cr50 on H1 does not go to sleep for 1 second after any
	 * SPI slave activity, let's be conservative and limit the
	 * window to 900 ms.
	 */
	stopwatch_init_msecs_expire(car_get_var_ptr(&wake_up_sw), 900);

	/*
	 * The first byte of the frame header encodes the transaction type
	 * (read or write) and transfer size (set to lentgh - 1), limited to
	 * 64 bytes.
	 */
	header.body[0] = (read_write ? 0x80 : 0) | 0x40 | (bytes - 1);

	/* The rest of the frame header is the TPM register address. */
	for (i = 0; i < 3; i++)
		header.body[i + 1] = (addr >> (8 * (2 - i))) & 0xff;

	/* CS assert wakes up the slave. */
	spi_claim_bus(spi_slave);

	/*
	 * The TCG TPM over SPI specification introduces the notion of SPI
	 * flow control (Section "6.4.5 Flow Control").
	 *
	 * Again, the slave (TPM device) expects each transaction to start
	 * with a 4 byte header trasmitted by master. The header indicates if
	 * the master needs to read or write a register, and the register
	 * address.
	 *
	 * If the slave needs to stall the transaction (for instance it is not
	 * ready to send the register value to the master), it sets the MOSI
	 * line to 0 during the last clock of the 4 byte header. In this case
	 * the master is supposed to start polling the SPI bus, one byte at
	 * time, until the last bit in the received byte (transferred during
	 * the last clock of the byte) is set to 1.
	 *
	 * Due to some SPI controllers' shortcomings (Rockchip comes to
	 * mind...) we trasmit the 4 byte header without checking the byte
	 * transmitted by the TPM during the transaction's last byte.
	 *
	 * We know that cr50 is guaranteed to set the flow control bit to 0
	 * during the header transfer, but real TPM2 might be fast enough not
	 * to require to stall the master, this would present an issue.
	 * crosbug.com/p/52132 has been opened to track this.
	 */
	spi_xfer(spi_slave, header.body, sizeof(header.body), NULL, 0);

	/*
	 * Now poll the bus until TPM removes the stall bit. Give it up to 100
	 * ms to sort it out - it could be saving stuff in nvram at some
	 * point.
	 */
	stopwatch_init_msecs_expire(&sw, 100);
	do {
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR, "TPM flow control failure\n");
			spi_release_bus(spi_slave);
			return 0;
		}
		spi_xfer(spi_slave, NULL, 0, &byte, 1);
	} while (!(byte & 1));
	return 1;
}

/*
 * Print out the contents of a buffer, if debug is enabled. Skip registers
 * other than FIFO, unless debug_level_ is 2.
 */
static void trace_dump(const char *prefix, uint32_t reg,
		       size_t bytes, const uint8_t *buffer,
		       int force)
{
	static char prev_prefix CAR_GLOBAL;
	static unsigned prev_reg CAR_GLOBAL;
	static int current_char CAR_GLOBAL;
	const int BYTES_PER_LINE = 32;
	int *current_char_ptr = car_get_var_ptr(&current_char);

	if (!force) {
		if (!debug_level_)
			return;

		if ((debug_level_ < 2) && (reg != TPM_DATA_FIFO_REG))
			return;
	}

	/*
	 * Do not print register address again if the last dump print was for
	 * that register.
	 */
	if ((car_get_var(prev_prefix) != *prefix) ||
		(car_get_var(prev_reg) != reg)) {
		car_set_var(prev_prefix, *prefix);
		car_set_var(prev_reg, reg);
		printk(BIOS_DEBUG, "\n%s %2.2x:", prefix, reg);
		*current_char_ptr = 0;
	}

	if ((reg != TPM_DATA_FIFO_REG) && (bytes == 4)) {
		/*
		 * This must be a regular register address, print the 32 bit
		 * value.
		 */
		printk(BIOS_DEBUG, " %8.8x", *(const uint32_t *)buffer);
	} else {
		int i;

		/*
		 * Data read from or written to FIFO or not in 4 byte
		 * quantiites is printed byte at a time.
		 */
		for (i = 0; i < bytes; i++) {
			if (*current_char_ptr &&
				!(*current_char_ptr % BYTES_PER_LINE)) {
				printk(BIOS_DEBUG, "\n     ");
				*current_char_ptr = 0;
			}
			(*current_char_ptr)++;
			printk(BIOS_DEBUG, " %2.2x", buffer[i]);
		}
	}
}

/*
 * Once transaction is initiated and the TPM indicated that it is ready to go,
 * write the actual bytes to the register.
 */
static void write_bytes(const void *buffer, size_t bytes)
{
	struct spi_slave *spi_slave = car_get_var_ptr(&g_spi_slave);
	spi_xfer(spi_slave, buffer, bytes, NULL, 0);
}

/*
 * Once transaction is initiated and the TPM indicated that it is ready to go,
 * read the actual bytes from the register.
 */
static void read_bytes(void *buffer, size_t bytes)
{
	struct spi_slave *spi_slave = car_get_var_ptr(&g_spi_slave);
	spi_xfer(spi_slave, NULL, 0, buffer, bytes);
}

/*
 * To write a register, start transaction, transfer data to the TPM, deassert
 * CS when done.
 *
 * Returns one to indicate success, zero to indicate failure.
 */
static int tpm2_write_reg(unsigned reg_number, const void *buffer, size_t bytes)
{
	struct spi_slave *spi_slave = car_get_var_ptr(&g_spi_slave);
	trace_dump("W", reg_number, bytes, buffer, 0);
	if (!start_transaction(false, bytes, reg_number))
		return 0;
	write_bytes(buffer, bytes);
	spi_release_bus(spi_slave);
	return 1;
}

/*
 * To read a register, start transaction, transfer data from the TPM, deassert
 * CS when done.
 *
 * Returns one to indicate success, zero to indicate failure. In case of
 * failure zero out the user buffer.
 */
static int tpm2_read_reg(unsigned reg_number, void *buffer, size_t bytes)
{
	struct spi_slave *spi_slave = car_get_var_ptr(&g_spi_slave);
	if (!start_transaction(true, bytes, reg_number)) {
		memset(buffer, 0, bytes);
		return 0;
	}
	read_bytes(buffer, bytes);
	spi_release_bus(spi_slave);
	trace_dump("R", reg_number, bytes, buffer, 0);
	return 1;
}

/*
 * Status register is accessed often, wrap reading and writing it into
 * dedicated functions.
 */
static int read_tpm_sts(uint32_t *status)
{
	return tpm2_read_reg(TPM_STS_REG, status, sizeof(*status));
}

static int write_tpm_sts(uint32_t status)
{
	return tpm2_write_reg(TPM_STS_REG, &status, sizeof(status));
}

/*
 * The TPM may limit the transaction bytes count (burst count) below the 64
 * bytes max. The current value is available as a field of the status
 * register.
 */
static uint32_t get_burst_count(void)
{
	uint32_t status;

	read_tpm_sts(&status);
	return (status & TPM_STS_BURST_COUNT_MASK) >> TPM_STS_BURST_COUNT_SHIFT;
}

static uint8_t tpm2_read_access_reg(void)
{
	uint8_t access;
	tpm2_read_reg(TPM_ACCESS_REG, &access, sizeof(access));
	/* We do not care about access establishment bit state. Ignore it. */
	return access & ~TPM_ACCESS_ESTABLISHMENT;
}

static void tpm2_write_access_reg(uint8_t cmd)
{
	/* Writes to access register can set only 1 bit at a time. */
	assert (!(cmd & (cmd - 1)));

	tpm2_write_reg(TPM_ACCESS_REG, &cmd, sizeof(cmd));
}

static int tpm2_claim_locality(void)
{
	uint8_t access;
	struct stopwatch sw;

	/*
	 * Locality is released by TPM reset.
	 *
	 * If locality is taken at this point, this could be due to the fact
	 * that the TPM is performing a long operation and has not processed
	 * reset request yet. We'll wait up to CR50_TIMEOUT_INIT_MS and see if
	 * it releases locality when reset is processed.
	 */
	stopwatch_init_msecs_expire(&sw, CR50_TIMEOUT_INIT_MS);
	do {
		access = tpm2_read_access_reg();
		if (access & TPM_ACCESS_ACTIVE_LOCALITY) {
			/*
			 * Don't bombard the chip with traffic, let it keep
			 * processing the command.
			 */
			mdelay(2);
			continue;
		}

		/*
		 * Ok, the locality is free, TPM must be reset, let's claim
		 * it.
		 */

		tpm2_write_access_reg(TPM_ACCESS_REQUEST_USE);
		access = tpm2_read_access_reg();
		if (access != (TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY)) {
			break;
		}

		printk(BIOS_INFO, "TPM ready after %ld ms\n",
		       stopwatch_duration_msecs(&sw));

		return 1;
	} while (!stopwatch_expired(&sw));

	printk(BIOS_ERR,
	       "Failed to claim locality 0 after %ld ms, status: %#x\n",
	       stopwatch_duration_msecs(&sw), access);

	return 0;
}

/* Device/vendor ID values of the TPM devices this driver supports. */
static const uint32_t supported_did_vids[] = {
	0x00281ae0  /* H1 based Cr50 security chip. */
};

int tpm2_init(struct spi_slave *spi_if)
{
	uint32_t did_vid, status;
	uint8_t cmd;
	int retries;
	struct tpm2_info *tpm_info = car_get_var_ptr(&g_tpm_info);
	struct spi_slave *spi_slave = car_get_var_ptr(&g_spi_slave);

	memcpy(spi_slave, spi_if, sizeof(*spi_if));

	/* clear any pending IRQs */
	tis_plat_irq_status();

	/*
	 * 150 ms should be enough to synchronize with the TPM even under the
	 * worst nested reset request conditions. In vast majority of cases
	 * there would be no wait at all.
	 */
	printk(BIOS_INFO, "Probing TPM: ");
	for (retries = 15; retries > 0; retries--) {
		int i;

		/* In case of failure to read div_vid is set to zero. */
		tpm2_read_reg(TPM_DID_VID_REG, &did_vid, sizeof(did_vid));

		for (i = 0; i < ARRAY_SIZE(supported_did_vids); i++)
			if (did_vid == supported_did_vids[i])
				break; /* TPM is up and ready. */

		if (i < ARRAY_SIZE(supported_did_vids))
			break;

		/* TPM might be resetting, let's retry in a bit. */
		mdelay(10);
		printk(BIOS_INFO, ".");
	}

	if (!retries) {
		printk(BIOS_ERR, "\n%s: Failed to connect to the TPM\n",
		       __func__);
		return -1;
	}

	printk(BIOS_INFO, " done!\n");

	if (ENV_VERSTAGE || ENV_BOOTBLOCK)
		/*
		 * Claim locality 0, do it only during the first
		 * initialization after reset.
		 */
		if (!tpm2_claim_locality())
			return -1;

	read_tpm_sts(&status);
	if ((status & TPM_STS_FAMILY_MASK) != TPM_STS_FAMILY_TPM_2_0) {
		printk(BIOS_ERR, "unexpected TPM family value, status: %#x\n",
		       status);
		return -1;
	}

	/*
	 * Locality claimed, read the revision value and set up the tpm_info
	 * structure.
	 */
	tpm2_read_reg(TPM_RID_REG, &cmd, sizeof(cmd));
	tpm_info->vendor_id = did_vid & 0xffff;
	tpm_info->device_id = did_vid >> 16;
	tpm_info->revision = cmd;

	printk(BIOS_INFO, "Connected to device vid:did:rid of %4.4x:%4.4x:%2.2x\n",
	       tpm_info->vendor_id, tpm_info->device_id, tpm_info->revision);

	/* Let's report device FW version if available. */
	if (tpm_info->vendor_id == 0x1ae0) {
		int chunk_count = 0;
		size_t chunk_size;
		/*
		 * let's read 50 bytes at a time; leave room for the trailing
		 * zero.
		 */
		char vstr[51];

		chunk_size = sizeof(vstr) - 1;

		printk(BIOS_INFO, "Firmware version: ");

		/*
		 * Does not really matter what's written, this just makes sure
		 * the version is reported from the beginning.
		 */
		tpm2_write_reg(TPM_FW_VER, &chunk_size, 1);

		/* Print it out in sizeof(vstr) - 1 byte chunks. */
		vstr[chunk_size] = 0;
		do {
			tpm2_read_reg(TPM_FW_VER, vstr, chunk_size);
			printk(BIOS_INFO, "%s", vstr);

			/*
			 * While string is not over, and is no longer than 300
			 * characters.
			 */
		} while (vstr[chunk_size - 1] &&
			 (chunk_count++ < (300 / chunk_size)));

		printk(BIOS_INFO, "\n");
	}
	return 0;
}

/*
 * This is in seconds, certain TPM commands, like key generation, can take
 * long time to complete.
 *
 * Returns one to indicate success, zero (not yet implemented) to indicate
 * failure.
 */
#define MAX_STATUS_TIMEOUT 120
static int wait_for_status(uint32_t status_mask, uint32_t status_expected)
{
	uint32_t status;
	struct stopwatch sw;

	stopwatch_init_usecs_expire(&sw, MAX_STATUS_TIMEOUT * 1000 * 1000);
	do {
		udelay(1000);
		if (stopwatch_expired(&sw)) {
			printk(BIOS_ERR, "failed to get expected status %x\n",
			       status_expected);
			return false;
		}
		read_tpm_sts(&status);
	} while ((status & status_mask) != status_expected);

	return 1;
}

enum fifo_transfer_direction {
	fifo_transmit = 0,
	fifo_receive = 1
};

/* Union allows to avoid casting away 'const' on transmit buffers. */
union fifo_transfer_buffer {
	uint8_t *rx_buffer;
	const uint8_t *tx_buffer;
};

/*
 * Transfer requested number of bytes to or from TPM FIFO, accounting for the
 * current burst count value.
 */
static void fifo_transfer(size_t transfer_size,
			  union fifo_transfer_buffer buffer,
			  enum fifo_transfer_direction direction)
{
	size_t transaction_size;
	size_t burst_count;
	size_t handled_so_far = 0;

	do {
		do {
			/* Could be zero when TPM is busy. */
			burst_count = get_burst_count();
		} while (!burst_count);

		transaction_size = transfer_size - handled_so_far;
		transaction_size = MIN(transaction_size, burst_count);

		/*
		 * The SPI frame header does not allow to pass more than 64
		 * bytes.
		 */
		transaction_size = MIN(transaction_size, 64);

		if (direction == fifo_receive)
			tpm2_read_reg(TPM_DATA_FIFO_REG,
				      buffer.rx_buffer + handled_so_far,
				      transaction_size);
		else
			tpm2_write_reg(TPM_DATA_FIFO_REG,
				       buffer.tx_buffer + handled_so_far,
				       transaction_size);

		handled_so_far += transaction_size;

	} while (handled_so_far != transfer_size);
}

size_t tpm2_process_command(const void *tpm2_command, size_t command_size,
			    void *tpm2_response, size_t max_response)
{
	uint32_t status;
	uint32_t expected_status_bits;
	size_t payload_size;
	size_t bytes_to_go;
	const uint8_t *cmd_body = tpm2_command;
	uint8_t *rsp_body = tpm2_response;
	union fifo_transfer_buffer fifo_buffer;
	const int HEADER_SIZE = 6;
	struct tpm2_info *tpm_info = car_get_var_ptr(&g_tpm_info);

	/* Do not try using an uninitialized TPM. */
	if (!tpm_info->vendor_id)
		return 0;

	/* Skip the two byte tag, read the size field. */
	payload_size = read_be32(cmd_body + 2);

	/* Sanity check. */
	if (payload_size != command_size) {
		printk(BIOS_ERR,
		       "Command size mismatch: encoded %zd != requested %zd\n",
		       payload_size, command_size);
		trace_dump("W", TPM_DATA_FIFO_REG, command_size, cmd_body, 1);
		printk(BIOS_DEBUG, "\n");
		return 0;
	}

	/* Let the TPM know that the command is coming. */
	write_tpm_sts(TPM_STS_COMMAND_READY);

	/*
	 * TPM commands and responses written to and read from the FIFO
	 * register (0x24) are datagrams of variable size, prepended by a 6
	 * byte header.
	 *
	 * The specification description of the state machine is a bit vague,
	 * but from experience it looks like there is no need to wait for the
	 * sts.expect bit to be set, at least with the 9670 and cr50 devices.
	 * Just write the command into FIFO, making sure not to exceed the
	 * burst count or the maximum PDU size, whatever is smaller.
	 */
	fifo_buffer.tx_buffer = cmd_body;
	fifo_transfer(command_size, fifo_buffer, fifo_transmit);

	/* Now tell the TPM it can start processing the command. */
	write_tpm_sts(TPM_STS_GO);

	/* Now wait for it to report that the response is ready. */
	expected_status_bits = TPM_STS_VALID | TPM_STS_DATA_AVAIL;
	if (!wait_for_status(expected_status_bits, expected_status_bits)) {
		/*
		 * If timed out, which should never happen, let's at least
		 * print out the offending command.
		 */
		trace_dump("W", TPM_DATA_FIFO_REG, command_size, cmd_body, 1);
		printk(BIOS_DEBUG, "\n");
		return 0;
	}

	/*
	 * The response is ready, let's read it. First we read the FIFO
	 * payload header, to see how much data to expect. The response header
	 * size is fixed to six bytes, the total payload size is stored in
	 * network order in the last four bytes.
	 */
	tpm2_read_reg(TPM_DATA_FIFO_REG, rsp_body, HEADER_SIZE);

	/* Find out the total payload size, skipping the two byte tag. */
	payload_size = read_be32(rsp_body + 2);

	if (payload_size > max_response) {
		/*
		 * TODO(vbendeb): at least drain the FIFO here or somehow let
		 * the TPM know that the response can be dropped.
		 */
		printk(BIOS_ERR, " TPM response too long (%zd bytes)",
		       payload_size);
		return 0;
	}

	/*
	 * Now let's read all but the last byte in the FIFO to make sure the
	 * status register is showing correct flow control bits: 'more data'
	 * until the last byte and then 'no more data' once the last byte is
	 * read.
	 */
	bytes_to_go = payload_size - 1 - HEADER_SIZE;
	fifo_buffer.rx_buffer = rsp_body + HEADER_SIZE;
	fifo_transfer(bytes_to_go, fifo_buffer, fifo_receive);

	/* Verify that there is still data to read. */
	read_tpm_sts(&status);
	if ((status & expected_status_bits) != expected_status_bits) {
		printk(BIOS_ERR, "unexpected intermediate status %#x\n",
		       status);
		return 0;
	}

	/* Read the last byte of the PDU. */
	tpm2_read_reg(TPM_DATA_FIFO_REG, rsp_body + payload_size - 1, 1);

	/* Terminate the dump, if enabled. */
	if (debug_level_)
		printk(BIOS_DEBUG, "\n");

	/* Verify that 'data available' is not asseretd any more. */
	read_tpm_sts(&status);
	if ((status & expected_status_bits) != TPM_STS_VALID) {
		printk(BIOS_ERR, "unexpected final status %#x\n", status);
		return 0;
	}

	/* Move the TPM back to idle state. */
	write_tpm_sts(TPM_STS_COMMAND_READY);

	return payload_size;
}