1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
#include <bitops.h>
#include <console/console.h>
#include <device/device.h>
#include <device/path.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/hypertransport.h>
#include <part/hard_reset.h>
#include <part/fallback_boot.h>
static device_t ht_scan_get_devs(device_t *old_devices)
{
device_t first, last;
first = *old_devices;
last = first;
while(last && last->sibling &&
(last->sibling->path.type == DEVICE_PATH_PCI) &&
(last->sibling->path.u.pci.devfn > last->path.u.pci.devfn)) {
last = last->sibling;
}
if (first) {
*old_devices = last->sibling;
last->sibling = 0;
}
return first;
}
static unsigned ht_read_freq_cap(device_t dev, unsigned pos)
{
/* Handle bugs in valid hypertransport frequency reporting */
unsigned freq_cap;
freq_cap = pci_read_config16(dev, pos);
freq_cap &= ~(1 << HT_FREQ_VENDOR); /* Ignore Vendor HT frequencies */
/* AMD 8131 Errata 48 */
if ((dev->vendor == PCI_VENDOR_ID_AMD) &&
(dev->device == PCI_DEVICE_ID_AMD_8131_PCIX)) {
freq_cap &= ~(1 << HT_FREQ_800Mhz);
}
/* AMD 8151 Errata 23 */
if ((dev->vendor == PCI_VENDOR_ID_AMD) &&
(dev->device == PCI_DEVICE_ID_AMD_8151_SYSCTRL)) {
freq_cap &= ~(1 << HT_FREQ_800Mhz);
}
/* AMD K8 Unsupported 1Ghz? */
if ((dev->vendor == PCI_VENDOR_ID_AMD) && (dev->device == 0x1100)) {
freq_cap &= ~(1 << HT_FREQ_1000Mhz);
}
return freq_cap;
}
struct prev_link {
struct device *dev;
unsigned pos;
unsigned char config_off, freq_off, freq_cap_off;
};
static int ht_setup_link(struct prev_link *prev, device_t dev, unsigned pos)
{
static const uint8_t link_width_to_pow2[]= { 3, 4, 0, 5, 1, 2, 0, 0 };
static const uint8_t pow2_to_link_width[] = { 0x7, 4, 5, 0, 1, 3 };
unsigned present_width_cap, upstream_width_cap;
unsigned present_freq_cap, upstream_freq_cap;
unsigned ln_present_width_in, ln_upstream_width_in;
unsigned ln_present_width_out, ln_upstream_width_out;
unsigned freq, old_freq;
unsigned present_width, upstream_width, old_width;
int reset_needed;
int linkb_to_host;
/* Set the hypertransport link width and frequency */
reset_needed = 0;
linkb_to_host = pci_read_config16(dev, pos + PCI_CAP_FLAGS) & (1<<10);
/* Read the capabilities */
present_freq_cap = ht_read_freq_cap(dev, pos + (linkb_to_host ? PCI_HT_CAP_SLAVE_FREQ_CAP1: PCI_HT_CAP_SLAVE_FREQ_CAP0));
upstream_freq_cap = ht_read_freq_cap(prev->dev, prev->pos + prev->freq_cap_off);
present_width_cap = pci_read_config8(dev, pos + (linkb_to_host ? PCI_HT_CAP_SLAVE_WIDTH1: PCI_HT_CAP_SLAVE_WIDTH0));
upstream_width_cap = pci_read_config8(prev->dev, prev->pos + prev->config_off);
/* Calculate the highest useable frequency */
freq = log2(present_freq_cap & upstream_freq_cap);
/* Calculate the highest width */
ln_upstream_width_in = link_width_to_pow2[upstream_width_cap & 7];
ln_present_width_out = link_width_to_pow2[(present_width_cap >> 4) & 7];
if (ln_upstream_width_in > ln_present_width_out) {
ln_upstream_width_in = ln_present_width_out;
}
upstream_width = pow2_to_link_width[ln_upstream_width_in];
present_width = pow2_to_link_width[ln_upstream_width_in] << 4;
ln_upstream_width_out = link_width_to_pow2[(upstream_width_cap >> 4) & 7];
ln_present_width_in = link_width_to_pow2[present_width_cap & 7];
if (ln_upstream_width_out > ln_present_width_in) {
ln_upstream_width_out = ln_present_width_in;
}
upstream_width |= pow2_to_link_width[ln_upstream_width_out] << 4;
present_width |= pow2_to_link_width[ln_upstream_width_out];
/* Set the current device */
old_freq = pci_read_config8(dev, pos + (linkb_to_host ? PCI_HT_CAP_SLAVE_FREQ1:PCI_HT_CAP_SLAVE_FREQ0));
if (freq != old_freq) {
pci_write_config8(dev, pos + (linkb_to_host ? PCI_HT_CAP_SLAVE_FREQ1:PCI_HT_CAP_SLAVE_FREQ0), freq);
reset_needed = 1;
printk_spew("HyperT FreqP old %x new %x\n",old_freq,freq);
}
old_width = pci_read_config8(dev, pos + (linkb_to_host ? PCI_HT_CAP_SLAVE_WIDTH1: PCI_HT_CAP_SLAVE_WIDTH0) + 1);
if (present_width != old_width) {
pci_write_config8(dev, pos + (linkb_to_host ? PCI_HT_CAP_SLAVE_WIDTH1: PCI_HT_CAP_SLAVE_WIDTH0) + 1, present_width);
reset_needed = 1;
printk_spew("HyperT widthP old %x new %x\n",old_width, present_width);
}
/* Set the upstream device */
old_freq = pci_read_config8(prev->dev, prev->pos + prev->freq_off);
old_freq &= 0x0f;
if (freq != old_freq) {
pci_write_config8(prev->dev, prev->pos + prev->freq_off, freq);
reset_needed = 1;
printk_spew("HyperT freqU old %x new %x\n", old_freq, freq);
}
old_width = pci_read_config8(prev->dev, prev->pos + prev->config_off + 1);
if (upstream_width != old_width) {
pci_write_config8(prev->dev, prev->pos + prev->config_off + 1, upstream_width);
reset_needed = 1;
printk_spew("HyperT widthU old %x new %x\n", old_width, upstream_width);
}
/* Remember the current link as the previous link */
prev->dev = dev;
prev->pos = pos;
if(linkb_to_host) {
prev->config_off = PCI_HT_CAP_SLAVE_WIDTH0;
prev->freq_off = PCI_HT_CAP_SLAVE_FREQ0;
prev->freq_cap_off = PCI_HT_CAP_SLAVE_FREQ_CAP0;
}
else {
prev->config_off = PCI_HT_CAP_SLAVE_WIDTH1;
prev->freq_off = PCI_HT_CAP_SLAVE_FREQ1;
prev->freq_cap_off = PCI_HT_CAP_SLAVE_FREQ_CAP1;
}
return reset_needed;
}
static unsigned ht_lookup_slave_capability(struct device *dev)
{
unsigned pos;
pos = 0;
switch(dev->hdr_type & 0x7f) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
pos = PCI_CAPABILITY_LIST;
break;
}
if (pos > PCI_CAP_LIST_NEXT) {
pos = pci_read_config8(dev, pos);
}
while(pos != 0) { /* loop through the linked list */
uint8_t cap;
cap = pci_read_config8(dev, pos + PCI_CAP_LIST_ID);
printk_spew("Capability: 0x%02x @ 0x%02x\n", cap, pos);
if (cap == PCI_CAP_ID_HT) {
unsigned flags;
flags = pci_read_config16(dev, pos + PCI_CAP_FLAGS);
printk_spew("flags: 0x%04x\n", (unsigned)flags);
if ((flags >> 13) == 0) {
/* Entry is a Slave secondary, success...*/
break;
}
}
pos = pci_read_config8(dev, pos + PCI_CAP_LIST_NEXT);
}
return pos;
}
static void ht_collapse_early_enumeration(struct bus *bus)
{
unsigned int devfn;
/* Spin through the devices and collapse any early
* hypertransport enumeration.
*/
for(devfn = PCI_DEVFN(1, 0); devfn <= 0xff; devfn += 8) {
struct device dummy;
uint32_t id;
unsigned pos, flags;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.u.pci.devfn = devfn;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
if (id == 0xffffffff || id == 0x00000000 ||
id == 0x0000ffff || id == 0xffff0000) {
continue;
}
dummy.vendor = id & 0xffff;
dummy.device = (id >> 16) & 0xffff;
dummy.hdr_type = pci_read_config8(&dummy, PCI_HEADER_TYPE);
pos = ht_lookup_slave_capability(&dummy);
if (!pos){
continue;
}
/* Clear the unitid */
flags = pci_read_config16(&dummy, pos + PCI_CAP_FLAGS);
flags &= ~0x1f;
pci_write_config16(&dummy, pos + PCI_CAP_FLAGS, flags);
printk_spew("Collapsing %s [%04x/%04x]\n",
dev_path(&dummy), dummy.vendor, dummy.device);
}
}
unsigned int hypertransport_scan_chain(struct bus *bus, unsigned int max)
{
unsigned next_unitid, last_unitid, previous_unitid;
uint8_t previous_pos;
device_t old_devices, dev, func, *chain_last;
unsigned min_unitid = 1;
int reset_needed;
struct prev_link prev;
/* Restore the hypertransport chain to it's unitialized state */
ht_collapse_early_enumeration(bus);
/* See which static device nodes I have */
old_devices = bus->children;
bus->children = 0;
chain_last = &bus->children;
/* Initialize the hypertransport enumeration state */
reset_needed = 0;
prev.dev = bus->dev;
prev.pos = bus->cap;
prev.config_off = PCI_HT_CAP_HOST_WIDTH;
prev.freq_off = PCI_HT_CAP_HOST_FREQ;
prev.freq_cap_off = PCI_HT_CAP_HOST_FREQ_CAP;
/* If present assign unitid to a hypertransport chain */
last_unitid = min_unitid -1;
next_unitid = min_unitid;
previous_pos = 0;
do {
uint32_t id, class;
uint8_t hdr_type, pos;
uint16_t flags;
unsigned count, static_count;
previous_unitid = last_unitid;
last_unitid = next_unitid;
/* Get setup the device_structure */
dev = ht_scan_get_devs(&old_devices);
if (!dev) {
struct device dummy;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.u.pci.devfn = 0;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
/* If the chain is fully enumerated quit */
if (id == 0xffffffff || id == 0x00000000 ||
id == 0x0000ffff || id == 0xffff0000) {
break;
}
dev = alloc_dev(bus, &dummy.path);
}
else {
/* Add this device to the pci bus chain */
*chain_last = dev;
/* Run the magice enable sequence for the device */
if (dev->chip_ops && dev->chip_ops->enable_dev) {
dev->chip_ops->enable_dev(dev);
}
/* Now read the vendor and device id */
id = pci_read_config32(dev, PCI_VENDOR_ID);
/* If the chain is fully enumerated quit */
if (id == 0xffffffff || id == 0x00000000 ||
id == 0x0000ffff || id == 0xffff0000) {
if (dev->enabled) {
printk_info("Disabling static device: %s\n",
dev_path(dev));
dev->enabled = 0;
}
break;
}
}
/* Update the device chain tail */
for(func = dev; func; func = func->sibling) {
chain_last = &func->sibling;
}
/* Read the rest of the pci configuration information */
hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE);
class = pci_read_config32(dev, PCI_CLASS_REVISION);
/* Store the interesting information in the device structure */
dev->vendor = id & 0xffff;
dev->device = (id >> 16) & 0xffff;
dev->hdr_type = hdr_type;
/* class code, the upper 3 bytes of PCI_CLASS_REVISION */
dev->class = class >> 8;
/* Find the hypertransport link capability */
pos = ht_lookup_slave_capability(dev);
if (pos == 0) {
printk_err("%s Hypertransport link capability not found",
dev_path(dev));
break;
}
/* Update the Unitid of the current device */
flags = pci_read_config16(dev, pos + PCI_CAP_FLAGS);
flags &= ~0x1f; /* mask out base Unit ID */
flags |= next_unitid & 0x1f;
pci_write_config16(dev, pos + PCI_CAP_FLAGS, flags);
/* Update the Unitd id in the device structure */
static_count = 1;
for(func = dev; func; func = func->sibling) {
func->path.u.pci.devfn += (next_unitid << 3);
static_count = (func->path.u.pci.devfn >> 3)
- (dev->path.u.pci.devfn >> 3) + 1;
}
/* Compute the number of unitids consumed */
count = (flags >> 5) & 0x1f; /* get unit count */
printk_spew("%s count: %04x static_count: %04x\n",
dev_path(dev), count, static_count);
if (count < static_count) {
count = static_count;
}
/* Update the Unitid of the next device */
next_unitid += count;
/* Setup the hypetransport link */
reset_needed |= ht_setup_link(&prev, dev, pos);
printk_debug("%s [%04x/%04x] %s next_unitid: %04x\n",
dev_path(dev),
dev->vendor, dev->device,
(dev->enabled? "enabled": "disabled"), next_unitid);
} while((last_unitid != next_unitid) && (next_unitid <= 0x1f));
#if HAVE_HARD_RESET == 1
if(reset_needed) {
printk_info("HyperT reset needed\n");
hard_reset();
}
else {
printk_debug("HyperT reset not needed\n");
}
#endif
if (next_unitid > 0x1f) {
next_unitid = 0x1f;
}
return pci_scan_bus(bus, 0x00, (next_unitid << 3)|7, max);
}
|