1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
|
/* This file is part of the coreboot project. */
/* SPDX-License-Identifier: GPL-2.0-or-later */
/**
* @file ddr3.c
*
* \brief Utilities for decoding DDR3 SPDs
*/
#include <console/console.h>
#include <device/device.h>
#include <device/dram/ddr3.h>
#include <device/dram/common.h>
#include <string.h>
#include <memory_info.h>
#include <cbmem.h>
#include <smbios.h>
#include <types.h>
/*==============================================================================
* = DDR3 SPD decoding helpers
*----------------------------------------------------------------------------*/
/**
* \brief Checks if the DIMM is Registered based on byte[3] of the SPD
*
* Tells if the DIMM type is registered or not.
*
* @param type DIMM type. This is byte[3] of the SPD.
*/
int spd_dimm_is_registered_ddr3(enum spd_dimm_type type)
{
if ((type == SPD_DIMM_TYPE_RDIMM)
| (type == SPD_DIMM_TYPE_MINI_RDIMM)
| (type == SPD_DIMM_TYPE_72B_SO_RDIMM))
return 1;
return 0;
}
/**
* \brief Calculate the CRC of a DDR3 SPD
*
* @param spd pointer to raw SPD data
* @param len length of data in SPD
*
* @return the CRC of the SPD data, or 0 when spd data is truncated.
*/
u16 spd_ddr3_calc_crc(u8 *spd, int len)
{
int n_crc;
/* Find the number of bytes covered by CRC */
if (spd[0] & 0x80) {
n_crc = 117;
} else {
n_crc = 126;
}
if (len < n_crc)
/* Not enough bytes available to get the CRC */
return 0;
return ddr_crc16(spd, n_crc);
}
/**
* \brief Calculate the CRC of a DDR3 SPD unique identifier
*
* @param spd pointer to raw SPD data
* @param len length of data in SPD
*
* @return the CRC of SPD data bytes 117..127, or 0 when spd data is truncated.
*/
u16 spd_ddr3_calc_unique_crc(u8 *spd, int len)
{
if (len < (117 + 11))
/* Not enough bytes available to get the CRC */
return 0;
return ddr_crc16(&spd[117], 11);
}
/**
* \brief Decode the raw SPD data
*
* Decodes a raw SPD data from a DDR3 DIMM, and organizes it into a
* @ref dimm_attr structure. The SPD data must first be read in a contiguous
* array, and passed to this function.
*
* @param dimm pointer to @ref dimm_attr structure where the decoded data is to
* be stored
* @param spd array of raw data previously read from the SPD.
*
* @return @ref spd_status enumerator
* SPD_STATUS_OK -- decoding was successful
* SPD_STATUS_INVALID -- invalid SPD or not a DDR3 SPD
* SPD_STATUS_CRC_ERROR -- CRC did not verify
* SPD_STATUS_INVALID_FIELD -- A field with an invalid value was
* detected.
*/
int spd_decode_ddr3(dimm_attr * dimm, spd_raw_data spd)
{
int ret;
u16 crc, spd_crc;
u8 capacity_shift, bus_width;
u8 reg8;
u32 mtb; /* medium time base */
u32 ftb; /* fine time base */
unsigned int val;
ret = SPD_STATUS_OK;
/* Don't assume we memset 0 dimm struct. Clear all our flags */
dimm->flags.raw = 0;
dimm->dimms_per_channel = 3;
/* Make sure that the SPD dump is indeed from a DDR3 module */
if (spd[2] != SPD_MEMORY_TYPE_SDRAM_DDR3) {
printram("Not a DDR3 SPD!\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
dimm->dram_type = SPD_MEMORY_TYPE_SDRAM_DDR3;
dimm->dimm_type = spd[3] & 0xf;
crc = spd_ddr3_calc_crc(spd, sizeof(spd_raw_data));
/* Compare with the CRC in the SPD */
spd_crc = (spd[127] << 8) + spd[126];
/* Verify the CRC is correct */
if (crc != spd_crc) {
printram("ERROR: SPD CRC failed!!!\n");
ret = SPD_STATUS_CRC_ERROR;
};
printram(" Revision : %x\n", spd[1]);
printram(" Type : %x\n", spd[2]);
printram(" Key : %x\n", spd[3]);
reg8 = spd[4];
/* Number of memory banks */
val = (reg8 >> 4) & 0x07;
if (val > 0x03) {
printram(" Invalid number of memory banks\n");
ret = SPD_STATUS_INVALID_FIELD;
}
printram(" Banks : %u\n", 1 << (val + 3));
/* SDRAM capacity */
capacity_shift = reg8 & 0x0f;
if (capacity_shift > 0x06) {
printram(" Invalid module capacity\n");
ret = SPD_STATUS_INVALID_FIELD;
}
if (capacity_shift < 0x02) {
printram(" Capacity : %u Mb\n", 256 << capacity_shift);
} else {
printram(" Capacity : %u Gb\n", 1 << (capacity_shift - 2));
}
reg8 = spd[5];
/* Row address bits */
val = (reg8 >> 3) & 0x07;
if (val > 0x04) {
printram(" Invalid row address bits\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->row_bits = val + 12;
/* Column address bits */
val = reg8 & 0x07;
if (val > 0x03) {
printram(" Invalid column address bits\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->col_bits = val + 9;
/* Module nominal voltage */
reg8 = spd[6];
printram(" Supported voltages :");
if (reg8 & (1 << 2)) {
dimm->flags.operable_1_25V = 1;
dimm->voltage = 1250;
printram(" 1.25V");
}
if (reg8 & (1 << 1)) {
dimm->flags.operable_1_35V = 1;
dimm->voltage = 1300;
printram(" 1.35V");
}
if (!(reg8 & (1 << 0))) {
dimm->flags.operable_1_50V = 1;
dimm->voltage = 1500;
printram(" 1.5V");
}
printram("\n");
/* Module organization */
reg8 = spd[7];
/* Number of ranks */
val = (reg8 >> 3) & 0x07;
if (val > 3) {
printram(" Invalid number of ranks\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->ranks = val + 1;
/* SDRAM device width */
val = (reg8 & 0x07);
if (val > 3) {
printram(" Invalid SDRAM width\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->width = (4 << val);
printram(" SDRAM width : %u\n", dimm->width);
/* Memory bus width */
reg8 = spd[8];
/* Bus extension */
val = (reg8 >> 3) & 0x03;
if (val > 1) {
printram(" Invalid bus extension\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->flags.is_ecc = val ? 1 : 0;
printram(" Bus extension : %u bits\n", val ? 8 : 0);
/* Bus width */
val = reg8 & 0x07;
if (val > 3) {
printram(" Invalid bus width\n");
ret = SPD_STATUS_INVALID_FIELD;
}
bus_width = 8 << val;
printram(" Bus width : %u\n", bus_width);
/* We have all the info we need to compute the dimm size */
/* Capacity is 256Mbit multiplied by the power of 2 specified in
* capacity_shift
* The rest is the JEDEC formula */
dimm->size_mb = ((1 << (capacity_shift + (25 - 20))) * bus_width
* dimm->ranks) / dimm->width;
/* Medium Timebase =
* Medium Timebase (MTB) Dividend /
* Medium Timebase (MTB) Divisor */
mtb = (((u32) spd[10]) << 8) / spd[11];
/* SDRAM Minimum Cycle Time (tCKmin) */
dimm->tCK = spd[12] * mtb;
/* CAS Latencies Supported */
dimm->cas_supported = (spd[15] << 8) + spd[14];
/* Minimum CAS Latency Time (tAAmin) */
dimm->tAA = spd[16] * mtb;
/* Minimum Write Recovery Time (tWRmin) */
dimm->tWR = spd[17] * mtb;
/* Minimum RAS# to CAS# Delay Time (tRCDmin) */
dimm->tRCD = spd[18] * mtb;
/* Minimum Row Active to Row Active Delay Time (tRRDmin) */
dimm->tRRD = spd[19] * mtb;
/* Minimum Row Precharge Delay Time (tRPmin) */
dimm->tRP = spd[20] * mtb;
/* Minimum Active to Precharge Delay Time (tRASmin) */
dimm->tRAS = (((spd[21] & 0x0f) << 8) + spd[22]) * mtb;
/* Minimum Active to Active/Refresh Delay Time (tRCmin) */
dimm->tRC = (((spd[21] & 0xf0) << 4) + spd[23]) * mtb;
/* Minimum Refresh Recovery Delay Time (tRFCmin) */
dimm->tRFC = ((spd[25] << 8) + spd[24]) * mtb;
/* Minimum Internal Write to Read Command Delay Time (tWTRmin) */
dimm->tWTR = spd[26] * mtb;
/* Minimum Internal Read to Precharge Command Delay Time (tRTPmin) */
dimm->tRTP = spd[27] * mtb;
/* Minimum Four Activate Window Delay Time (tFAWmin) */
dimm->tFAW = (((spd[28] & 0x0f) << 8) + spd[29]) * mtb;
/* Minimum CAS Write Latency Time (tCWLmin)
* - not present in standard SPD */
dimm->tCWL = 0;
/* System CMD Rate Mode - not present in standard SPD */
dimm->tCMD = 0;
printram(" FTB timings :");
/* FTB is introduced in SPD revision 1.1 */
if (spd[1] >= 0x11 && spd[9] & 0x0f) {
printram(" yes\n");
/* Fine timebase (1/256 ps) =
* Fine Timebase (FTB) Dividend /
* Fine Timebase (FTB) Divisor */
ftb = (((u16) spd[9] & 0xf0) << 4) / (spd[9] & 0x0f);
/* SPD recommends to round up the MTB part and use a negative
* FTB, so a negative rounding should be always safe */
/* SDRAM Minimum Cycle Time (tCKmin) correction */
dimm->tCK += (s32)((s8) spd[34] * ftb - 500) / 1000;
/* Minimum CAS Latency Time (tAAmin) correction */
dimm->tAA += (s32)((s8) spd[35] * ftb - 500) / 1000;
/* Minimum RAS# to CAS# Delay Time (tRCDmin) correction */
dimm->tRCD += (s32)((s8) spd[36] * ftb - 500) / 1000;
/* Minimum Row Precharge Delay Time (tRPmin) correction */
dimm->tRP += (s32)((s8) spd[37] * ftb - 500) / 1000;
/* Minimum Active to Active/Refresh Delay Time (tRCmin) corr. */
dimm->tRC += (s32)((s8) spd[38] * ftb - 500) / 1000;
}
else {
printram(" no\n");
}
/* SDRAM Optional Features */
reg8 = spd[30];
printram(" Optional features :");
if (reg8 & 0x80) {
dimm->flags.dll_off_mode = 1;
printram(" DLL-Off_mode");
}
if (reg8 & 0x02) {
dimm->flags.rzq7_supported = 1;
printram(" RZQ/7");
}
if (reg8 & 0x01) {
dimm->flags.rzq6_supported = 1;
printram(" RZQ/6");
}
printram("\n");
/* SDRAM Thermal and Refresh Options */
reg8 = spd[31];
printram(" Thermal features :");
if (reg8 & 0x80) {
dimm->flags.pasr = 1;
printram(" PASR");
}
if (reg8 & 0x08) {
dimm->flags.odts = 1;
printram(" ODTS");
}
if (reg8 & 0x04) {
dimm->flags.asr = 1;
printram(" ASR");
}
if (reg8 & 0x02) {
dimm->flags.ext_temp_range = 1;
printram(" ext_temp_refresh");
}
if (reg8 & 0x01) {
dimm->flags.ext_temp_refresh = 1;
printram(" ext_temp_range");
}
printram("\n");
/* Module Thermal Sensor */
reg8 = spd[32];
if (reg8 & 0x80)
dimm->flags.therm_sensor = 1;
printram(" Thermal sensor : %s\n",
dimm->flags.therm_sensor ? "yes" : "no");
/* SDRAM Device Type */
printram(" Standard SDRAM : %s\n", (spd[33] & 0x80) ? "no" : "yes");
if (spd[63] & 0x01) {
dimm->flags.pins_mirrored = 1;
}
printram(" Rank1 Address bits : %s\n",
(spd[63] & 0x01) ? "mirrored" : "normal");
dimm->reference_card = spd[62] & 0x1f;
printram(" DIMM Reference card: %c\n", 'A' + dimm->reference_card);
dimm->manufacturer_id = (spd[118] << 8) | spd[117];
printram(" Manufacturer ID : %x\n", dimm->manufacturer_id);
dimm->part_number[16] = 0;
memcpy(dimm->part_number, &spd[128], 16);
printram(" Part number : %s\n", dimm->part_number);
memcpy(dimm->serial, &spd[SPD_DIMM_SERIAL_NUM], SPD_DIMM_SERIAL_LEN);
return ret;
}
/**
* \brief Decode the raw SPD XMP data
*
* Decodes a raw SPD XMP data from a DDR3 DIMM, and organizes it into a
* @ref dimm_attr structure. The SPD data must first be read in a contiguous
* array, and passed to this function.
*
* @param dimm pointer to @ref dimm_attr structure where the decoded data is to
* be stored
* @param spd array of raw data previously read from the SPD.
*
* @param profile select one of the profiles to load
*
* @return @ref spd_status enumerator
* SPD_STATUS_OK -- decoding was successful
* SPD_STATUS_INVALID -- invalid SPD or not a DDR3 SPD
* SPD_STATUS_CRC_ERROR -- CRC did not verify
* SPD_STATUS_INVALID_FIELD -- A field with an invalid value was
* detected.
*/
int spd_xmp_decode_ddr3(dimm_attr *dimm,
spd_raw_data spd,
enum ddr3_xmp_profile profile)
{
int ret;
u32 mtb; /* medium time base */
u8 *xmp; /* pointer to XMP profile data */
/* need a valid SPD */
ret = spd_decode_ddr3(dimm, spd);
if (ret != SPD_STATUS_OK)
return ret;
/* search for magic header */
if (spd[176] != 0x0C || spd[177] != 0x4A) {
printram("Not a DDR3 XMP profile!\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
if (profile == DDR3_XMP_PROFILE_1) {
if (!(spd[178] & 1)) {
printram("Selected XMP profile disabled!\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
printram(" XMP Profile : 1\n");
xmp = &spd[185];
/* Medium Timebase =
* Medium Timebase (MTB) Dividend /
* Medium Timebase (MTB) Divisor */
mtb = (((u32) spd[180]) << 8) / spd[181];
dimm->dimms_per_channel = ((spd[178] >> 2) & 0x3) + 1;
} else {
if (!(spd[178] & 2)) {
printram("Selected XMP profile disabled!\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
printram(" XMP Profile : 2\n");
xmp = &spd[220];
/* Medium Timebase =
* Medium Timebase (MTB) Dividend /
* Medium Timebase (MTB) Divisor */
mtb = (((u32) spd[182]) << 8) / spd[183];
dimm->dimms_per_channel = ((spd[178] >> 4) & 0x3) + 1;
}
printram(" Max DIMMs/channel : %u\n",
dimm->dimms_per_channel);
printram(" XMP Revision : %u.%u\n", spd[179] >> 4, spd[179] & 0xf);
/* calculate voltage in mV */
dimm->voltage = (xmp[0] & 1) * 50;
dimm->voltage += ((xmp[0] >> 1) & 0xf) * 100;
dimm->voltage += ((xmp[0] >> 5) & 0x3) * 1000;
printram(" Requested voltage : %u mV\n", dimm->voltage);
/* SDRAM Minimum Cycle Time (tCKmin) */
dimm->tCK = xmp[1] * mtb;
/* CAS Latencies Supported */
dimm->cas_supported = ((xmp[4] << 8) + xmp[3]) & 0x7fff;
/* Minimum CAS Latency Time (tAAmin) */
dimm->tAA = xmp[2] * mtb;
/* Minimum Write Recovery Time (tWRmin) */
dimm->tWR = xmp[8] * mtb;
/* Minimum RAS# to CAS# Delay Time (tRCDmin) */
dimm->tRCD = xmp[7] * mtb;
/* Minimum Row Active to Row Active Delay Time (tRRDmin) */
dimm->tRRD = xmp[17] * mtb;
/* Minimum Row Precharge Delay Time (tRPmin) */
dimm->tRP = xmp[6] * mtb;
/* Minimum Active to Precharge Delay Time (tRASmin) */
dimm->tRAS = (((xmp[9] & 0x0f) << 8) + xmp[10]) * mtb;
/* Minimum Active to Active/Refresh Delay Time (tRCmin) */
dimm->tRC = (((xmp[9] & 0xf0) << 4) + xmp[11]) * mtb;
/* Minimum Refresh Recovery Delay Time (tRFCmin) */
dimm->tRFC = ((xmp[15] << 8) + xmp[14]) * mtb;
/* Minimum Internal Write to Read Command Delay Time (tWTRmin) */
dimm->tWTR = xmp[20] * mtb;
/* Minimum Internal Read to Precharge Command Delay Time (tRTPmin) */
dimm->tRTP = xmp[16] * mtb;
/* Minimum Four Activate Window Delay Time (tFAWmin) */
dimm->tFAW = (((xmp[18] & 0x0f) << 8) + xmp[19]) * mtb;
/* Minimum CAS Write Latency Time (tCWLmin) */
dimm->tCWL = xmp[5] * mtb;
/* System CMD Rate Mode */
dimm->tCMD = xmp[23] * mtb;
return ret;
}
/**
* Fill cbmem with information for SMBIOS type 17.
*
* @param channel Corresponding channel of provided @info
* @param slot Corresponding slot of provided @info
* @param selected_freq The actual frequency the DRAM is running on
* @param info DIMM parameters read from SPD
*
* @return CB_SUCCESS if DIMM info was written
*/
enum cb_err spd_add_smbios17(const u8 channel, const u8 slot,
const u16 selected_freq,
const dimm_attr *info)
{
struct memory_info *mem_info;
struct dimm_info *dimm;
/*
* Allocate CBMEM area for DIMM information used to populate SMBIOS
* table 17
*/
mem_info = cbmem_find(CBMEM_ID_MEMINFO);
if (!mem_info) {
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(*mem_info));
printk(BIOS_DEBUG, "CBMEM entry for DIMM info: %p\n",
mem_info);
if (!mem_info)
return CB_ERR;
memset(mem_info, 0, sizeof(*mem_info));
}
if (mem_info->dimm_cnt >= ARRAY_SIZE(mem_info->dimm)) {
printk(BIOS_WARNING, "BUG: Too many DIMM infos for %s.\n",
__func__);
return CB_ERR;
}
dimm = &mem_info->dimm[mem_info->dimm_cnt];
if (info->size_mb) {
dimm->ddr_type = MEMORY_TYPE_DDR3;
dimm->ddr_frequency = selected_freq;
dimm->dimm_size = info->size_mb;
dimm->channel_num = channel;
dimm->rank_per_dimm = info->ranks;
dimm->dimm_num = slot;
memcpy(dimm->module_part_number, info->part_number, 16);
dimm->mod_id = info->manufacturer_id;
switch (info->dimm_type) {
case SPD_DIMM_TYPE_SO_DIMM:
dimm->mod_type = SPD_SODIMM;
break;
case SPD_DIMM_TYPE_72B_SO_CDIMM:
dimm->mod_type = SPD_72B_SO_CDIMM;
break;
case SPD_DIMM_TYPE_72B_SO_RDIMM:
dimm->mod_type = SPD_72B_SO_RDIMM;
break;
case SPD_DIMM_TYPE_UDIMM:
dimm->mod_type = SPD_UDIMM;
break;
case SPD_DIMM_TYPE_RDIMM:
dimm->mod_type = SPD_RDIMM;
break;
case SPD_DIMM_TYPE_UNDEFINED:
default:
dimm->mod_type = SPD_UNDEFINED;
break;
}
dimm->bus_width = MEMORY_BUS_WIDTH_64; // non-ECC only
memcpy(dimm->serial, info->serial,
MIN(sizeof(dimm->serial), sizeof(info->serial)));
mem_info->dimm_cnt++;
}
return CB_SUCCESS;
}
/*
* The information printed below has a more informational character, and is not
* necessarily tied in to RAM init debugging. Hence, we stop using printram(),
* and use the standard printk()'s below.
*/
static void print_ns(const char *msg, u32 val)
{
u32 mant, fp;
mant = val / 256;
fp = (val % 256) * 1000 / 256;
printk(BIOS_INFO, "%s%3u.%.3u ns\n", msg, mant, fp);
}
/**
* \brief Print the info in DIMM
*
* Print info about the DIMM. Useful to use when CONFIG_DEBUG_RAM_SETUP is
* selected, or for a purely informative output.
*
* @param dimm pointer to already decoded @ref dimm_attr structure
*/
void dram_print_spd_ddr3(const dimm_attr * dimm)
{
u16 val16;
int i;
printk(BIOS_INFO, " Row addr bits : %u\n", dimm->row_bits);
printk(BIOS_INFO, " Column addr bits : %u\n", dimm->col_bits);
printk(BIOS_INFO, " Number of ranks : %u\n", dimm->ranks);
printk(BIOS_INFO, " DIMM Capacity : %u MB\n", dimm->size_mb);
/* CAS Latencies Supported */
val16 = dimm->cas_supported;
printk(BIOS_INFO, " CAS latencies :");
i = 0;
do {
if (val16 & 1)
printk(BIOS_INFO, " %u", i + 4);
i++;
val16 >>= 1;
} while (val16);
printk(BIOS_INFO, "\n");
print_ns(" tCKmin : ", dimm->tCK);
print_ns(" tAAmin : ", dimm->tAA);
print_ns(" tWRmin : ", dimm->tWR);
print_ns(" tRCDmin : ", dimm->tRCD);
print_ns(" tRRDmin : ", dimm->tRRD);
print_ns(" tRPmin : ", dimm->tRP);
print_ns(" tRASmin : ", dimm->tRAS);
print_ns(" tRCmin : ", dimm->tRC);
print_ns(" tRFCmin : ", dimm->tRFC);
print_ns(" tWTRmin : ", dimm->tWTR);
print_ns(" tRTPmin : ", dimm->tRTP);
print_ns(" tFAWmin : ", dimm->tFAW);
/* Those values are only relevant if an XMP profile sets them */
if (dimm->tCWL)
print_ns(" tCWLmin : ", dimm->tCWL);
if (dimm->tCMD)
printk(BIOS_INFO, " tCMDmin : %3u\n",
DIV_ROUND_UP(dimm->tCMD, 256));
}
/*==============================================================================
*= DDR3 MRS helpers
*----------------------------------------------------------------------------*/
/*
* MRS command structure:
* cmd[15:0] = Address pins MA[15:0]
* cmd[18:16] = Bank address BA[2:0]
*/
/* Map tWR value to a bitmask of the MR0 cycle */
static u16 ddr3_twr_to_mr0_map(u8 twr)
{
if ((twr >= 5) && (twr <= 8))
return (twr - 4) << 9;
/*
* From 8T onwards, we can only use even values. Round up if we are
* given an odd value.
*/
if ((twr >= 9) && (twr <= 14))
return ((twr + 1) >> 1) << 9;
/* tWR == 16T is [000] */
return 0;
}
/* Map the CAS latency to a bitmask for the MR0 cycle */
static u16 ddr3_cas_to_mr0_map(u8 cas)
{
u16 mask = 0;
/* A[6:4] are bits [2:0] of (CAS - 4) */
mask = ((cas - 4) & 0x07) << 4;
/* A2 is the MSB of (CAS - 4) */
if ((cas - 4) & (1 << 3))
mask |= (1 << 2);
return mask;
}
/**
* \brief Get command address for a DDR3 MR0 command
*
* The DDR3 specification only covers odd write_recovery up to 7T. If an odd
* write_recovery greater than 7 is specified, it will be rounded up. If a tWR
* greater than 8 is specified, it is recommended to explicitly round it up or
* down before calling this function.
*
* write_recovery and cas are given in clock cycles. For example, a CAS of 7T
* should be given as 7.
*
* @param precharge_pd
* @param write_recovery Write recovery latency, tWR in clock cycles.
* @param dll_reset
* @param mode
* @param cas CAS latency in clock cycles.
* @param burst_type
* @param burst_length
*/
mrs_cmd_t ddr3_get_mr0(enum ddr3_mr0_precharge precharge_pd,
u8 write_recovery,
enum ddr3_mr0_dll_reset dll_reset,
enum ddr3_mr0_mode mode,
u8 cas,
enum ddr3_mr0_burst_type burst_type,
enum ddr3_mr0_burst_length burst_length)
{
mrs_cmd_t cmd = 0 << 16;
if (precharge_pd == DDR3_MR0_PRECHARGE_FAST)
cmd |= (1 << 12);
cmd |= ddr3_twr_to_mr0_map(write_recovery);
if (dll_reset == DDR3_MR0_DLL_RESET_YES)
cmd |= (1 << 8);
if (mode == DDR3_MR0_MODE_TEST)
cmd |= (1 << 7);
cmd |= ddr3_cas_to_mr0_map(cas);
if (burst_type == DDR3_MR0_BURST_TYPE_INTERLEAVED)
cmd |= (1 << 3);
cmd |= (burst_length & 0x03) << 0;
return cmd;
}
static u16 ddr3_rtt_nom_to_mr1_map(enum ddr3_mr1_rtt_nom rtt_nom)
{
u16 mask = 0;
/* A9 <-> rtt_nom[2] */
if (rtt_nom & (1 << 2))
mask |= (1 << 9);
/* A6 <-> rtt_nom[1] */
if (rtt_nom & (1 << 1))
mask |= (1 << 6);
/* A2 <-> rtt_nom[0] */
if (rtt_nom & (1 << 0))
mask |= (1 << 2);
return mask;
}
static u16 ddr3_ods_to_mr1_map(enum ddr3_mr1_ods ods)
{
u16 mask = 0;
/* A5 <-> ods[1] */
if (ods & (1 << 1))
mask |= (1 << 5);
/* A1 <-> ods[0] */
if (ods & (1 << 0))
mask |= (1 << 1);
return mask;
}
/**
* \brief Get command address for a DDR3 MR1 command
*/
mrs_cmd_t ddr3_get_mr1(enum ddr3_mr1_qoff qoff,
enum ddr3_mr1_tqds tqds,
enum ddr3_mr1_rtt_nom rtt_nom,
enum ddr3_mr1_write_leveling write_leveling,
enum ddr3_mr1_ods ods,
enum ddr3_mr1_additive_latency additive_latency,
enum ddr3_mr1_dll dll_disable)
{
mrs_cmd_t cmd = 1 << 16;
if (qoff == DDR3_MR1_QOFF_DISABLE)
cmd |= (1 << 12);
if (tqds == DDR3_MR1_TQDS_ENABLE)
cmd |= (1 << 11);
cmd |= ddr3_rtt_nom_to_mr1_map(rtt_nom);
if (write_leveling == DDR3_MR1_WRLVL_ENABLE)
cmd |= (1 << 7);
cmd |= ddr3_ods_to_mr1_map(ods);
cmd |= (additive_latency & 0x03) << 3;
if (dll_disable == DDR3_MR1_DLL_DISABLE)
cmd |= (1 << 0);
return cmd;
}
/**
* \brief Get command address for a DDR3 MR2 command
*
* cas_cwl is given in clock cycles. For example, a cas_cwl of 7T should be
* given as 7.
*
* @param rtt_wr
* @param extended_temp
* @param self_refresh
* @param cas_cwl CAS write latency in clock cycles.
*/
mrs_cmd_t ddr3_get_mr2(enum ddr3_mr2_rttwr rtt_wr,
enum ddr3_mr2_srt_range extended_temp,
enum ddr3_mr2_asr self_refresh, u8 cas_cwl)
{
mrs_cmd_t cmd = 2 << 16;
cmd |= (rtt_wr & 0x03) << 9;
if (extended_temp == DDR3_MR2_SRT_EXTENDED)
cmd |= (1 << 7);
if (self_refresh == DDR3_MR2_ASR_AUTO)
cmd |= (1 << 6);
cmd |= ((cas_cwl - 5) & 0x07) << 3;
return cmd;
}
/**
* \brief Get command address for a DDR3 MR3 command
*
* @param dataflow_from_mpr Specify a non-zero value to put DRAM in read
* leveling mode. Zero for normal operation.
*/
mrs_cmd_t ddr3_get_mr3(char dataflow_from_mpr)
{
mrs_cmd_t cmd = 3 << 16;
if (dataflow_from_mpr)
cmd |= (1 << 2);
return cmd;
}
/**
* \brief Mirror the address bits for this MRS command
*
* Swap the following bits in the MRS command:
* - MA3 <-> MA4
* - MA5 <-> MA6
* - MA7 <-> MA8
* - BA0 <-> BA1
*/
mrs_cmd_t ddr3_mrs_mirror_pins(mrs_cmd_t cmd)
{
u32 downshift, upshift;
/* High bits= A4 | A6 | A8 | BA1 */
/* Low bits = A3 | A5 | A7 | BA0 */
u32 lowbits = (1 << 3) | (1 << 5) | (1 << 7) | (1 << 16);
downshift = (cmd & (lowbits << 1));
upshift = (cmd & lowbits);
cmd &= ~(lowbits | (lowbits << 1));
cmd |= (downshift >> 1) | (upshift << 1);
return cmd;
}
|