1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
|
/*
* SPI flash interface
*
* Copyright (C) 2008 Atmel Corporation
* Copyright (C) 2010 Reinhard Meyer, EMK Elektronik
*
* Licensed under the GPL-2 or later.
*/
#include <arch/early_variables.h>
#include <assert.h>
#include <boot_device.h>
#include <cbfs.h>
#include <cpu/x86/smm.h>
#include <delay.h>
#include <rules.h>
#include <stdlib.h>
#include <string.h>
#include <spi-generic.h>
#include <spi_flash.h>
#include "spi_flash_internal.h"
#include <timer.h>
static struct spi_flash *spi_flash_dev = NULL;
static void spi_flash_addr(u32 addr, u8 *cmd)
{
/* cmd[0] is actual command */
cmd[1] = addr >> 16;
cmd[2] = addr >> 8;
cmd[3] = addr >> 0;
}
/*
* If atomic sequencing is used, the cycle type is known to the SPI
* controller so that it can perform consecutive transfers and arbitrate
* automatically. Otherwise the SPI controller transfers whatever the
* user requests immediately, without regard to sequence. Atomic
* sequencing is commonly used on x86 platforms.
*
* SPI flash commands are simple two-step sequences. The command byte is
* always written first and may be followed by an address. Then data is
* either read or written. For atomic sequencing we'll pass everything into
* spi_xfer() at once and let the controller handle the details. Otherwise
* we will write all output bytes first and then read if necessary.
*
* FIXME: This really should be abstracted better, but that will
* require overhauling the entire SPI infrastructure.
*/
static int do_spi_flash_cmd(struct spi_slave *spi, const void *dout,
unsigned int bytes_out, void *din, unsigned int bytes_in)
{
int ret = 1;
if (spi_claim_bus(spi))
return ret;
#if CONFIG_SPI_ATOMIC_SEQUENCING == 1
if (spi_xfer(spi, dout, bytes_out, din, bytes_in) < 0)
goto done;
#else
if (dout && bytes_out) {
if (spi_xfer(spi, dout, bytes_out, NULL, 0) < 0)
goto done;
}
if (din && bytes_in) {
if (spi_xfer(spi, NULL, 0, din, bytes_in) < 0)
goto done;
}
#endif
ret = 0;
done:
spi_release_bus(spi);
return ret;
}
int spi_flash_cmd(struct spi_slave *spi, u8 cmd, void *response, size_t len)
{
int ret = do_spi_flash_cmd(spi, &cmd, sizeof(cmd), response, len);
if (ret)
printk(BIOS_WARNING, "SF: Failed to send command %02x: %d\n", cmd, ret);
return ret;
}
static int spi_flash_cmd_read(struct spi_slave *spi, const u8 *cmd,
size_t cmd_len, void *data, size_t data_len)
{
int ret = do_spi_flash_cmd(spi, cmd, cmd_len, data, data_len);
if (ret) {
printk(BIOS_WARNING, "SF: Failed to send read command (%zu bytes): %d\n",
data_len, ret);
}
return ret;
}
/* TODO: This code is quite possibly broken and overflowing stacks. Fix ASAP! */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstack-usage="
int spi_flash_cmd_write(struct spi_slave *spi, const u8 *cmd, size_t cmd_len,
const void *data, size_t data_len)
{
int ret;
u8 buff[cmd_len + data_len];
memcpy(buff, cmd, cmd_len);
memcpy(buff + cmd_len, data, data_len);
ret = do_spi_flash_cmd(spi, buff, cmd_len + data_len, NULL, 0);
if (ret) {
printk(BIOS_WARNING, "SF: Failed to send write command (%zu bytes): %d\n",
data_len, ret);
}
return ret;
}
#pragma GCC diagnostic pop
static int spi_flash_cmd_read_array(struct spi_slave *spi, u8 *cmd,
size_t cmd_len, u32 offset,
size_t len, void *data)
{
spi_flash_addr(offset, cmd);
return spi_flash_cmd_read(spi, cmd, cmd_len, data, len);
}
int spi_flash_cmd_read_fast(const struct spi_flash *flash, u32 offset,
size_t len, void *data)
{
u8 cmd[5];
cmd[0] = CMD_READ_ARRAY_FAST;
cmd[4] = 0x00;
return spi_flash_cmd_read_array(flash->spi, cmd, sizeof(cmd),
offset, len, data);
}
int spi_flash_cmd_read_slow(const struct spi_flash *flash, u32 offset,
size_t len, void *data)
{
u8 cmd[4];
cmd[0] = CMD_READ_ARRAY_SLOW;
return spi_flash_cmd_read_array(flash->spi, cmd, sizeof(cmd),
offset, len, data);
}
int spi_flash_cmd_poll_bit(const struct spi_flash *flash, unsigned long timeout,
u8 cmd, u8 poll_bit)
{
struct spi_slave *spi = flash->spi;
int ret;
u8 status;
struct mono_time current, end;
timer_monotonic_get(¤t);
end = current;
mono_time_add_msecs(&end, timeout);
do {
ret = spi_flash_cmd_read(spi, &cmd, 1, &status, 1);
if (ret)
return -1;
if ((status & poll_bit) == 0)
return 0;
timer_monotonic_get(¤t);
} while (!mono_time_after(¤t, &end));
printk(BIOS_DEBUG, "SF: timeout at %ld msec\n",timeout);
return -1;
}
int spi_flash_cmd_wait_ready(const struct spi_flash *flash,
unsigned long timeout)
{
return spi_flash_cmd_poll_bit(flash, timeout,
CMD_READ_STATUS, STATUS_WIP);
}
int spi_flash_cmd_erase(const struct spi_flash *flash, u32 offset, size_t len)
{
u32 start, end, erase_size;
int ret;
u8 cmd[4];
erase_size = flash->sector_size;
if (offset % erase_size || len % erase_size) {
printk(BIOS_WARNING, "SF: Erase offset/length not multiple of erase size\n");
return -1;
}
cmd[0] = flash->erase_cmd;
start = offset;
end = start + len;
while (offset < end) {
spi_flash_addr(offset, cmd);
offset += erase_size;
#if CONFIG_DEBUG_SPI_FLASH
printk(BIOS_SPEW, "SF: erase %2x %2x %2x %2x (%x)\n", cmd[0], cmd[1],
cmd[2], cmd[3], offset);
#endif
ret = spi_flash_cmd(flash->spi, CMD_WRITE_ENABLE, NULL, 0);
if (ret)
goto out;
ret = spi_flash_cmd_write(flash->spi, cmd, sizeof(cmd), NULL, 0);
if (ret)
goto out;
ret = spi_flash_cmd_wait_ready(flash, SPI_FLASH_PAGE_ERASE_TIMEOUT);
if (ret)
goto out;
}
printk(BIOS_DEBUG, "SF: Successfully erased %zu bytes @ %#x\n", len, start);
out:
return ret;
}
int spi_flash_cmd_status(const struct spi_flash *flash, u8 *reg)
{
return spi_flash_cmd(flash->spi, flash->status_cmd, reg, sizeof(*reg));
}
/*
* The following table holds all device probe functions
*
* shift: number of continuation bytes before the ID
* idcode: the expected IDCODE or 0xff for non JEDEC devices
* probe: the function to call
*
* Non JEDEC devices should be ordered in the table such that
* the probe functions with best detection algorithms come first.
*
* Several matching entries are permitted, they will be tried
* in sequence until a probe function returns non NULL.
*
* IDCODE_CONT_LEN may be redefined if a device needs to declare a
* larger "shift" value. IDCODE_PART_LEN generally shouldn't be
* changed. This is the max number of bytes probe functions may
* examine when looking up part-specific identification info.
*
* Probe functions will be given the idcode buffer starting at their
* manu id byte (the "idcode" in the table below). In other words,
* all of the continuation bytes will be skipped (the "shift" below).
*/
#define IDCODE_CONT_LEN 0
#define IDCODE_PART_LEN 5
static struct {
const u8 shift;
const u8 idcode;
struct spi_flash *(*probe) (struct spi_slave *spi, u8 *idcode);
} flashes[] = {
/* Keep it sorted by define name */
#if CONFIG_SPI_FLASH_AMIC
{ 0, 0x37, spi_flash_probe_amic, },
#endif
#if CONFIG_SPI_FLASH_ATMEL
{ 0, 0x1f, spi_flash_probe_atmel, },
#endif
#if CONFIG_SPI_FLASH_EON
{ 0, 0x1c, spi_flash_probe_eon, },
#endif
#if CONFIG_SPI_FLASH_GIGADEVICE
{ 0, 0xc8, spi_flash_probe_gigadevice, },
#endif
#if CONFIG_SPI_FLASH_MACRONIX
{ 0, 0xc2, spi_flash_probe_macronix, },
#endif
#if CONFIG_SPI_FLASH_SPANSION
{ 0, 0x01, spi_flash_probe_spansion, },
#endif
#if CONFIG_SPI_FLASH_SST
{ 0, 0xbf, spi_flash_probe_sst, },
#endif
#if CONFIG_SPI_FLASH_STMICRO
{ 0, 0x20, spi_flash_probe_stmicro, },
#endif
#if CONFIG_SPI_FLASH_WINBOND
{ 0, 0xef, spi_flash_probe_winbond, },
#endif
/* Keep it sorted by best detection */
#if CONFIG_SPI_FLASH_STMICRO
{ 0, 0xff, spi_flash_probe_stmicro, },
#endif
#if CONFIG_SPI_FLASH_ADESTO
{ 0, 0x1f, spi_flash_probe_adesto, },
#endif
};
#define IDCODE_LEN (IDCODE_CONT_LEN + IDCODE_PART_LEN)
struct spi_flash *
__attribute__((weak)) spi_flash_programmer_probe(struct spi_slave *spi,
int force)
{
/* Default weak implementation. Do nothing. */
return NULL;
}
static struct spi_flash *__spi_flash_probe(struct spi_slave *spi)
{
int ret, i, shift;
u8 idcode[IDCODE_LEN], *idp;
struct spi_flash *flash = NULL;
/* Read the ID codes */
ret = spi_flash_cmd(spi, CMD_READ_ID, idcode, sizeof(idcode));
if (ret)
return NULL;
if (IS_ENABLED(CONFIG_DEBUG_SPI_FLASH)) {
printk(BIOS_SPEW, "SF: Got idcode: ");
for (i = 0; i < sizeof(idcode); i++)
printk(BIOS_SPEW, "%02x ", idcode[i]);
printk(BIOS_SPEW, "\n");
}
/* count the number of continuation bytes */
for (shift = 0, idp = idcode; shift < IDCODE_CONT_LEN && *idp == 0x7f;
++shift, ++idp)
continue;
printk(BIOS_INFO, "Manufacturer: %02x\n", *idp);
/* search the table for matches in shift and id */
for (i = 0; i < ARRAY_SIZE(flashes); ++i)
if (flashes[i].shift == shift && flashes[i].idcode == *idp) {
/* we have a match, call probe */
flash = flashes[i].probe(spi, idp);
if (flash)
break;
}
return flash;
}
struct spi_flash *spi_flash_probe(unsigned int bus, unsigned int cs)
{
struct spi_slave *spi;
struct spi_flash *flash;
spi = spi_setup_slave(bus, cs);
if (!spi) {
printk(BIOS_WARNING, "SF: Failed to set up slave\n");
return NULL;
}
/* Try special programmer probe if any (without force). */
flash = spi_flash_programmer_probe(spi, 0);
/* If flash is not found, try generic spi flash probe. */
if (!flash)
flash = __spi_flash_probe(spi);
/* If flash is not yet found, force special programmer probe if any. */
if (!flash)
flash = spi_flash_programmer_probe(spi, 1);
/* Give up -- nothing more to try if flash is not found. */
if (!flash) {
printk(BIOS_WARNING, "SF: Unsupported manufacturer!\n");
return NULL;
}
printk(BIOS_INFO, "SF: Detected %s with sector size 0x%x, total 0x%x\n",
flash->name, flash->sector_size, flash->size);
/*
* Only set the global spi_flash_dev if this is the boot
* device's bus and it's previously unset while in ramstage.
*/
if (ENV_RAMSTAGE && IS_ENABLED(CONFIG_BOOT_DEVICE_SPI_FLASH) &&
CONFIG_BOOT_DEVICE_SPI_FLASH_BUS == bus && !spi_flash_dev)
spi_flash_dev = flash;
return flash;
}
int spi_flash_read(const struct spi_flash *flash, u32 offset, size_t len,
void *buf)
{
return flash->internal_read(flash, offset, len, buf);
}
int spi_flash_write(const struct spi_flash *flash, u32 offset, size_t len,
const void *buf)
{
int ret;
if (spi_flash_volatile_group_begin(flash))
return -1;
ret = flash->internal_write(flash, offset, len, buf);
if (spi_flash_volatile_group_end(flash))
return -1;
return ret;
}
int spi_flash_erase(const struct spi_flash *flash, u32 offset, size_t len)
{
int ret;
if (spi_flash_volatile_group_begin(flash))
return -1;
ret = flash->internal_erase(flash, offset, len);
if (spi_flash_volatile_group_end(flash))
return -1;
return ret;
}
int spi_flash_status(const struct spi_flash *flash, u8 *reg)
{
return flash->internal_status(flash, reg);
}
static uint32_t volatile_group_count CAR_GLOBAL;
int spi_flash_volatile_group_begin(const struct spi_flash *flash)
{
uint32_t count;
int ret = 0;
if (!IS_ENABLED(CONFIG_SPI_FLASH_HAS_VOLATILE_GROUP))
return ret;
count = car_get_var(volatile_group_count);
if (count == 0)
ret = chipset_volatile_group_begin(flash);
count++;
car_set_var(volatile_group_count, count);
return ret;
}
int spi_flash_volatile_group_end(const struct spi_flash *flash)
{
uint32_t count;
int ret = 0;
if (!IS_ENABLED(CONFIG_SPI_FLASH_HAS_VOLATILE_GROUP))
return ret;
count = car_get_var(volatile_group_count);
assert(count == 0);
count--;
car_set_var(volatile_group_count, count);
if (count == 0)
ret = chipset_volatile_group_end(flash);
return ret;
}
void lb_spi_flash(struct lb_header *header)
{
struct lb_spi_flash *flash;
if (!IS_ENABLED(CONFIG_BOOT_DEVICE_SPI_FLASH))
return;
flash = (struct lb_spi_flash *)lb_new_record(header);
flash->tag = LB_TAG_SPI_FLASH;
flash->size = sizeof(*flash);
/* Try to get the flash device if not loaded yet */
if (!spi_flash_dev)
boot_device_init();
if (spi_flash_dev) {
flash->flash_size = spi_flash_dev->size;
flash->sector_size = spi_flash_dev->sector_size;
flash->erase_cmd = spi_flash_dev->erase_cmd;
} else {
flash->flash_size = CONFIG_ROM_SIZE;
/* Default 64k erase command should work on most flash.
* Uniform 4k erase only works on certain devices. */
flash->sector_size = 64 * KiB;
flash->erase_cmd = CMD_BLOCK_ERASE;
}
}
|