summaryrefslogtreecommitdiff
path: root/src/devices/device.c
blob: f021c9b3a386c935cab0e45f9b43b6c3aeb0ca64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
/*
 * This file is part of the coreboot project.
 *
 * It was originally based on the Linux kernel (arch/i386/kernel/pci-pc.c).
 *
 * Modifications are:
 * Copyright (C) 2003 Eric Biederman <ebiederm@xmission.com>
 * Copyright (C) 2003-2004 Linux Networx
 * (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
 * Copyright (C) 2003 Ronald G. Minnich <rminnich@gmail.com>
 * Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
 * Copyright (C) 2005-2006 Tyan
 * (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
 * Copyright (C) 2005-2006 Stefan Reinauer <stepan@openbios.org>
 * Copyright (C) 2009 Myles Watson <mylesgw@gmail.com>
 */

/*
 *      (c) 1999--2000 Martin Mares <mj@suse.cz>
 */

/*
 * Lots of mods by Ron Minnich <rminnich@lanl.gov>, with
 * the final architecture guidance from Tom Merritt <tjm@codegen.com>.
 *
 * In particular, we changed from the one-pass original version to
 * Tom's recommended multiple-pass version. I wasn't sure about doing
 * it with multiple passes, until I actually started doing it and saw
 * the wisdom of Tom's recommendations...
 *
 * Lots of cleanups by Eric Biederman to handle bridges, and to
 * handle resource allocation for non-PCI devices.
 */

#include <console/console.h>
#include <bitops.h>
#include <arch/io.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <stdlib.h>
#include <string.h>
#include <smp/spinlock.h>
#if CONFIG_ARCH_X86
#include <arch/ebda.h>
#endif

/** Linked list of ALL devices */
struct device *all_devices = &dev_root;
/** Pointer to the last device */
extern struct device *last_dev;
/** Linked list of free resources */
struct resource *free_resources = NULL;

DECLARE_SPIN_LOCK(dev_lock)

#if CONFIG_GFXUMA
/* IGD UMA memory */
uint64_t uma_memory_base = 0;
uint64_t uma_memory_size = 0;
#endif

/**
 * Allocate a new device structure.
 *
 * Allocte a new device structure and attach it to the device tree as a
 * child of the parent bus.
 *
 * @param parent Parent bus the newly created device should be attached to.
 * @param path Path to the device to be created.
 * @return Pointer to the newly created device structure.
 *
 * @see device_path
 */
static device_t __alloc_dev(struct bus *parent, struct device_path *path)
{
	device_t dev, child;

	/* Find the last child of our parent. */
	for (child = parent->children; child && child->sibling; /* */ )
		child = child->sibling;

	dev = malloc(sizeof(*dev));
	if (dev == 0)
		die("alloc_dev(): out of memory.\n");

	memset(dev, 0, sizeof(*dev));
	memcpy(&dev->path, path, sizeof(*path));

	/* By default devices are enabled. */
	dev->enabled = 1;

	/* Add the new device to the list of children of the bus. */
	dev->bus = parent;
	if (child)
		child->sibling = dev;
	else
		parent->children = dev;

	/* Append a new device to the global device list.
	 * The list is used to find devices once everything is set up.
	 */
	last_dev->next = dev;
	last_dev = dev;

	return dev;
}

device_t alloc_dev(struct bus *parent, struct device_path *path)
{
	device_t dev;
	spin_lock(&dev_lock);
	dev = __alloc_dev(parent, path);
	spin_unlock(&dev_lock);
	return dev;
}

/**
 * See if a device structure already exists and if not allocate it.
 *
 * @param parent The bus to find the device on.
 * @param path The relative path from the bus to the appropriate device.
 * @return Pointer to a device structure for the device on bus at path.
 */
device_t alloc_find_dev(struct bus *parent, struct device_path *path)
{
	device_t child;
	spin_lock(&dev_lock);
	child = find_dev_path(parent, path);
	if (!child)
		child = __alloc_dev(parent, path);
	spin_unlock(&dev_lock);
	return child;
}

/**
 * Round a number up to an alignment.
 *
 * @param val The starting value.
 * @param roundup Alignment as a power of two.
 * @return Rounded up number.
 */
static resource_t round(resource_t val, unsigned long pow)
{
	resource_t mask;
	mask = (1ULL << pow) - 1ULL;
	val += mask;
	val &= ~mask;
	return val;
}

/**
 * Read the resources on all devices of a given bus.
 *
 * @param bus Bus to read the resources on.
 */
static void read_resources(struct bus *bus)
{
	struct device *curdev;

	printk(BIOS_SPEW, "%s %s bus %x link: %d\n", dev_path(bus->dev),
	       __func__, bus->secondary, bus->link_num);

	/* Walk through all devices and find which resources they need. */
	for (curdev = bus->children; curdev; curdev = curdev->sibling) {
		struct bus *link;

		if (!curdev->enabled)
			continue;

		if (!curdev->ops || !curdev->ops->read_resources) {
			printk(BIOS_ERR, "%s missing read_resources\n",
			       dev_path(curdev));
			continue;
		}
		curdev->ops->read_resources(curdev);

		/* Read in the resources behind the current device's links. */
		for (link = curdev->link_list; link; link = link->next)
			read_resources(link);
	}
	printk(BIOS_SPEW, "%s read_resources bus %d link: %d done\n",
	       dev_path(bus->dev), bus->secondary, bus->link_num);
}

struct pick_largest_state {
	struct resource *last;
	struct device *result_dev;
	struct resource *result;
	int seen_last;
};

static void pick_largest_resource(void *gp, struct device *dev,
				  struct resource *resource)
{
	struct pick_largest_state *state = gp;
	struct resource *last;

	last = state->last;

	/* Be certain to pick the successor to last. */
	if (resource == last) {
		state->seen_last = 1;
		return;
	}
	if (resource->flags & IORESOURCE_FIXED)
		return;	/* Skip it. */
	if (last && ((last->align < resource->align) ||
		     ((last->align == resource->align) &&
		      (last->size < resource->size)) ||
		     ((last->align == resource->align) &&
		      (last->size == resource->size) && (!state->seen_last)))) {
		return;
	}
	if (!state->result ||
	    (state->result->align < resource->align) ||
	    ((state->result->align == resource->align) &&
	     (state->result->size < resource->size))) {
		state->result_dev = dev;
		state->result = resource;
	}
}

static struct device *largest_resource(struct bus *bus,
				       struct resource **result_res,
				       unsigned long type_mask,
				       unsigned long type)
{
	struct pick_largest_state state;

	state.last = *result_res;
	state.result_dev = NULL;
	state.result = NULL;
	state.seen_last = 0;

	search_bus_resources(bus, type_mask, type, pick_largest_resource,
			     &state);

	*result_res = state.result;
	return state.result_dev;
}

/**
 * This function is the guts of the resource allocator.
 *
 * The problem.
 *  - Allocate resource locations for every device.
 *  - Don't overlap, and follow the rules of bridges.
 *  - Don't overlap with resources in fixed locations.
 *  - Be efficient so we don't have ugly strategies.
 *
 * The strategy.
 * - Devices that have fixed addresses are the minority so don't
 *   worry about them too much. Instead only use part of the address
 *   space for devices with programmable addresses. This easily handles
 *   everything except bridges.
 *
 * - PCI devices are required to have their sizes and their alignments
 *   equal. In this case an optimal solution to the packing problem
 *   exists. Allocate all devices from highest alignment to least
 *   alignment or vice versa. Use this.
 *
 * - So we can handle more than PCI run two allocation passes on bridges. The
 *   first to see how large the resources are behind the bridge, and what
 *   their alignment requirements are. The second to assign a safe address to
 *   the devices behind the bridge. This allows us to treat a bridge as just
 *   a device with a couple of resources, and not need to special case it in
 *   the allocator. Also this allows handling of other types of bridges.
 *
 * @param bus The bus we are traversing.
 * @param bridge The bridge resource which must contain the bus' resources.
 * @param type_mask This value gets ANDed with the resource type.
 * @param type This value must match the result of the AND.
 * @return TODO
 */
static void compute_resources(struct bus *bus, struct resource *bridge,
			      unsigned long type_mask, unsigned long type)
{
	struct device *dev;
	struct resource *resource;
	resource_t base;
	base = round(bridge->base, bridge->align);

	printk(BIOS_SPEW,  "%s %s_%s: base: %llx size: %llx align: %d gran: %d"
	       " limit: %llx\n", dev_path(bus->dev), __func__,
	       (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
	       "prefmem" : "mem", base, bridge->size, bridge->align,
	       bridge->gran, bridge->limit);

	/* For each child which is a bridge, compute the resource needs. */
	for (dev = bus->children; dev; dev = dev->sibling) {
		struct resource *child_bridge;

		if (!dev->link_list)
			continue;

		/* Find the resources with matching type flags. */
		for (child_bridge = dev->resource_list; child_bridge;
		     child_bridge = child_bridge->next) {
			struct bus* link;

			if (!(child_bridge->flags & IORESOURCE_BRIDGE)
			    || (child_bridge->flags & type_mask) != type)
				continue;

			/*
			 * Split prefetchable memory if combined. Many domains
			 * use the same address space for prefetchable memory
			 * and non-prefetchable memory. Bridges below them need
			 * it separated. Add the PREFETCH flag to the type_mask
			 * and type.
			 */
			link = dev->link_list;
			while (link && link->link_num !=
					IOINDEX_LINK(child_bridge->index))
				link = link->next;

			if (link == NULL) {
				printk(BIOS_ERR, "link %ld not found on %s\n",
				       IOINDEX_LINK(child_bridge->index),
				       dev_path(dev));
			}

			compute_resources(link, child_bridge,
					  type_mask | IORESOURCE_PREFETCH,
					  type | (child_bridge->flags &
						  IORESOURCE_PREFETCH));
		}
	}

	/* Remember we haven't found anything yet. */
	resource = NULL;

	/*
	 * Walk through all the resources on the current bus and compute the
	 * amount of address space taken by them. Take granularity and
	 * alignment into account.
	 */
	while ((dev = largest_resource(bus, &resource, type_mask, type))) {

		/* Size 0 resources can be skipped. */
		if (!resource->size)
			continue;

		/* Propagate the resource alignment to the bridge resource. */
		if (resource->align > bridge->align)
			bridge->align = resource->align;

		/* Propagate the resource limit to the bridge register. */
		if (bridge->limit > resource->limit)
			bridge->limit = resource->limit;

		/* Warn if it looks like APICs aren't declared. */
		if ((resource->limit == 0xffffffff) &&
		    (resource->flags & IORESOURCE_ASSIGNED)) {
			printk(BIOS_ERR,
			       "Resource limit looks wrong! (no APIC?)\n");
			printk(BIOS_ERR, "%s %02lx limit %08llx\n",
			       dev_path(dev), resource->index, resource->limit);
		}

		if (resource->flags & IORESOURCE_IO) {
			/*
			 * Don't allow potential aliases over the legacy PCI
			 * expansion card addresses. The legacy PCI decodes
			 * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
			 * 0x00 - 0xff can be used out of each 0x400 block of
			 * I/O space.
			 */
			if ((base & 0x300) != 0) {
				base = (base & ~0x3ff) + 0x400;
			}
			/*
			 * Don't allow allocations in the VGA I/O range.
			 * PCI has special cases for that.
			 */
			else if ((base >= 0x3b0) && (base <= 0x3df)) {
				base = 0x3e0;
			}
		}
		/* Base must be aligned. */
		base = round(base, resource->align);
		resource->base = base;
		base += resource->size;

		printk(BIOS_SPEW, "%s %02lx *  [0x%llx - 0x%llx] %s\n",
		       dev_path(dev), resource->index, resource->base,
		       resource->base + resource->size - 1,
		       (resource->flags & IORESOURCE_IO) ? "io" :
		       (resource->flags & IORESOURCE_PREFETCH) ?
		        "prefmem" : "mem");
	}

	/*
	 * A PCI bridge resource does not need to be a power of two size, but
	 * it does have a minimum granularity. Round the size up to that
	 * minimum granularity so we know not to place something else at an
	 * address postitively decoded by the bridge.
	 */
	bridge->size = round(base, bridge->gran) -
		       round(bridge->base, bridge->align);

	printk(BIOS_SPEW, "%s %s_%s: base: %llx size: %llx align: %d gran: %d"
	       " limit: %llx done\n", dev_path(bus->dev), __func__,
	       (bridge->flags & IORESOURCE_IO) ? "io" :
	       (bridge->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem",
	       base, bridge->size, bridge->align, bridge->gran, bridge->limit);
}

/**
 * This function is the second part of the resource allocator.
 *
 * See the compute_resources function for a more detailed explanation.
 *
 * This function assigns the resources a value.
 *
 * @param bus The bus we are traversing.
 * @param bridge The bridge resource which must contain the bus' resources.
 * @param type_mask This value gets ANDed with the resource type.
 * @param type This value must match the result of the AND.
 *
 * @see compute_resources
 */
static void allocate_resources(struct bus *bus, struct resource *bridge,
			       unsigned long type_mask, unsigned long type)
{
	struct device *dev;
	struct resource *resource;
	resource_t base;
	base = bridge->base;

	printk(BIOS_SPEW, "%s %s_%s: base:%llx size:%llx align:%d gran:%d "
	       "limit:%llx\n", dev_path(bus->dev), __func__,
	       (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
	       "prefmem" : "mem",
	       base, bridge->size, bridge->align, bridge->gran, bridge->limit);

	/* Remember we haven't found anything yet. */
	resource = NULL;

	/*
	 * Walk through all the resources on the current bus and allocate them
	 * address space.
	 */
	while ((dev = largest_resource(bus, &resource, type_mask, type))) {

		/* Propagate the bridge limit to the resource register. */
		if (resource->limit > bridge->limit)
			resource->limit = bridge->limit;

		/* Size 0 resources can be skipped. */
		if (!resource->size) {
			/* Set the base to limit so it doesn't confuse tolm. */
			resource->base = resource->limit;
			resource->flags |= IORESOURCE_ASSIGNED;
			continue;
		}

		if (resource->flags & IORESOURCE_IO) {
			/*
			 * Don't allow potential aliases over the legacy PCI
			 * expansion card addresses. The legacy PCI decodes
			 * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
			 * 0x00 - 0xff can be used out of each 0x400 block of
			 * I/O space.
			 */
			if ((base & 0x300) != 0) {
				base = (base & ~0x3ff) + 0x400;
			}
			/*
			 * Don't allow allocations in the VGA I/O range.
			 * PCI has special cases for that.
			 */
			else if ((base >= 0x3b0) && (base <= 0x3df)) {
				base = 0x3e0;
			}
		}

		if ((round(base, resource->align) + resource->size - 1) <=
		    resource->limit) {
			/* Base must be aligned. */
			base = round(base, resource->align);
			resource->base = base;
			resource->flags |= IORESOURCE_ASSIGNED;
			resource->flags &= ~IORESOURCE_STORED;
			base += resource->size;
		} else {
			printk(BIOS_ERR, "!! Resource didn't fit !!\n");
			printk(BIOS_ERR, "   aligned base %llx size %llx "
			       "limit %llx\n", round(base, resource->align),
			       resource->size, resource->limit);
			printk(BIOS_ERR, "   %llx needs to be <= %llx "
			       "(limit)\n", (round(base, resource->align) +
				resource->size) - 1, resource->limit);
			printk(BIOS_ERR, "   %s%s %02lx *  [0x%llx - 0x%llx]"
			       " %s\n", (resource->flags & IORESOURCE_ASSIGNED)
			       ? "Assigned: " : "", dev_path(dev),
			       resource->index, resource->base,
			       resource->base + resource->size - 1,
			       (resource->flags & IORESOURCE_IO) ? "io"
			       : (resource->flags & IORESOURCE_PREFETCH)
			       ? "prefmem" : "mem");
		}

		printk(BIOS_SPEW, "%s%s %02lx *  [0x%llx - 0x%llx] %s\n",
		       (resource->flags & IORESOURCE_ASSIGNED) ? "Assigned: "
		       : "", dev_path(dev), resource->index, resource->base,
		       resource->size ? resource->base + resource->size - 1 :
		       resource->base, (resource->flags & IORESOURCE_IO)
		       ? "io" : (resource->flags & IORESOURCE_PREFETCH)
		       ? "prefmem" : "mem");
	}

	/*
	 * A PCI bridge resource does not need to be a power of two size, but
	 * it does have a minimum granularity. Round the size up to that
	 * minimum granularity so we know not to place something else at an
	 * address positively decoded by the bridge.
	 */

	bridge->flags |= IORESOURCE_ASSIGNED;

	printk(BIOS_SPEW, "%s %s_%s: next_base: %llx size: %llx align: %d "
	       "gran: %d done\n", dev_path(bus->dev), __func__,
	       (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
	       "prefmem" : "mem", base, bridge->size, bridge->align,
	       bridge->gran);

	/* For each child which is a bridge, allocate_resources. */
	for (dev = bus->children; dev; dev = dev->sibling) {
		struct resource *child_bridge;

		if (!dev->link_list)
			continue;

		/* Find the resources with matching type flags. */
		for (child_bridge = dev->resource_list; child_bridge;
		     child_bridge = child_bridge->next) {
			struct bus* link;

			if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
			    (child_bridge->flags & type_mask) != type)
				continue;

			/*
			 * Split prefetchable memory if combined. Many domains
			 * use the same address space for prefetchable memory
			 * and non-prefetchable memory. Bridges below them need
			 * it separated. Add the PREFETCH flag to the type_mask
			 * and type.
			 */
			link = dev->link_list;
			while (link && link->link_num !=
			               IOINDEX_LINK(child_bridge->index))
				link = link->next;
			if (link == NULL)
				printk(BIOS_ERR, "link %ld not found on %s\n",
				       IOINDEX_LINK(child_bridge->index),
				       dev_path(dev));

			allocate_resources(link, child_bridge,
					   type_mask | IORESOURCE_PREFETCH,
					   type | (child_bridge->flags &
						   IORESOURCE_PREFETCH));
		}
	}
}

#if CONFIG_PCI_64BIT_PREF_MEM
#define MEM_MASK (IORESOURCE_PREFETCH | IORESOURCE_MEM)
#else
#define MEM_MASK (IORESOURCE_MEM)
#endif

#define IO_MASK   (IORESOURCE_IO)
#define PREF_TYPE (IORESOURCE_PREFETCH | IORESOURCE_MEM)
#define MEM_TYPE  (IORESOURCE_MEM)
#define IO_TYPE   (IORESOURCE_IO)

struct constraints {
	struct resource pref, io, mem;
};

static void constrain_resources(struct device *dev, struct constraints* limits)
{
	struct device *child;
	struct resource *res;
	struct resource *lim;
	struct bus *link;

	printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));

	/* Constrain limits based on the fixed resources of this device. */
	for (res = dev->resource_list; res; res = res->next) {
		if (!(res->flags & IORESOURCE_FIXED))
			continue;
		if (!res->size) {
			/* It makes no sense to have 0-sized, fixed resources.*/
			printk(BIOS_ERR, "skipping %s@%lx fixed resource, "
			       "size=0!\n", dev_path(dev), res->index);
			continue;
		}

		/* PREFETCH, MEM, or I/O - skip any others. */
		if ((res->flags & MEM_MASK) == PREF_TYPE)
			lim = &limits->pref;
		else if ((res->flags & MEM_MASK) == MEM_TYPE)
			lim = &limits->mem;
		else if ((res->flags & IO_MASK) == IO_TYPE)
			lim = &limits->io;
		else
			continue;

		/*
		 * Is it a fixed resource outside the current known region?
		 * If so, we don't have to consider it - it will be handled
		 * correctly and doesn't affect current region's limits.
		 */
		if (((res->base + res->size -1) < lim->base)
		    || (res->base > lim->limit))
			continue;

		/*
		 * Choose to be above or below fixed resources. This check is
		 * signed so that "negative" amounts of space are handled
		 * correctly.
		 */
		if ((signed long long)(lim->limit - (res->base + res->size -1))
		    > (signed long long)(res->base - lim->base))
			lim->base = res->base + res->size;
		else
			lim->limit = res->base -1;
	}

	/* Descend into every enabled child and look for fixed resources. */
	for (link = dev->link_list; link; link = link->next) {
		for (child = link->children; child; child = child->sibling) {
			if (child->enabled)
				constrain_resources(child, limits);
		}
	}
}

static void avoid_fixed_resources(struct device *dev)
{
	struct constraints limits;
	struct resource *res;

	printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));

	/* Initialize constraints to maximum size. */
	limits.pref.base = 0;
	limits.pref.limit = 0xffffffffffffffffULL;
	limits.io.base = 0;
	limits.io.limit = 0xffffffffffffffffULL;
	limits.mem.base = 0;
	limits.mem.limit = 0xffffffffffffffffULL;

	/* Constrain the limits to dev's initial resources. */
	for (res = dev->resource_list; res; res = res->next) {
		if ((res->flags & IORESOURCE_FIXED))
			continue;
		printk(BIOS_SPEW, "%s:@%s %02lx limit %08llx\n", __func__,
		       dev_path(dev), res->index, res->limit);
		if ((res->flags & MEM_MASK) == PREF_TYPE &&
		    (res->limit < limits.pref.limit))
			limits.pref.limit = res->limit;
		if ((res->flags & MEM_MASK) == MEM_TYPE &&
		    (res->limit < limits.mem.limit))
			limits.mem.limit = res->limit;
		if ((res->flags & IO_MASK) == IO_TYPE &&
		    (res->limit < limits.io.limit))
			limits.io.limit = res->limit;
	}

	/* Look through the tree for fixed resources and update the limits. */
	constrain_resources(dev, &limits);

	/* Update dev's resources with new limits. */
	for (res = dev->resource_list; res; res = res->next) {
		struct resource *lim;

		if ((res->flags & IORESOURCE_FIXED))
			continue;

		/* PREFETCH, MEM, or I/O - skip any others. */
		if ((res->flags & MEM_MASK) == PREF_TYPE)
			lim = &limits.pref;
		else if ((res->flags & MEM_MASK) == MEM_TYPE)
			lim = &limits.mem;
		else if ((res->flags & IO_MASK) == IO_TYPE)
			lim = &limits.io;
		else
			continue;

		printk(BIOS_SPEW, "%s2: %s@%02lx limit %08llx\n", __func__,
			     dev_path(dev), res->index, res->limit);
		printk(BIOS_SPEW, "\tlim->base %08llx lim->limit %08llx\n",
			     lim->base, lim->limit);

		/* Is the resource outside the limits? */
		if (lim->base > res->base)
			res->base = lim->base;
		if (res->limit > lim->limit)
			res->limit = lim->limit;
	}
}

device_t vga_pri = 0;
static void set_vga_bridge_bits(void)
{
	/*
	 * FIXME: Modify set_vga_bridge() so it is less PCI centric!
	 * This function knows too much about PCI stuff, it should be just
	 * an iterator/visitor.
	 */

	/* FIXME: Handle the VGA palette snooping. */
	struct device *dev, *vga, *vga_onboard;
	struct bus *bus;

	bus = 0;
	vga = 0;
	vga_onboard = 0;

	dev = NULL;
	while ((dev = dev_find_class(PCI_CLASS_DISPLAY_VGA << 8, dev))) {
		if (!dev->enabled)
			continue;

		printk(BIOS_DEBUG, "found VGA at %s\n", dev_path(dev));

		if (dev->on_mainboard) {
			vga_onboard = dev;
		} else {
			vga = dev;
		}

		/* It isn't safe to enable all VGA cards. */
		dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
	}

	if (!vga)
		vga = vga_onboard;

	if (CONFIG_ONBOARD_VGA_IS_PRIMARY && vga_onboard)
		vga = vga_onboard;

	/* If we prefer plugin VGA over chipset VGA, the chipset might
	   want to know. */
	if (!CONFIG_ONBOARD_VGA_IS_PRIMARY && (vga != vga_onboard) &&
		vga_onboard && vga_onboard->ops && vga_onboard->ops->disable) {
		printk(BIOS_DEBUG, "Use plugin graphics over integrated.\n");
		vga_onboard->ops->disable(vga_onboard);
	}

	if (vga) {
		/* VGA is first add-on card or the only onboard VGA. */
		printk(BIOS_DEBUG, "Setting up VGA for %s\n", dev_path(vga));
		/* All legacy VGA cards have MEM & I/O space registers. */
		vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
		vga_pri = vga;
		bus = vga->bus;
	}

	/* Now walk up the bridges setting the VGA enable. */
	while (bus) {
		printk(BIOS_DEBUG, "Setting PCI_BRIDGE_CTL_VGA for bridge %s\n",
		       dev_path(bus->dev));
		bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA;
		bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus;
	}
}

/**
 * Assign the computed resources to the devices on the bus.
 *
 * Use the device specific set_resources() method to store the computed
 * resources to hardware. For bridge devices, the set_resources() method
 * has to recurse into every down stream buses.
 *
 * Mutual recursion:
 *	assign_resources() -> device_operation::set_resources()
 *	device_operation::set_resources() -> assign_resources()
 *
 * @param bus Pointer to the structure for this bus.
 */
void assign_resources(struct bus *bus)
{
	struct device *curdev;

	printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
	       dev_path(bus->dev), bus->secondary, bus->link_num);

	for (curdev = bus->children; curdev; curdev = curdev->sibling) {
		if (!curdev->enabled || !curdev->resource_list)
			continue;

		if (!curdev->ops || !curdev->ops->set_resources) {
			printk(BIOS_ERR, "%s missing set_resources\n",
			       dev_path(curdev));
			continue;
		}
		curdev->ops->set_resources(curdev);
	}
	printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
	       dev_path(bus->dev), bus->secondary, bus->link_num);
}

/**
 * Enable the resources for devices on a link.
 *
 * Enable resources of the device by calling the device specific
 * enable_resources() method.
 *
 * The parent's resources should be enabled first to avoid having enabling
 * order problem. This is done by calling the parent's enable_resources()
 * method before its childrens' enable_resources() methods.
 *
 * @param link The link whose devices' resources are to be enabled.
 */
static void enable_resources(struct bus *link)
{
	struct device *dev;
	struct bus *c_link;

	for (dev = link->children; dev; dev = dev->sibling) {
		if (dev->enabled && dev->ops && dev->ops->enable_resources)
			dev->ops->enable_resources(dev);
	}

	for (dev = link->children; dev; dev = dev->sibling) {
		for (c_link = dev->link_list; c_link; c_link = c_link->next)
			enable_resources(c_link);
	}
}

/**
 * Reset all of the devices on a bus and clear the bus's reset_needed flag.
 *
 * @param bus Pointer to the bus structure.
 * @return 1 if the bus was successfully reset, 0 otherwise.
 */
int reset_bus(struct bus *bus)
{
	if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) {
		bus->dev->ops->reset_bus(bus);
		bus->reset_needed = 0;
		return 1;
	}
	return 0;
}

/**
 * Scan for devices on a bus.
 *
 * If there are bridges on the bus, recursively scan the buses behind the
 * bridges. If the setting up and tuning of the bus causes a reset to be
 * required, reset the bus and scan it again.
 *
 * @param busdev Pointer to the bus device.
 * @param max Current bus number.
 * @return The maximum bus number found, after scanning all subordinate buses.
 */
unsigned int scan_bus(struct device *busdev, unsigned int max)
{
	unsigned int new_max;
	int do_scan_bus;

	if (!busdev || !busdev->enabled || !busdev->ops ||
	    !busdev->ops->scan_bus) {
		return max;
	}

	do_scan_bus = 1;
	while (do_scan_bus) {
		struct bus *link;
		new_max = busdev->ops->scan_bus(busdev, max);
		do_scan_bus = 0;
		for (link = busdev->link_list; link; link = link->next) {
			if (link->reset_needed) {
				if (reset_bus(link))
					do_scan_bus = 1;
				else
					busdev->bus->reset_needed = 1;
			}
		}
	}
	return new_max;
}

/**
 * Determine the existence of devices and extend the device tree.
 *
 * Most of the devices in the system are listed in the mainboard devicetree.cb
 * file. The device structures for these devices are generated at compile
 * time by the config tool and are organized into the device tree. This
 * function determines if the devices created at compile time actually exist
 * in the physical system.
 *
 * For devices in the physical system but not listed in devicetree.cb,
 * the device structures have to be created at run time and attached to the
 * device tree.
 *
 * This function starts from the root device 'dev_root', scans the buses in
 * the system recursively, and modifies the device tree according to the
 * result of the probe.
 *
 * This function has no idea how to scan and probe buses and devices at all.
 * It depends on the bus/device specific scan_bus() method to do it. The
 * scan_bus() method also has to create the device structure and attach
 * it to the device tree.
 */
void dev_enumerate(void)
{
	struct device *root;

	printk(BIOS_INFO, "Enumerating buses...\n");

	root = &dev_root;

	show_all_devs(BIOS_SPEW, "Before device enumeration.");
	printk(BIOS_SPEW, "Compare with tree...\n");
	show_devs_tree(root, BIOS_SPEW, 0, 0);

	if (root->chip_ops && root->chip_ops->enable_dev)
		root->chip_ops->enable_dev(root);

	if (!root->ops || !root->ops->scan_bus) {
		printk(BIOS_ERR, "dev_root missing scan_bus operation");
		return;
	}
	scan_bus(root, 0);
	printk(BIOS_INFO, "done\n");
}

/**
 * Configure devices on the devices tree.
 *
 * Starting at the root of the device tree, travel it recursively in two
 * passes. In the first pass, we compute and allocate resources (ranges)
 * requried by each device. In the second pass, the resources ranges are
 * relocated to their final position and stored to the hardware.
 *
 * I/O resources grow upward. MEM resources grow downward.
 *
 * Since the assignment is hierarchical we set the values into the dev_root
 * struct.
 */
void dev_configure(void)
{
	struct resource *res;
	struct device *root;
	struct device *child;

	set_vga_bridge_bits();

	printk(BIOS_INFO, "Allocating resources...\n");

	root = &dev_root;

	/*
	 * Each domain should create resources which contain the entire address
	 * space for IO, MEM, and PREFMEM resources in the domain. The
	 * allocation of device resources will be done from this address space.
	 */

	/* Read the resources for the entire tree. */

	printk(BIOS_INFO, "Reading resources...\n");
	read_resources(root->link_list);
	printk(BIOS_INFO, "Done reading resources.\n");

	print_resource_tree(root, BIOS_SPEW, "After reading.");

	/* Compute resources for all domains. */
	for (child = root->link_list->children; child; child = child->sibling) {
		if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN))
			continue;
		for (res = child->resource_list; res; res = res->next) {
			if (res->flags & IORESOURCE_FIXED)
				continue;
			if (res->flags & IORESOURCE_PREFETCH) {
				compute_resources(child->link_list,
						  res, MEM_MASK, PREF_TYPE);
				continue;
			}
			if (res->flags & IORESOURCE_MEM) {
				compute_resources(child->link_list,
						  res, MEM_MASK, MEM_TYPE);
				continue;
			}
			if (res->flags & IORESOURCE_IO) {
				compute_resources(child->link_list,
						  res, IO_MASK, IO_TYPE);
				continue;
			}
		}
	}

	/* For all domains. */
	for (child = root->link_list->children; child; child=child->sibling)
		if (child->path.type == DEVICE_PATH_PCI_DOMAIN)
			avoid_fixed_resources(child);

	/*
	 * Now we need to adjust the resources. MEM resources need to start at
	 * the highest address managable.
	 */
	for (child = root->link_list->children; child; child = child->sibling) {
		if (child->path.type != DEVICE_PATH_PCI_DOMAIN)
			continue;
		for (res = child->resource_list; res; res = res->next) {
			if (!(res->flags & IORESOURCE_MEM) ||
			    res->flags & IORESOURCE_FIXED)
				continue;
			res->base = resource_max(res);
		}
	}

	/* Store the computed resource allocations into device registers ... */
	printk(BIOS_INFO, "Setting resources...\n");
	for (child = root->link_list->children; child; child = child->sibling) {
		if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN))
			continue;
		for (res = child->resource_list; res; res = res->next) {
			if (res->flags & IORESOURCE_FIXED)
				continue;
			if (res->flags & IORESOURCE_PREFETCH) {
				allocate_resources(child->link_list,
						   res, MEM_MASK, PREF_TYPE);
				continue;
			}
			if (res->flags & IORESOURCE_MEM) {
				allocate_resources(child->link_list,
						   res, MEM_MASK, MEM_TYPE);
				continue;
			}
			if (res->flags & IORESOURCE_IO) {
				allocate_resources(child->link_list,
						   res, IO_MASK, IO_TYPE);
				continue;
			}
		}
	}
	assign_resources(root->link_list);
	printk(BIOS_INFO, "Done setting resources.\n");
	print_resource_tree(root, BIOS_SPEW, "After assigning values.");

	printk(BIOS_INFO, "Done allocating resources.\n");
}

/**
 * Enable devices on the device tree.
 *
 * Starting at the root, walk the tree and enable all devices/bridges by
 * calling the device's enable_resources() method.
 */
void dev_enable(void)
{
	struct bus *link;

	printk(BIOS_INFO, "Enabling resources...\n");

	/* Now enable everything. */
	for (link = dev_root.link_list; link; link = link->next)
		enable_resources(link);

	printk(BIOS_INFO, "done.\n");
}

/**
 * Initialize a specific device.
 *
 * The parent should be initialized first to avoid having an ordering problem.
 * This is done by calling the parent's init() method before its childrens'
 * init() methods.
 *
 * @param dev The device to be initialized.
 */
static void init_dev(struct device *dev)
{
	if (!dev->enabled)
		return;

	if (!dev->initialized && dev->ops && dev->ops->init) {
		if (dev->path.type == DEVICE_PATH_I2C) {
			printk(BIOS_DEBUG, "smbus: %s[%d]->",
			       dev_path(dev->bus->dev), dev->bus->link_num);
		}

		printk(BIOS_DEBUG, "%s init\n", dev_path(dev));
		dev->initialized = 1;
		dev->ops->init(dev);
	}
}

static void init_link(struct bus *link)
{
	struct device *dev;
	struct bus *c_link;

	for (dev = link->children; dev; dev = dev->sibling)
		init_dev(dev);

	for (dev = link->children; dev; dev = dev->sibling) {
		for (c_link = dev->link_list; c_link; c_link = c_link->next)
			init_link(c_link);
	}
}

/**
 * Initialize all devices in the global device tree.
 *
 * Starting at the root device, call the device's init() method to do
 * device-specific setup, then call each child's init() method.
 */
void dev_initialize(void)
{
	struct bus *link;

	printk(BIOS_INFO, "Initializing devices...\n");

#if CONFIG_ARCH_X86
	/* Ensure EBDA is prepared before Option ROMs. */
	setup_default_ebda();
#endif

	/* First call the mainboard init. */
	init_dev(&dev_root);

	/* Now initialize everything. */
	for (link = dev_root.link_list; link; link = link->next)
		init_link(link);

	printk(BIOS_INFO, "Devices initialized\n");
	show_all_devs(BIOS_SPEW, "After init.");
}