1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <device/mmio.h>
#include <arch/interrupt.h>
#include <arch/null_breakpoint.h>
#include <arch/registers.h>
#include <boot/coreboot_tables.h>
#include <console/console.h>
#include <delay.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <pc80/i8259.h>
#include <pc80/i8254.h>
#include <stdint.h>
#include <string.h>
#include <vbe.h>
#include <framebuffer_info.h>
/* we use x86emu's register file representation */
#include <x86emu/regs.h>
#include "x86.h"
typedef struct {
char signature[4];
u16 version;
u8 *oem_string_ptr;
u32 capabilities;
u32 video_mode_ptr;
u16 total_memory;
char reserved[236];
} __packed vbe_info_block;
/* The following symbols cannot be used directly. They need to be fixed up
* to point to the correct address location after the code has been copied
* to REALMODE_BASE. Absolute symbols are not used because those symbols are
* relocated when a relocatable ramstage is enabled.
*/
extern unsigned char __realmode_call, __realmode_interrupt;
extern unsigned char __realmode_buffer;
#define PTR_TO_REAL_MODE(sym)\
(void *)(REALMODE_BASE + ((char *)&(sym) - (char *)&__realmode_code))
/* to have a common register file for interrupt handlers */
X86EMU_sysEnv _X86EMU_env;
unsigned int (*realmode_call)(u32 addr, u32 eax, u32 ebx, u32 ecx, u32 edx,
u32 esi, u32 edi) asmlinkage;
unsigned int (*realmode_interrupt)(u32 intno, u32 eax, u32 ebx, u32 ecx,
u32 edx, u32 esi, u32 edi) asmlinkage;
static void setup_realmode_code(void)
{
memcpy(REALMODE_BASE, &__realmode_code, __realmode_code_size);
/* Ensure the global pointers are relocated properly. */
realmode_call = PTR_TO_REAL_MODE(__realmode_call);
realmode_interrupt = PTR_TO_REAL_MODE(__realmode_interrupt);
printk(BIOS_SPEW, "Real mode stub @%p: %d bytes\n", REALMODE_BASE,
__realmode_code_size);
}
static void setup_rombios(void)
{
const char date[] = "06/11/99";
memcpy((void *)0xffff5, &date, 8);
const char ident[] = "PCI_ISA";
memcpy((void *)0xfffd9, &ident, 7);
/* system model: IBM-AT */
write8((void *)0xffffe, 0xfc);
}
static int (*intXX_handler[256])(void) = { NULL };
static int intXX_exception_handler(void)
{
/* compatibility shim */
struct eregs reg_info = {
.eax=X86_EAX,
.ecx=X86_ECX,
.edx=X86_EDX,
.ebx=X86_EBX,
.esp=X86_ESP,
.ebp=X86_EBP,
.esi=X86_ESI,
.edi=X86_EDI,
.vector=M.x86.intno,
.error_code=0, // FIXME: fill in
.cs=X86_CS,
#if ENV_X86_64
.rip=X86_EIP,
.rflags=X86_EFLAGS
#else
.eip=X86_EIP,
.eflags=X86_EFLAGS
#endif
};
struct eregs *regs = ®_info;
printk(BIOS_INFO, "Oops, exception %d while executing option rom\n",
(uint32_t)regs->vector);
x86_exception(regs); // Call coreboot exception handler
return 0; // Never really returns
}
static int intXX_unknown_handler(void)
{
printk(BIOS_INFO, "Unsupported software interrupt #0x%x eax 0x%x\n",
M.x86.intno, X86_EAX);
return -1;
}
/* setup interrupt handlers for mainboard */
void mainboard_interrupt_handlers(int intXX, int (*intXX_func)(void))
{
intXX_handler[intXX] = intXX_func;
}
static void setup_interrupt_handlers(void)
{
int i;
/* The first 16 intXX functions are not BIOS services,
* but the CPU-generated exceptions ("hardware interrupts")
*/
for (i = 0; i < 0x10; i++)
intXX_handler[i] = &intXX_exception_handler;
/* Mark all other intXX calls as unknown first */
for (i = 0x10; i < 0x100; i++)
{
/* If the mainboard_interrupt_handler isn't called first.
*/
if (!intXX_handler[i])
{
/* Now set the default functions that are actually
* needed to initialize the option roms. This is
* very slick, as it allows us to implement mainboard
* specific interrupt handlers, such as the int15.
*/
switch (i) {
case 0x10:
intXX_handler[0x10] = &int10_handler;
break;
case 0x12:
intXX_handler[0x12] = &int12_handler;
break;
case 0x16:
intXX_handler[0x16] = &int16_handler;
break;
case 0x1a:
intXX_handler[0x1a] = &int1a_handler;
break;
default:
intXX_handler[i] = &intXX_unknown_handler;
break;
}
}
}
}
static void write_idt_stub(void *target, u8 intnum)
{
unsigned char *codeptr;
codeptr = (unsigned char *) target;
memcpy(codeptr, &__idt_handler, __idt_handler_size);
codeptr[3] = intnum; /* modify int# in the code stub. */
}
static void setup_realmode_idt(void)
{
struct realmode_idt *idts = (struct realmode_idt *) 0;
int i;
/* It's expected that we write to the NULL page in the first two iterations of the
following loop, so temporarily disable the NULL breakpoint. */
null_breakpoint_disable();
/* Copy IDT stub code for each interrupt. This might seem wasteful
* but it is really simple
*/
for (i = 0; i < 256; i++) {
idts[i].cs = 0;
idts[i].offset = 0x1000 + (i * __idt_handler_size);
write_idt_stub((void *)((uintptr_t)idts[i].offset), i);
}
null_breakpoint_init();
/* Many option ROMs use the hard coded interrupt entry points in the
* system bios. So install them at the known locations.
*/
/* int42 is the relocated int10 */
write_idt_stub((void *)0xff065, 0x42);
/* BIOS Int 11 Handler F000:F84D */
write_idt_stub((void *)0xff84d, 0x11);
/* BIOS Int 12 Handler F000:F841 */
write_idt_stub((void *)0xff841, 0x12);
/* BIOS Int 13 Handler F000:EC59 */
write_idt_stub((void *)0xfec59, 0x13);
/* BIOS Int 14 Handler F000:E739 */
write_idt_stub((void *)0xfe739, 0x14);
/* BIOS Int 15 Handler F000:F859 */
write_idt_stub((void *)0xff859, 0x15);
/* BIOS Int 16 Handler F000:E82E */
write_idt_stub((void *)0xfe82e, 0x16);
/* BIOS Int 17 Handler F000:EFD2 */
write_idt_stub((void *)0xfefd2, 0x17);
/* ROM BIOS Int 1A Handler F000:FE6E */
write_idt_stub((void *)0xffe6e, 0x1a);
}
#if CONFIG(FRAMEBUFFER_SET_VESA_MODE)
static vbe_mode_info_t mode_info;
static int mode_info_valid;
const vbe_mode_info_t *vbe_mode_info(void)
{
if (!mode_info_valid || !mode_info.vesa.phys_base_ptr)
return NULL;
return &mode_info;
}
static int vbe_check_for_failure(int ah);
static u8 vbe_get_ctrl_info(vbe_info_block *info)
{
char *buffer = PTR_TO_REAL_MODE(__realmode_buffer);
u16 buffer_seg = (((unsigned long)buffer) >> 4) & 0xff00;
u16 buffer_adr = ((unsigned long)buffer) & 0xffff;
X86_EAX = realmode_interrupt(0x10, VESA_GET_INFO, 0x0000, 0x0000,
0x0000, buffer_seg, buffer_adr);
/* If the VBE function completed successfully, 0x0 is returned in AH */
if (X86_AH) {
printk(BIOS_WARNING, "Error from VGA BIOS in %s\n", __func__);
return 1;
}
memcpy(info, buffer, sizeof(vbe_info_block));
return 0;
}
static void vbe_oprom_list_supported_mode(uint16_t *video_mode_ptr)
{
uint16_t mode;
printk(BIOS_DEBUG, "Supported Video Mode list for OpRom:\n");
do {
mode = *video_mode_ptr++;
if (mode != 0xffff)
printk(BIOS_DEBUG, "%x\n", mode);
} while (mode != 0xffff);
}
static u8 vbe_oprom_supported_mode_list(void)
{
uint16_t segment, offset;
vbe_info_block info;
if (vbe_get_ctrl_info(&info))
return 1;
offset = info.video_mode_ptr;
segment = info.video_mode_ptr >> 16;
vbe_oprom_list_supported_mode((uint16_t *)((segment << 4) + offset));
return 0;
}
/*
* EAX register is used to indicate the completion status upon return from
* VBE function in real mode.
*
* If the VBE function completed successfully then 0x0 is returned in the AH
* register. Otherwise the AH register is set with the nature of the failure:
*
* AH == 0x00: Function call successful
* AH == 0x01: Function call failed
* AH == 0x02: Function is not supported in the current HW configuration
* AH == 0x03: Function call invalid in current video mode
*
* Return 0 on success else -1 for failure
*/
static int vbe_check_for_failure(int ah)
{
int status;
switch (ah) {
case 0x0:
status = 0;
break;
case 1:
printk(BIOS_DEBUG, "VBE: Function call failed!\n");
status = -1;
break;
case 2:
printk(BIOS_DEBUG, "VBE: Function is not supported!\n");
status = -1;
break;
case 3:
default:
printk(BIOS_DEBUG, "VBE: Unsupported video mode %x!\n",
CONFIG_FRAMEBUFFER_VESA_MODE);
if (vbe_oprom_supported_mode_list())
printk(BIOS_WARNING, "VBE Warning: Could not get VBE mode list.\n");
status = -1;
break;
}
return status;
}
static u8 vbe_get_mode_info(vbe_mode_info_t * mi)
{
printk(BIOS_DEBUG, "VBE: Getting information about VESA mode %04x\n",
mi->video_mode);
char *buffer = PTR_TO_REAL_MODE(__realmode_buffer);
u16 buffer_seg = (((unsigned long)buffer) >> 4) & 0xff00;
u16 buffer_adr = ((unsigned long)buffer) & 0xffff;
X86_EAX = realmode_interrupt(0x10, VESA_GET_MODE_INFO, 0x0000,
mi->video_mode, 0x0000, buffer_seg, buffer_adr);
if (vbe_check_for_failure(X86_AH)) {
printk(BIOS_WARNING, "VBE Warning: Error from VGA BIOS in %s\n", __func__);
return 1;
}
memcpy(mi->mode_info_block, buffer, sizeof(mi->mode_info_block));
mode_info_valid = 1;
return 0;
}
static u8 vbe_set_mode(vbe_mode_info_t * mi)
{
printk(BIOS_DEBUG, "VBE: Setting VESA mode %04x\n", mi->video_mode);
// request linear framebuffer mode
mi->video_mode |= (1 << 14);
// request clearing of framebuffer
mi->video_mode &= ~(1 << 15);
X86_EAX = realmode_interrupt(0x10, VESA_SET_MODE, mi->video_mode,
0x0000, 0x0000, 0x0000, 0x0000);
if (vbe_check_for_failure(X86_AH)) {
printk(BIOS_WARNING, "VBE Warning: Error from VGA BIOS in %s\n", __func__);
return 1;
}
return 0;
}
/* These two functions could probably even be generic between
* yabel and x86 native. TBD later.
*/
void vbe_set_graphics(void)
{
mode_info.video_mode = (1 << 14) | CONFIG_FRAMEBUFFER_VESA_MODE;
if (vbe_get_mode_info(&mode_info)) {
printk(BIOS_WARNING, "VBE Warning: Could not get VBE graphics mode info.\n");
return;
}
unsigned char *framebuffer =
(unsigned char *)mode_info.vesa.phys_base_ptr;
printk(BIOS_DEBUG, "VBE: resolution: %dx%d@%d\n",
le16_to_cpu(mode_info.vesa.x_resolution),
le16_to_cpu(mode_info.vesa.y_resolution),
mode_info.vesa.bits_per_pixel);
printk(BIOS_DEBUG, "VBE: framebuffer: %p\n", framebuffer);
if (!framebuffer) {
printk(BIOS_DEBUG, "VBE: Mode does not support linear "
"framebuffer\n");
return;
}
if (vbe_set_mode(&mode_info)) {
printk(BIOS_WARNING, "VBE Warning: Could not set VBE graphics mode.\n");
return;
}
const struct lb_framebuffer fb = {
.physical_address = mode_info.vesa.phys_base_ptr,
.x_resolution = le16_to_cpu(mode_info.vesa.x_resolution),
.y_resolution = le16_to_cpu(mode_info.vesa.y_resolution),
.bytes_per_line = le16_to_cpu(mode_info.vesa.bytes_per_scanline),
.bits_per_pixel = mode_info.vesa.bits_per_pixel,
.red_mask_pos = mode_info.vesa.red_mask_pos,
.red_mask_size = mode_info.vesa.red_mask_size,
.green_mask_pos = mode_info.vesa.green_mask_pos,
.green_mask_size = mode_info.vesa.green_mask_size,
.blue_mask_pos = mode_info.vesa.blue_mask_pos,
.blue_mask_size = mode_info.vesa.blue_mask_size,
.reserved_mask_pos = mode_info.vesa.reserved_mask_pos,
.reserved_mask_size = mode_info.vesa.reserved_mask_size,
.orientation = LB_FB_ORIENTATION_NORMAL,
};
fb_add_framebuffer_info_ex(&fb);
}
void vbe_textmode_console(void)
{
u8 retval = 1;
if (mode_info.vesa.phys_base_ptr) {
delay(2);
X86_EAX = realmode_interrupt(0x10, 0x0003, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000);
if (!vbe_check_for_failure(X86_AH))
retval = 0;
}
if (retval)
printk(BIOS_WARNING, "VBE Warning: Could not set VBE text mode.\n");
}
#endif
void run_bios(struct device *dev, unsigned long addr)
{
u32 num_dev = (dev->bus->secondary << 8) | dev->path.pci.devfn;
/* Setting up required hardware.
* Removing this will cause random illegal instruction exceptions
* in some option roms.
*/
setup_i8259();
setup_i8254();
/* Set up some legacy information in the F segment */
setup_rombios();
/* Set up C interrupt handlers */
setup_interrupt_handlers();
/* Set up real-mode IDT */
setup_realmode_idt();
/* Make sure the code is placed. */
setup_realmode_code();
printk(BIOS_DEBUG, "Calling Option ROM...\n");
/* TODO ES:DI Pointer to System BIOS PnP Installation Check Structure */
/* Option ROM entry point is at OPROM start + 3 */
realmode_call(addr + 0x0003, num_dev, 0xffff, 0x0000, 0xffff, 0x0, 0x0);
printk(BIOS_DEBUG, "... Option ROM returned.\n");
#if CONFIG(FRAMEBUFFER_SET_VESA_MODE)
if ((dev->class >> 8)== PCI_CLASS_DISPLAY_VGA)
vbe_set_graphics();
#endif
}
/* interrupt_handler() is called from assembler code only,
* so there is no use in putting the prototype into a header file.
*/
int asmlinkage interrupt_handler(u32 intnumber,
u32 gsfs, u32 dses,
u32 edi, u32 esi,
u32 ebp, u32 esp,
u32 ebx, u32 edx,
u32 ecx, u32 eax,
u32 cs_ip, u16 stackflags);
int asmlinkage interrupt_handler(u32 intnumber,
u32 gsfs, u32 dses,
u32 edi, u32 esi,
u32 ebp, u32 esp,
u32 ebx, u32 edx,
u32 ecx, u32 eax,
u32 cs_ip, u16 stackflags)
{
u32 ip;
u32 cs;
u32 flags;
int ret = 0;
ip = cs_ip & 0xffff;
cs = cs_ip >> 16;
flags = stackflags;
#if CONFIG(REALMODE_DEBUG)
printk(BIOS_DEBUG, "oprom: INT# 0x%x\n", intnumber);
printk(BIOS_DEBUG, "oprom: eax: %08x ebx: %08x ecx: %08x edx: %08x\n",
eax, ebx, ecx, edx);
printk(BIOS_DEBUG, "oprom: ebp: %08x esp: %08x edi: %08x esi: %08x\n",
ebp, esp, edi, esi);
printk(BIOS_DEBUG, "oprom: ip: %04x cs: %04x flags: %08x\n",
ip, cs, flags);
#endif
// Fetch arguments from the stack and put them to a place
// suitable for the interrupt handlers
X86_EAX = eax;
X86_ECX = ecx;
X86_EDX = edx;
X86_EBX = ebx;
X86_ESP = esp;
X86_EBP = ebp;
X86_ESI = esi;
X86_EDI = edi;
M.x86.intno = intnumber;
/* TODO: error_code must be stored somewhere */
X86_EIP = ip;
X86_CS = cs;
X86_EFLAGS = flags;
// Call the interrupt handler for this int#
ret = intXX_handler[intnumber]();
// Put registers back on the stack. The assembler code
// will later pop them.
// What happens here is that we force (volatile!) changing
// the values of the parameters of this function. We do this
// because we know that they stay alive on the stack after
// we leave this function. Don't say this is bollocks.
*(volatile u32 *)&eax = X86_EAX;
*(volatile u32 *)&ecx = X86_ECX;
*(volatile u32 *)&edx = X86_EDX;
*(volatile u32 *)&ebx = X86_EBX;
*(volatile u32 *)&esi = X86_ESI;
*(volatile u32 *)&edi = X86_EDI;
flags = X86_EFLAGS;
/* Pass success or error back to our caller via the CARRY flag */
if (ret) {
flags &= ~1; // no error: clear carry
}else{
printk(BIOS_DEBUG,"int%02x call returned error.\n", intnumber);
flags |= 1; // error: set carry
}
*(volatile u16 *)&stackflags = flags;
/* The assembler code doesn't actually care for the return value,
* but keep it around so its expectations are met */
return ret;
}
|