1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
|
/******************************************************************************
* Copyright (c) 2004, 2008 IBM Corporation
* Copyright (c) 2008, 2009 Pattrick Hueper <phueper@hueper.net>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* IBM Corporation - initial implementation
*****************************************************************************/
#include <types.h>
#include "compat/rtas.h"
#include "biosemu.h"
#include "mem.h"
#include "device.h"
#include "debug.h"
#include "pmm.h"
#include "interrupt.h"
#include <x86emu/x86emu.h>
#include "../x86emu/prim_ops.h"
#include <device/pci.h>
#include <device/pci_ops.h>
//setup to run the code at the address, that the Interrupt Vector points to...
static void
setupInt(int intNum)
{
DEBUG_PRINTF_INTR("%s(%x): executing interrupt handler @%08x\n",
__func__, intNum, my_rdl(intNum * 4));
// push current R_FLG... will be popped by IRET
push_word((u16) M.x86.R_FLG);
CLEAR_FLAG(F_IF);
CLEAR_FLAG(F_TF);
// push current CS:IP to the stack, will be popped by IRET
push_word(M.x86.R_CS);
push_word(M.x86.R_IP);
// set CS:IP to the interrupt handler address... so the next executed instruction will
// be the interrupt handler
M.x86.R_CS = my_rdw(intNum * 4 + 2);
M.x86.R_IP = my_rdw(intNum * 4);
}
// handle int10 (VGA BIOS Interrupt)
static void
handleInt10(void)
{
// the data for INT10 is stored in BDA (0000:0400h) offset 49h-66h
// function number in AH
//DEBUG_PRINTF_CS_IP("%s:\n", __func__);
//x86emu_dump_xregs();
//if ((M.x86.R_IP == 0x32c2) && (M.x86.R_SI == 0x1ce2)){
//X86EMU_trace_on();
//M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
//}
switch (M.x86.R_AH) {
case 0x00:
// set video mode
// BDA offset 49h is current video mode
my_wrb(0x449, M.x86.R_AL);
if (M.x86.R_AL > 7)
M.x86.R_AL = 0x20;
else if (M.x86.R_AL == 6)
M.x86.R_AL = 0x3f;
else
M.x86.R_AL = 0x30;
break;
case 0x01:
// set cursor shape
// ignore
break;
case 0x02:
// set cursor position
// BH: pagenumber, DX: cursor_pos (DH:row, DL:col)
// BDA offset 50h-60h are 8 cursor position words for
// eight possible video pages
my_wrw(0x450 + (M.x86.R_BH * 2), M.x86.R_DX);
break;
case 0x03:
//get cursor position
// BH: pagenumber
// BDA offset 50h-60h are 8 cursor position words for
// eight possible video pages
M.x86.R_AX = 0;
M.x86.R_CH = 0; // start scan line ???
M.x86.R_CL = 0; // end scan line ???
M.x86.R_DX = my_rdw(0x450 + (M.x86.R_BH * 2));
break;
case 0x05:
// set active page
// BDA offset 62h is current page number
my_wrb(0x462, M.x86.R_AL);
break;
case 0x06:
//scroll up windows
break;
case 0x07:
//scroll down windows
break;
case 0x08:
//read character and attribute at position
M.x86.R_AH = 0x07; // white-on-black
M.x86.R_AL = 0x20; // a space...
break;
case 0x09:
// write character and attribute
//AL: char, BH: page number, BL: attribute, CX: number of times to write
//BDA offset 62h is current page number
CHECK_DBG(DEBUG_PRINT_INT10) {
u32 i = 0;
if (M.x86.R_BH == my_rdb(0x462)) {
for (i = 0; i < M.x86.R_CX; i++)
printf("%c", M.x86.R_AL);
}
}
break;
case 0x0a:
// write character
//AL: char, BH: page number, BL: attribute, CX: number of times to write
//BDA offset 62h is current page number
CHECK_DBG(DEBUG_PRINT_INT10) {
u32 i = 0;
if (M.x86.R_BH == my_rdb(0x462)) {
for (i = 0; i < M.x86.R_CX; i++)
printf("%c", M.x86.R_AL);
}
}
break;
case 0x0e:
// teletype output: write character and advance cursor...
//AL: char, BH: page number, BL: attribute
//BDA offset 62h is current page number
CHECK_DBG(DEBUG_PRINT_INT10) {
// we ignore the pagenumber on this call...
//if (M.x86.R_BH == my_rdb(0x462))
{
printf("%c", M.x86.R_AL);
// for debugging, to read all lines
//if (M.x86.R_AL == 0xd) // carriage return
// printf("\n");
}
}
break;
case 0x0f:
// get video mode
// BDA offset 49h is current video mode
// BDA offset 62h is current page number
// BDA offset 4ah is columns on screen
M.x86.R_AH = 80; //number of character columns... we hardcode it to 80
M.x86.R_AL = my_rdb(0x449);
M.x86.R_BH = my_rdb(0x462);
break;
default:
printf("%s(): unknown function (%x) for int10 handler.\n",
__func__, M.x86.R_AH);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
HALT_SYS();
break;
}
}
// this table translates ASCII chars into their XT scan codes:
static u8 keycode_table[256] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0 - 7
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 8 - 15
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 16 - 23
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 24 - 31
0x39, 0x02, 0x28, 0x04, 0x05, 0x06, 0x08, 0x28, // 32 - 39
0x0a, 0x0b, 0x09, 0x2b, 0x33, 0x0d, 0x34, 0x35, // 40 - 47
0x0b, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, // 48 - 55
0x09, 0x0a, 0x27, 0x27, 0x33, 0x2b, 0x34, 0x35, // 56 - 63
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 64 - 71
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 72 - 79
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 80 - 87
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 88 - 95
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 96 - 103
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 104 - 111
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 112 - 119
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 120 - 127
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ...
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}
;
static void
translate_keycode(u64 * keycode)
{
u8 scan_code = 0;
u8 char_code = 0;
if (*keycode < 256) {
scan_code = keycode_table[*keycode];
char_code = (u8) * keycode & 0xff;
} else {
switch (*keycode) {
case 0x1b50:
// F1
scan_code = 0x3b;
char_code = 0x0;
break;
default:
printf("%s(): unknown multibyte keycode: %llx\n",
__func__, *keycode);
break;
}
}
//assemble scan/char code in keycode
*keycode = (u64) ((((u16) scan_code) << 8) | char_code);
}
// handle int16 (Keyboard BIOS Interrupt)
static void
handleInt16(void)
{
// keyboard buffer is in BIOS Memory Area:
// offset 0x1a (WORD) pointer to next char in keybuffer
// offset 0x1c (WORD) pointer to next insert slot in keybuffer
// offset 0x1e-0x3e: 16 WORD Ring Buffer
// since we currently always read the char from the FW buffer,
// we misuse the ring buffer, we use it as pointer to a u64 that stores
// multi-byte keys (e.g. special keys in VT100 terminal)
// and as long as a key is available (not 0) we don't read further keys
u64 *keycode = (u64 *) (M.mem_base + 0x41e);
s8 c;
// function number in AH
DEBUG_PRINTF_INTR("%s(): Keyboard Interrupt: function: %x.\n",
__func__, M.x86.R_AH);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n", M.x86.R_AX,
M.x86.R_BX, M.x86.R_CX, M.x86.R_DX);
switch (M.x86.R_AH) {
case 0x00:
// get keystroke
if (*keycode) {
M.x86.R_AX = (u16) * keycode;
// clear keycode
*keycode = 0;
} else {
M.x86.R_AH = 0x61; // scancode for space key
M.x86.R_AL = 0x20; // a space
}
break;
case 0x01:
// check keystroke
// ZF set = no keystroke
// read first byte of key code
if (*keycode) {
// already read, but not yet taken
CLEAR_FLAG(F_ZF);
M.x86.R_AX = (u16) * keycode;
} else {
/* TODO: we need getchar... */
c = -1; //getchar();
if (c == -1) {
// no key available
SET_FLAG(F_ZF);
} else {
*keycode = c;
// since after an ESC it may take a while to receive the next char,
// we send something that is not shown on the screen, and then try to get
// the next char
// TODO: only after ESC?? what about other multibyte keys
printf("tt%c%c", 0x08, 0x08); // 0x08 == Backspace
/* TODO: we need getchar... */
while ((c = -1 /*getchar()*/) != -1) {
*keycode = (*keycode << 8) | c;
DEBUG_PRINTF(" key read: %0llx\n",
*keycode);
}
translate_keycode(keycode);
DEBUG_PRINTF(" translated key: %0llx\n",
*keycode);
if (*keycode == 0) {
//not found
SET_FLAG(F_ZF);
} else {
CLEAR_FLAG(F_ZF);
M.x86.R_AX = (u16) * keycode;
//X86EMU_trace_on();
//M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
}
}
}
break;
default:
printf("%s(): unknown function (%x) for int16 handler.\n",
__func__, M.x86.R_AH);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
HALT_SYS();
break;
}
}
// handle int1a (PCI BIOS Interrupt)
static void
handleInt1a(void)
{
// function number in AX
u8 bus, devfn, offs;
struct device *dev = NULL;
switch (M.x86.R_AX) {
case 0xb101:
// Installation check
CLEAR_FLAG(F_CF); // clear CF
M.x86.R_EDX = 0x20494350; // " ICP" endian swapped "PCI "
M.x86.R_AL = 0x1; // Config Space Mechanism 1 supported
M.x86.R_BX = 0x0210; // PCI Interface Level Version 2.10
M.x86.R_CL = 0xff; // number of last PCI Bus in system TODO: check!
break;
case 0xb102:
// Find PCI Device
// device_id in CX, vendor_id in DX
// device index in SI (i.e. if multiple devices with same vendor/device id
// are connected). We currently only support device index 0
//
DEBUG_PRINTF_INTR("%s(): function: %x: PCI Find Device\n",
__func__, M.x86.R_AX);
/* FixME: support SI != 0 */
// only allow the device to find itself...
if ((M.x86.R_CX == bios_device.pci_device_id)
&& (M.x86.R_DX == bios_device.pci_vendor_id)
// device index must be 0
&& (M.x86.R_SI == 0)) {
dev = bios_device.dev;
M.x86.R_BH = bios_device.bus;
M.x86.R_BL = bios_device.devfn;
} else if (CONFIG(YABEL_PCI_ACCESS_OTHER_DEVICES)) {
dev = dev_find_device(M.x86.R_DX, M.x86.R_CX, 0);
if (dev != NULL) {
M.x86.R_BH = dev->bus->secondary;
M.x86.R_BL = dev->path.pci.devfn;
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Find Device --> 0x%04x\n",
__func__, M.x86.R_AX, M.x86.R_BX);
}
}
if (dev == NULL) {
DEBUG_PRINTF_INTR
("%s(): function %x: invalid device/vendor/device index! (%04x/%04x/%02x expected: %04x/%04x/00)\n",
__func__, M.x86.R_AX, M.x86.R_CX, M.x86.R_DX,
M.x86.R_SI, bios_device.pci_device_id,
bios_device.pci_vendor_id);
SET_FLAG(F_CF);
M.x86.R_AH = 0x86; // return code: device not found
return;
}
CLEAR_FLAG(F_CF);
M.x86.R_AH = 0x00; // return code: success
break;
case 0xb108: //read configuration byte
case 0xb109: //read configuration word
case 0xb10a: //read configuration dword
bus = M.x86.R_BH;
devfn = M.x86.R_BL;
offs = M.x86.R_DI;
DEBUG_PRINTF_INTR("%s(): function: %x: PCI Config Read from device: bus: %02x, devfn: %02x, offset: %02x\n",
__func__, M.x86.R_AX, bus, devfn, offs);
if ((bus == bios_device.bus) && (devfn == bios_device.devfn)) {
dev = bios_device.dev;
} else if (CONFIG(YABEL_PCI_ACCESS_OTHER_DEVICES)) {
dev = pcidev_path_on_bus(bus, devfn);
DEBUG_PRINTF_INTR("%s(): function: %x: pcidev_path_on_bus() returned: %s\n",
__func__, M.x86.R_AX, dev_path(dev));
}
if (dev == NULL) {
printf
("%s(): Config read access invalid device! bus: %02x (%02x), devfn: %02x (%02x), offs: %02x\n",
__func__, bus, bios_device.bus, devfn,
bios_device.devfn, offs);
SET_FLAG(F_CF);
M.x86.R_AH = 0x87; //return code: bad pci register
HALT_SYS();
return;
}
switch (M.x86.R_AX) {
case 0xb108:
M.x86.R_CL =
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_read_config8(dev, offs);
#else
(u8) rtas_pci_config_read(bios_device.puid, 1,
bus, devfn,
offs);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Read @%02x --> 0x%02x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CL);
break;
case 0xb109:
M.x86.R_CX =
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_read_config16(dev, offs);
#else
(u16) rtas_pci_config_read(bios_device.puid, 2,
bus, devfn,
offs);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Read @%02x --> 0x%04x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CX);
break;
case 0xb10a:
M.x86.R_ECX =
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_read_config32(dev, offs);
#else
(u32) rtas_pci_config_read(bios_device.puid, 4,
bus, devfn,
offs);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Read @%02x --> 0x%08x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_ECX);
break;
}
CLEAR_FLAG(F_CF);
M.x86.R_AH = 0x0; // return code: success
break;
case 0xb10b: //write configuration byte
case 0xb10c: //write configuration word
case 0xb10d: //write configuration dword
bus = M.x86.R_BH;
devfn = M.x86.R_BL;
offs = M.x86.R_DI;
if ((bus == bios_device.bus) && (devfn == bios_device.devfn)) {
dev = bios_device.dev;
}
if (dev == NULL) {
printf
("%s(): Config read access invalid! bus: %x (%x), devfn: %x (%x), offs: %x\n",
__func__, bus, bios_device.bus, devfn,
bios_device.devfn, offs);
SET_FLAG(F_CF);
M.x86.R_AH = 0x87; //return code: bad pci register
HALT_SYS();
return;
}
switch (M.x86.R_AX) {
case 0xb10b:
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_write_config8(dev, offs, M.x86.R_CL);
#else
rtas_pci_config_write(bios_device.puid, 1, bus,
devfn, offs, M.x86.R_CL);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Write @%02x <-- 0x%02x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CL);
break;
case 0xb10c:
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_write_config16(dev, offs, M.x86.R_CX);
#else
rtas_pci_config_write(bios_device.puid, 2, bus,
devfn, offs, M.x86.R_CX);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Write @%02x <-- 0x%04x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CX);
break;
case 0xb10d:
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_write_config32(dev, offs, M.x86.R_ECX);
#else
rtas_pci_config_write(bios_device.puid, 4, bus,
devfn, offs, M.x86.R_ECX);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Write @%02x <-- 0x%08x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_ECX);
break;
}
CLEAR_FLAG(F_CF);
M.x86.R_AH = 0x0; // return code: success
break;
default:
printf("%s(): unknown function (%x) for int1a handler.\n",
__func__, M.x86.R_AX);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
HALT_SYS();
break;
}
}
// main Interrupt Handler routine, should be registered as x86emu interrupt handler
void
handleInterrupt(int intNum)
{
u8 int_handled = 0;
#ifndef DEBUG_PRINT_INT10
// this printf makes output by int 10 unreadable...
// so we only enable it, if int10 print is disabled
DEBUG_PRINTF_INTR("%s(%x)\n", __func__, intNum);
#endif
/* check whether this interrupt has a function pointer set in yabel_intFuncArray and run that */
if (yabel_intFuncArray[intNum]) {
DEBUG_PRINTF_INTR("%s(%x) intHandler overridden, calling it...\n", __func__, intNum);
int_handled = (*yabel_intFuncArray[intNum])();
} else {
switch (intNum) {
case 0x10: //BIOS video interrupt
case 0x42: // INT 10h relocated by EGA/VGA BIOS
case 0x6d: // INT 10h relocated by VGA BIOS
// get interrupt vector from IDT (4 bytes per Interrupt starting at address 0
if ((my_rdl(intNum * 4) == 0xF000F065) || //F000:F065 is default BIOS interrupt handler address
(my_rdl(intNum * 4) == 0xF4F4F4F4)) //invalid
{
#if 0
// ignore interrupt...
DEBUG_PRINTF_INTR
("%s(%x): invalid interrupt Vector (%08x) found, interrupt ignored...\n",
__func__, intNum, my_rdl(intNum * 4));
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
//HALT_SYS();
#endif
handleInt10();
int_handled = 1;
}
break;
case 0x16:
// Keyboard BIOS Interrupt
handleInt16();
int_handled = 1;
break;
case 0x1a:
// PCI BIOS Interrupt
handleInt1a();
int_handled = 1;
break;
case PMM_INT_NUM:
/* The self-defined PMM INT number, this is called by
* the code in PMM struct, and it is handled by
* pmm_handleInt()
*/
pmm_handleInt();
int_handled = 1;
break;
default:
printf("Interrupt %#x (Vector: %x) not implemented\n", intNum,
my_rdl(intNum * 4));
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
int_handled = 1;
HALT_SYS();
break;
}
}
// if we did not handle the interrupt, jump to the interrupt vector...
if (!int_handled) {
setupInt(intNum);
}
}
// prepare and execute Interrupt 10 (VGA Interrupt)
void
runInt10(void)
{
// Initialize stack and data segment
M.x86.R_SS = STACK_SEGMENT;
M.x86.R_DS = DATA_SEGMENT;
M.x86.R_SP = STACK_START_OFFSET;
// push a HLT instruction and a pointer to it onto the stack
// any return will pop the pointer and jump to the HLT, thus
// exiting (more or less) cleanly
push_word(0xf4f4); //F4=HLT
//push_word(M.x86.R_SS);
//push_word(M.x86.R_SP + 2);
// setupInt will push the current CS and IP to the stack to return to it,
// but we want to halt, so set CS:IP to the HLT instruction we just pushed
// to the stack
M.x86.R_CS = M.x86.R_SS;
M.x86.R_IP = M.x86.R_SP; // + 4;
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
CHECK_DBG(DEBUG_JMP) {
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACECALL_F;
M.x86.debug |= DEBUG_TRACECALL_REGS_F;
}
setupInt(0x10);
DEBUG_PRINTF_INTR("%s(): starting execution of INT10...\n",
__func__);
X86EMU_exec();
DEBUG_PRINTF_INTR("%s(): execution finished\n", __func__);
}
// prepare and execute Interrupt 13 (Disk Interrupt)
void
runInt13(void)
{
// Initialize stack and data segment
M.x86.R_SS = STACK_SEGMENT;
M.x86.R_DS = DATA_SEGMENT;
M.x86.R_SP = STACK_START_OFFSET;
// push a HLT instruction and a pointer to it onto the stack
// any return will pop the pointer and jump to the HLT, thus
// exiting (more or less) cleanly
push_word(0xf4f4); //F4=HLT
//push_word(M.x86.R_SS);
//push_word(M.x86.R_SP + 2);
// setupInt will push the current CS and IP to the stack to return to it,
// but we want to halt, so set CS:IP to the HLT instruction we just pushed
// to the stack
M.x86.R_CS = M.x86.R_SS;
M.x86.R_IP = M.x86.R_SP;
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
CHECK_DBG(DEBUG_JMP) {
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACECALL_F;
M.x86.debug |= DEBUG_TRACECALL_REGS_F;
}
setupInt(0x13);
DEBUG_PRINTF_INTR("%s(): starting execution of INT13...\n",
__func__);
X86EMU_exec();
DEBUG_PRINTF_INTR("%s(): execution finished\n", __func__);
}
|