1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2011-2013 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file ddr3_util.h
*
* \brief Utilities for decoding DDR3 SPDs
*/
#include <console/console.h>
#include <device/device.h>
#include <device/dram/ddr3.h>
/*==============================================================================
* = DDR3 SPD decoding helpers
*----------------------------------------------------------------------------*/
/**
* \brief Checks if the DIMM is Registered based on byte[3] of the SPD
*
* Tells if the DIMM type is registered or not.
*
* @param type DIMM type. This is byte[3] of the SPD.
*/
int dimm_is_registered(enum spd_dimm_type type)
{
if ((type == SPD_DIMM_TYPE_RDIMM)
| (type == SPD_DIMM_TYPE_MINI_RDIMM)
| (type == SPD_DIMM_TYPE_72B_SO_RDIMM))
return 1;
return 0;
}
/**
* \brief Calculate the CRC of a DDR3 SPD
*
* @param spd pointer to raw SPD data
* @param len length of data in SPD
*
* @return the CRC of the SPD data, or 0 when spd data is truncated.
*/
u16 spd_ddr3_calc_crc(u8 *spd, int len)
{
int n_crc, i;
u8 *ptr;
u16 crc;
/* Find the number of bytes covered by CRC */
if (spd[0] & 0x80) {
n_crc = 117;
} else {
n_crc = 126;
}
if (len < n_crc)
/* Not enough bytes available to get the CRC */
return 0;
/* Compute the CRC */
crc = 0;
ptr = spd;
while (--n_crc >= 0) {
crc = crc ^ (int)*ptr++ << 8;
for (i = 0; i < 8; ++i)
if (crc & 0x8000) {
crc = crc << 1 ^ 0x1021;
} else {
crc = crc << 1;
}
}
return crc;
}
/**
* \brief Decode the raw SPD data
*
* Decodes a raw SPD data from a DDR3 DIMM, and organizes it into a
* @ref dimm_attr structure. The SPD data must first be read in a contiguous
* array, and passed to this function.
*
* @param dimm pointer to @ref dimm_attr structure where the decoded data is to
* be stored
* @param spd array of raw data previously read from the SPD.
*
* @return @ref spd_status enumerator
* SPD_STATUS_OK -- decoding was successful
* SPD_STATUS_INVALID -- invalid SPD or not a DDR3 SPD
* SPD_STATUS_CRC_ERROR -- CRC did not verify
* SPD_STATUS_INVALID_FIELD -- A field with an invalid value was
* detected.
*/
int spd_decode_ddr3(dimm_attr * dimm, spd_raw_data spd)
{
int ret;
u16 crc, spd_crc;
u8 ftb_divisor, ftb_dividend, capacity_shift, bus_width;
u8 reg8;
u32 mtb; /* medium time base */
unsigned int val, param;
ret = SPD_STATUS_OK;
/* Don't assume we memset 0 dimm struct. Clear all our flags */
dimm->flags.raw = 0;
/* Make sure that the SPD dump is indeed from a DDR3 module */
if (spd[2] != SPD_MEMORY_TYPE_SDRAM_DDR3) {
printram("Not a DDR3 SPD!\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
dimm->dram_type = SPD_MEMORY_TYPE_SDRAM_DDR3;
crc = spd_ddr3_calc_crc(spd, sizeof(*spd));
/* Compare with the CRC in the SPD */
spd_crc = (spd[127] << 8) + spd[126];
/* Verify the CRC is correct */
if (crc != spd_crc) {
printram("ERROR: SPD CRC failed!!!");
ret = SPD_STATUS_CRC_ERROR;
};
printram(" Revision: %x\n", spd[1]);
printram(" Type : %x\n", spd[2]);
printram(" Key : %x\n", spd[3]);
reg8 = spd[4];
/* Number of memory banks */
val = (reg8 >> 4) & 0x07;
if (val > 0x03) {
printram(" Invalid number of memory banks\n");
ret = SPD_STATUS_INVALID_FIELD;
}
param = 1 << (val + 3);
printram(" Banks : %u\n", param);
/* SDRAM capacity */
capacity_shift = reg8 & 0x0f;
if (capacity_shift > 0x06) {
printram(" Invalid module capacity\n");
ret = SPD_STATUS_INVALID_FIELD;
}
if (capacity_shift < 0x02) {
printram(" Capacity: %u Mb\n", 256 << capacity_shift);
} else {
printram(" Capacity: %u Gb\n", 1 << (capacity_shift - 2));
}
reg8 = spd[5];
/* Row address bits */
val = (reg8 >> 3) & 0x07;
if (val > 0x04) {
printram(" Invalid row address bits\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->row_bits = val + 12;
/* Column address bits */
val = reg8 & 0x07;
if (val > 0x03) {
printram(" Invalid column address bits\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->col_bits = val + 9;
/* Module nominal voltage */
reg8 = spd[6];
printram(" Supported voltages:");
if (reg8 & (1 << 2)) {
dimm->flags.operable_1_25V = 1;
printram(" 1.25V");
}
if (reg8 & (1 << 1)) {
dimm->flags.operable_1_35V = 1;
printram(" 1.35V");
}
if (!(reg8 & (1 << 0))) {
dimm->flags.operable_1_50V = 1;
printram(" 1.5V");
}
printram("\n");
/* Module organization */
reg8 = spd[7];
/* Number of ranks */
val = (reg8 >> 3) & 0x07;
if (val > 3) {
printram(" Invalid number of ranks\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->ranks = val + 1;
/* SDRAM device width */
val = (reg8 & 0x07);
if (val > 3) {
printram(" Invalid SDRAM width\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->width = (4 << val);
printram(" SDRAM width : %u\n", dimm->width);
/* Memory bus width */
reg8 = spd[8];
/* Bus extension */
val = (reg8 >> 3) & 0x03;
if (val > 1) {
printram(" Invalid bus extension\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->flags.is_ecc = val ? 1 : 0;
printram(" Bus extension : %u bits\n", val ? 8 : 0);
/* Bus width */
val = reg8 & 0x07;
if (val > 3) {
printram(" Invalid bus width\n");
ret = SPD_STATUS_INVALID_FIELD;
}
bus_width = 8 << val;
printram(" Bus width : %u\n", bus_width);
/* We have all the info we need to compute the dimm size */
/* Capacity is 256Mbit multiplied by the power of 2 specified in
* capacity_shift
* The rest is the JEDEC formula */
dimm->size_mb = ((1 << (capacity_shift + (25 - 20))) * bus_width
* dimm->ranks) / dimm->width;
/* Fine Timebase (FTB) Dividend/Divisor */
/* Dividend */
ftb_dividend = (spd[9] >> 4) & 0x0f;
/* Divisor */
ftb_divisor = spd[9] & 0x0f;
/* Medium Timebase =
* Medium Timebase (MTB) Dividend /
* Medium Timebase (MTB) Divisor */
mtb = (((u32) spd[10]) << 8) / spd[11];
/* SDRAM Minimum Cycle Time (tCKmin) */
dimm->tCK = spd[12] * mtb;
/* CAS Latencies Supported */
dimm->cas_supported = (spd[15] << 8) + spd[14];
/* Minimum CAS Latency Time (tAAmin) */
dimm->tAA = spd[16] * mtb;
/* Minimum Write Recovery Time (tWRmin) */
dimm->tWR = spd[17] * mtb;
/* Minimum RAS# to CAS# Delay Time (tRCDmin) */
dimm->tRCD = spd[18] * mtb;
/* Minimum Row Active to Row Active Delay Time (tRRDmin) */
dimm->tRRD = spd[19] * mtb;
/* Minimum Row Precharge Delay Time (tRPmin) */
dimm->tRP = spd[20] * mtb;
/* Minimum Active to Precharge Delay Time (tRASmin) */
dimm->tRAS = (((spd[21] & 0x0f) << 8) + spd[22]) * mtb;
/* Minimum Active to Active/Refresh Delay Time (tRCmin) */
dimm->tRC = (((spd[21] & 0xf0) << 4) + spd[23]) * mtb;
/* Minimum Refresh Recovery Delay Time (tRFCmin) */
dimm->tRFC = ((spd[25] << 8) + spd[24]) * mtb;
/* Minimum Internal Write to Read Command Delay Time (tWTRmin) */
dimm->tWTR = spd[26] * mtb;
/* Minimum Internal Read to Precharge Command Delay Time (tRTPmin) */
dimm->tRTP = spd[27] * mtb;
/* Minimum Four Activate Window Delay Time (tFAWmin) */
dimm->tFAW = (((spd[28] & 0x0f) << 8) + spd[29]) * mtb;
/* SDRAM Optional Features */
reg8 = spd[30];
printram(" Optional features :");
if (reg8 & 0x80) {
dimm->flags.dll_off_mode = 1;
printram(" DLL-Off_mode");
}
if (reg8 & 0x02) {
dimm->flags.rzq7_supported = 1;
printram(" RZQ/7");
}
if (reg8 & 0x01) {
dimm->flags.rzq6_supported = 1;
printram(" RZQ/6");
}
printram("\n");
/* SDRAM Thermal and Refresh Options */
reg8 = spd[31];
printram(" Thermal features :");
if (reg8 & 0x80) {
dimm->flags.pasr = 1;
printram(" PASR");
}
if (reg8 & 0x08) {
dimm->flags.odts = 1;
printram(" ODTS");
}
if (reg8 & 0x04) {
dimm->flags.asr = 1;
printram(" ASR");
}
if (reg8 & 0x02) {
dimm->flags.ext_temp_range = 1;
printram(" ext_temp_refresh");
}
if (reg8 & 0x01) {
dimm->flags.ext_temp_refresh = 1;
printram(" ext_temp_range");
}
printram("\n");
/* Module Thermal Sensor */
reg8 = spd[32];
if (reg8 & 0x80)
dimm->flags.therm_sensor = 1;
printram(" Thermal sensor : %s\n",
dimm->flags.therm_sensor ? "yes" : "no");
/* SDRAM Device Type */
reg8 = spd[33];
printram(" Standard SDRAM : %s\n", (reg8 & 0x80) ? "no" : "yes");
if (spd[63] & 0x01) {
dimm->flags.pins_mirrored = 1;
printram(" DIMM Rank1 Address bits mirrored!!!\n");
}
dimm->reference_card = spd[62] & 0x1f;
printram(" DIMM Reference card %c\n", 'A' + dimm->reference_card);
return ret;
}
/*
* The information printed below has a more informational character, and is not
* necessarily tied in to RAM init debugging. Hence, we stop using printram(),
* and use the standard printk()'s below.
*/
static void print_ns(const char *msg, u32 val)
{
u32 mant, fp;
mant = val / 256;
fp = (val % 256) * 1000 / 256;
printk(BIOS_INFO, "%s%3u.%.3u ns\n", msg, mant, fp);
}
/**
* \brief Print the info in DIMM
*
* Print info about the DIMM. Useful to use when CONFIG_DEBUG_RAM_SETUP is
* selected, or for a purely informative output.
*
* @param dimm pointer to already decoded @ref dimm_attr structure
*/
void dram_print_spd_ddr3(const dimm_attr * dimm)
{
u16 val16;
int i;
printk(BIOS_INFO, " Row addr bits : %u\n", dimm->row_bits);
printk(BIOS_INFO, " Column addr bits : %u\n", dimm->col_bits);
printk(BIOS_INFO, " Number of ranks : %u\n", dimm->ranks);
printk(BIOS_INFO, " DIMM Capacity : %u MB\n", dimm->size_mb);
/* CAS Latencies Supported */
val16 = dimm->cas_supported;
printk(BIOS_INFO, " CAS latencies :");
i = 0;
do {
if (val16 & 1)
printk(BIOS_INFO, " %u", i + 4);
i++;
val16 >>= 1;
} while (val16);
printk(BIOS_INFO, "\n");
print_ns(" tCKmin : ", dimm->tCK);
print_ns(" tAAmin : ", dimm->tAA);
print_ns(" tWRmin : ", dimm->tWR);
print_ns(" tRCDmin : ", dimm->tRCD);
print_ns(" tRRDmin : ", dimm->tRRD);
print_ns(" tRPmin : ", dimm->tRP);
print_ns(" tRASmin : ", dimm->tRAS);
print_ns(" tRCmin : ", dimm->tRC);
print_ns(" tRFCmin : ", dimm->tRFC);
print_ns(" tWTRmin : ", dimm->tWTR);
print_ns(" tRTPmin : ", dimm->tRTP);
print_ns(" tFAWmin : ", dimm->tFAW);
}
/*==============================================================================
*= DDR3 MRS helpers
*----------------------------------------------------------------------------*/
/*
* MRS command structure:
* cmd[15:0] = Address pins MA[15:0]
* cmd[18:16] = Bank address BA[2:0]
*/
/* Map tWR value to a bitmask of the MR0 cycle */
static u16 ddr3_twr_to_mr0_map(u8 twr)
{
if ((twr >= 5) && (twr <= 8))
return (twr - 4) << 9;
/*
* From 8T onwards, we can only use even values. Round up if we are
* given an odd value.
*/
if ((twr >= 9) && (twr <= 14))
return ((twr + 1) >> 1) << 9;
/* tWR == 16T is [000] */
return 0;
}
/* Map the CAS latency to a bitmask for the MR0 cycle */
static u16 ddr3_cas_to_mr0_map(u8 cas)
{
u16 mask = 0;
/* A[6:4] are bits [2:0] of (CAS - 4) */
mask = ((cas - 4) & 0x07) << 4;
/* A2 is the MSB of (CAS - 4) */
if ((cas - 4) & (1 << 3))
mask |= (1 << 2);
return mask;
}
/**
* \brief Get command address for a DDR3 MR0 command
*
* The DDR3 specification only covers odd write_recovery up to 7T. If an odd
* write_recovery greater than 7 is specified, it will be rounded up. If a tWR
* greater than 8 is specified, it is recommended to explicitly round it up or
* down before calling this function.
*
* write_recovery and cas are given in clock cycles. For example, a CAS of 7T
* should be given as 7.
*
* @param write_recovery Write recovery latency, tWR in clock cycles.
* @param cas CAS latency in clock cycles.
*/
mrs_cmd_t ddr3_get_mr0(enum ddr3_mr0_precharge precharge_pd,
u8 write_recovery,
enum ddr3_mr0_dll_reset dll_reset,
enum ddr3_mr0_mode mode,
u8 cas,
enum ddr3_mr0_burst_type burst_type,
enum ddr3_mr0_burst_length burst_length)
{
mrs_cmd_t cmd = 0 << 16;
if (precharge_pd == DDR3_MR0_PRECHARGE_FAST)
cmd |= (1 << 12);
cmd |= ddr3_twr_to_mr0_map(write_recovery);
if (dll_reset == DDR3_MR0_DLL_RESET_YES)
cmd |= (1 << 8);
if (mode == DDR3_MR0_MODE_TEST)
cmd |= (1 << 7);
cmd |= ddr3_cas_to_mr0_map(cas);
if (burst_type == DDR3_MR0_BURST_TYPE_INTERLEAVED)
cmd |= (1 << 3);
cmd |= (burst_length & 0x03) << 0;
return cmd;
}
static u16 ddr3_rtt_nom_to_mr1_map(enum ddr3_mr1_rtt_nom rtt_nom)
{
u16 mask = 0;
/* A9 <-> rtt_nom[2] */
if (rtt_nom & (1 << 2))
mask |= (1 << 9);
/* A6 <-> rtt_nom[1] */
if (rtt_nom & (1 << 1))
mask |= (1 << 6);
/* A2 <-> rtt_nom[0] */
if (rtt_nom & (1 << 0))
mask |= (1 << 2);
return mask;
}
static u16 ddr3_ods_to_mr1_map(enum ddr3_mr1_ods ods)
{
u16 mask = 0;
/* A5 <-> ods[1] */
if (ods & (1 << 1))
mask |= (1 << 5);
/* A1 <-> ods[0] */
if (ods & (1 << 0))
mask |= (1 << 1);
return mask;
}
/**
* \brief Get command address for a DDR3 MR1 command
*/
mrs_cmd_t ddr3_get_mr1(enum ddr3_mr1_qoff qoff,
enum ddr3_mr1_tqds tqds,
enum ddr3_mr1_rtt_nom rtt_nom,
enum ddr3_mr1_write_leveling write_leveling,
enum ddr3_mr1_ods ods,
enum ddr3_mr1_additive_latency additive_latency,
enum ddr3_mr1_dll dll_disable)
{
mrs_cmd_t cmd = 1 << 16;
if (qoff == DDR3_MR1_QOFF_DISABLE)
cmd |= (1 << 12);
if (tqds == DDR3_MR1_TQDS_ENABLE)
cmd |= (1 << 11);
cmd |= ddr3_rtt_nom_to_mr1_map(rtt_nom);
if (write_leveling == DDR3_MR1_WRLVL_ENABLE)
cmd |= (1 << 7);
cmd |= ddr3_ods_to_mr1_map(ods);
cmd |= (additive_latency & 0x03) << 3;
if (dll_disable == DDR3_MR1_DLL_DISABLE)
cmd |= (1 << 0);
return cmd;
}
/**
* \brief Get command address for a DDR3 MR2 command
*
* cas_cwl is given in clock cycles. For example, a cas_cwl of 7T should be
* given as 7.
*
* @param cas_cwl CAS write latency in clock cycles.
*/
mrs_cmd_t ddr3_get_mr2(enum ddr3_mr2_rttwr rtt_wr,
enum ddr3_mr2_srt_range extended_temp,
enum ddr3_mr2_asr self_refresh, u8 cas_cwl)
{
mrs_cmd_t cmd = 2 << 16;
cmd |= (rtt_wr & 0x03) << 9;
if (extended_temp == DDR3_MR2_SRT_EXTENDED)
cmd |= (1 << 7);
if (self_refresh == DDR3_MR2_ASR_AUTO)
cmd |= (1 << 6);
cmd |= ((cas_cwl - 5) & 0x07) << 3;
return cmd;
}
/**
* \brief Get command address for a DDR3 MR3 command
*
* @param dataflow_from_mpr Specify a non-zero value to put DRAM in read
* leveling mode. Zero for normal operation.
*/
mrs_cmd_t ddr3_get_mr3(char dataflow_from_mpr)
{
mrs_cmd_t cmd = 3 << 16;
if (dataflow_from_mpr)
cmd |= (1 << 2);
return cmd;
}
/**
* \brief Mirror the address bits for this MRS command
*
* Swap the following bits in the MRS command:
* - MA3 <-> MA4
* - MA5 <-> MA6
* - MA7 <-> MA8
* - BA0 <-> BA1
*/
mrs_cmd_t ddr3_mrs_mirror_pins(mrs_cmd_t cmd)
{
u32 downshift, upshift;
/* High bits= A4 | A6 | A8 | BA1 */
/* Low bits = A3 | A5 | A7 | BA0 */
u32 lowbits = (1 << 3) | (1 << 5) | (1 << 7) | (1 << 16);
downshift = (cmd & (lowbits << 1));
upshift = (cmd & lowbits);
cmd &= ~(lowbits | (lowbits << 1));
cmd |= (downshift >> 1) | (upshift << 1);
return cmd;
}
|