1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Originally based on the Linux kernel (arch/i386/kernel/pci-pc.c).
*/
#include <console/console.h>
#include <device/device.h>
#include <device/pci_def.h>
#include <device/pci_ids.h>
#include <post.h>
#include <stdlib.h>
#include <string.h>
#include <smp/spinlock.h>
#if ENV_X86
#include <arch/ebda.h>
#endif
#include <timer.h>
/** Pointer to the last device */
extern struct device *last_dev;
/** Linked list of free resources */
struct resource *free_resources = NULL;
/* Disable a PCI device based on bus, device and function. */
void devfn_disable(const struct bus *bus, unsigned int devfn)
{
struct device *dev = pcidev_path_behind(bus, devfn);
if (dev)
dev->enabled = 0;
}
/**
* Initialize all chips of statically known devices.
*
* Will be called before bus enumeration to initialize chips stated in the
* device tree.
*/
void dev_initialize_chips(void)
{
const struct device *dev;
for (dev = all_devices; dev; dev = dev->next) {
/* Initialize chip if we haven't yet. */
if (dev->chip_ops && dev->chip_ops->init &&
!dev->chip_ops->initialized) {
post_log_path(dev);
dev->chip_ops->init(dev->chip_info);
dev->chip_ops->initialized = 1;
}
}
post_log_clear();
}
/**
* Finalize all chips of statically known devices.
*
* This is the last call before calling the payload. This is a good place
* to lock registers or other final cleanup.
*/
void dev_finalize_chips(void)
{
const struct device *dev;
for (dev = all_devices; dev; dev = dev->next) {
/* Initialize chip if we haven't yet. */
if (dev->chip_ops && dev->chip_ops->final &&
!dev->chip_ops->finalized) {
dev->chip_ops->final(dev->chip_info);
dev->chip_ops->finalized = 1;
}
}
}
DECLARE_SPIN_LOCK(dev_lock)
/**
* Allocate a new device structure.
*
* Allocate a new device structure and attach it to the device tree as a
* child of the parent bus.
*
* @param parent Parent bus the newly created device should be attached to.
* @param path Path to the device to be created.
* @return Pointer to the newly created device structure.
*
* @see device_path
*/
static struct device *__alloc_dev(struct bus *parent, struct device_path *path)
{
struct device *dev, *child;
/* Find the last child of our parent. */
for (child = parent->children; child && child->sibling; /* */)
child = child->sibling;
dev = malloc(sizeof(*dev));
if (dev == 0)
die("alloc_dev(): out of memory.\n");
memset(dev, 0, sizeof(*dev));
memcpy(&dev->path, path, sizeof(*path));
/* By default devices are enabled. */
dev->enabled = 1;
/* Add the new device to the list of children of the bus. */
dev->bus = parent;
if (child)
child->sibling = dev;
else
parent->children = dev;
/* Append a new device to the global device list.
* The list is used to find devices once everything is set up.
*/
last_dev->next = dev;
last_dev = dev;
return dev;
}
struct device *alloc_dev(struct bus *parent, struct device_path *path)
{
struct device *dev;
spin_lock(&dev_lock);
dev = __alloc_dev(parent, path);
spin_unlock(&dev_lock);
return dev;
}
/**
* See if a device structure already exists and if not allocate it.
*
* @param parent The bus to find the device on.
* @param path The relative path from the bus to the appropriate device.
* @return Pointer to a device structure for the device on bus at path.
*/
struct device *alloc_find_dev(struct bus *parent, struct device_path *path)
{
struct device *child;
spin_lock(&dev_lock);
child = find_dev_path(parent, path);
if (!child)
child = __alloc_dev(parent, path);
spin_unlock(&dev_lock);
return child;
}
/**
* Read the resources on all devices of a given bus.
*
* @param bus Bus to read the resources on.
*/
static void read_resources(struct bus *bus)
{
struct device *curdev;
printk(BIOS_SPEW, "%s %s bus %d link: %d\n", dev_path(bus->dev),
__func__, bus->secondary, bus->link_num);
/* Walk through all devices and find which resources they need. */
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
struct bus *link;
if (!curdev->enabled)
continue;
if (!curdev->ops || !curdev->ops->read_resources) {
if (curdev->path.type != DEVICE_PATH_APIC)
printk(BIOS_ERR, "%s missing %s\n",
dev_path(curdev), __func__);
continue;
}
post_log_path(curdev);
curdev->ops->read_resources(curdev);
/* Read in the resources behind the current device's links. */
for (link = curdev->link_list; link; link = link->next)
read_resources(link);
}
post_log_clear();
printk(BIOS_SPEW, "%s %s bus %d link: %d done\n",
dev_path(bus->dev), __func__, bus->secondary, bus->link_num);
}
struct device *vga_pri = NULL;
static void set_vga_bridge_bits(void)
{
/*
* FIXME: Modify set_vga_bridge() so it is less PCI-centric!
* This function knows too much about PCI stuff, it should be just
* an iterator/visitor.
*/
/* FIXME: Handle the VGA palette snooping. */
struct device *dev, *vga, *vga_onboard;
struct bus *bus;
bus = 0;
vga = 0;
vga_onboard = 0;
dev = NULL;
while ((dev = dev_find_class(PCI_CLASS_DISPLAY_VGA << 8, dev))) {
if (!dev->enabled)
continue;
printk(BIOS_DEBUG, "found VGA at %s\n", dev_path(dev));
if (dev->bus->no_vga16) {
printk(BIOS_WARNING,
"A bridge on the path doesn't support 16-bit VGA decoding!");
}
if (dev->on_mainboard)
vga_onboard = dev;
else
vga = dev;
/* It isn't safe to enable all VGA cards. */
dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
}
if (!vga)
vga = vga_onboard;
if (CONFIG(ONBOARD_VGA_IS_PRIMARY) && vga_onboard)
vga = vga_onboard;
/* If we prefer plugin VGA over chipset VGA, the chipset might
want to know. */
if (!CONFIG(ONBOARD_VGA_IS_PRIMARY) && (vga != vga_onboard) &&
vga_onboard && vga_onboard->ops && vga_onboard->ops->vga_disable) {
printk(BIOS_DEBUG, "Use plugin graphics over integrated.\n");
vga_onboard->ops->vga_disable(vga_onboard);
}
if (vga) {
/* VGA is first add-on card or the only onboard VGA. */
printk(BIOS_DEBUG, "Setting up VGA for %s\n", dev_path(vga));
/* All legacy VGA cards have MEM & I/O space registers. */
vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
vga_pri = vga;
bus = vga->bus;
}
/* Now walk up the bridges setting the VGA enable. */
while (bus) {
printk(BIOS_DEBUG, "Setting PCI_BRIDGE_CTL_VGA for bridge %s\n",
dev_path(bus->dev));
bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA | PCI_BRIDGE_CTL_VGA16;
bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus;
}
}
/**
* Assign the computed resources to the devices on the bus.
*
* Use the device specific set_resources() method to store the computed
* resources to hardware. For bridge devices, the set_resources() method
* has to recurse into every down stream buses.
*
* Mutual recursion:
* assign_resources() -> device_operation::set_resources()
* device_operation::set_resources() -> assign_resources()
*
* @param bus Pointer to the structure for this bus.
*/
void assign_resources(struct bus *bus)
{
struct device *curdev;
printk(BIOS_SPEW, "%s %s, bus %d link: %d\n",
dev_path(bus->dev), __func__, bus->secondary, bus->link_num);
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
if (!curdev->enabled || !curdev->resource_list)
continue;
if (!curdev->ops || !curdev->ops->set_resources) {
printk(BIOS_ERR, "%s missing set_resources\n",
dev_path(curdev));
continue;
}
post_log_path(curdev);
curdev->ops->set_resources(curdev);
}
post_log_clear();
printk(BIOS_SPEW, "%s %s, bus %d link: %d done\n",
dev_path(bus->dev), __func__, bus->secondary, bus->link_num);
}
/**
* Enable the resources for devices on a link.
*
* Enable resources of the device by calling the device specific
* enable_resources() method.
*
* The parent's resources should be enabled first to avoid having enabling
* order problem. This is done by calling the parent's enable_resources()
* method before its children's enable_resources() methods.
*
* @param link The link whose devices' resources are to be enabled.
*/
static void enable_resources(struct bus *link)
{
struct device *dev;
struct bus *c_link;
for (dev = link->children; dev; dev = dev->sibling) {
if (dev->enabled && dev->ops && dev->ops->enable_resources) {
post_log_path(dev);
dev->ops->enable_resources(dev);
}
}
for (dev = link->children; dev; dev = dev->sibling) {
for (c_link = dev->link_list; c_link; c_link = c_link->next)
enable_resources(c_link);
}
post_log_clear();
}
/**
* Reset all of the devices on a bus and clear the bus's reset_needed flag.
*
* @param bus Pointer to the bus structure.
* @return 1 if the bus was successfully reset, 0 otherwise.
*/
int reset_bus(struct bus *bus)
{
if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) {
bus->dev->ops->reset_bus(bus);
bus->reset_needed = 0;
return 1;
}
return 0;
}
/**
* Scan for devices on a bus.
*
* If there are bridges on the bus, recursively scan the buses behind the
* bridges. If the setting up and tuning of the bus causes a reset to be
* required, reset the bus and scan it again.
*
* @param busdev Pointer to the bus device.
*/
static void scan_bus(struct device *busdev)
{
int do_scan_bus;
struct stopwatch sw;
long scan_time;
if (!busdev->enabled)
return;
printk(BIOS_DEBUG, "%s scanning...\n", dev_path(busdev));
post_log_path(busdev);
stopwatch_init(&sw);
do_scan_bus = 1;
while (do_scan_bus) {
struct bus *link;
busdev->ops->scan_bus(busdev);
do_scan_bus = 0;
for (link = busdev->link_list; link; link = link->next) {
if (link->reset_needed) {
if (reset_bus(link))
do_scan_bus = 1;
else
busdev->bus->reset_needed = 1;
}
}
}
scan_time = stopwatch_duration_msecs(&sw);
printk(BIOS_DEBUG, "%s: bus %s finished in %ld msecs\n", __func__,
dev_path(busdev), scan_time);
}
void scan_bridges(struct bus *bus)
{
struct device *child;
for (child = bus->children; child; child = child->sibling) {
if (!child->ops || !child->ops->scan_bus)
continue;
scan_bus(child);
}
}
/**
* Determine the existence of devices and extend the device tree.
*
* Most of the devices in the system are listed in the mainboard devicetree.cb
* file. The device structures for these devices are generated at compile
* time by the config tool and are organized into the device tree. This
* function determines if the devices created at compile time actually exist
* in the physical system.
*
* For devices in the physical system but not listed in devicetree.cb,
* the device structures have to be created at run time and attached to the
* device tree.
*
* This function starts from the root device 'dev_root', scans the buses in
* the system recursively, and modifies the device tree according to the
* result of the probe.
*
* This function has no idea how to scan and probe buses and devices at all.
* It depends on the bus/device specific scan_bus() method to do it. The
* scan_bus() method also has to create the device structure and attach
* it to the device tree.
*/
void dev_enumerate(void)
{
struct device *root;
printk(BIOS_INFO, "Enumerating buses...\n");
root = &dev_root;
show_all_devs(BIOS_SPEW, "Before device enumeration.");
printk(BIOS_SPEW, "Compare with tree...\n");
show_devs_tree(root, BIOS_SPEW, 0);
if (root->chip_ops && root->chip_ops->enable_dev)
root->chip_ops->enable_dev(root);
if (!root->ops || !root->ops->scan_bus) {
printk(BIOS_ERR, "dev_root missing scan_bus operation");
return;
}
scan_bus(root);
post_log_clear();
printk(BIOS_INFO, "done\n");
}
/**
* Configure devices on the devices tree.
*
* Starting at the root of the device tree, travel it recursively in two
* passes. In the first pass, we compute and allocate resources (ranges)
* required by each device. In the second pass, the resources ranges are
* relocated to their final position and stored to the hardware.
*
* I/O resources grow upward. MEM resources grow downward.
*
* Since the assignment is hierarchical we set the values into the dev_root
* struct.
*/
void dev_configure(void)
{
const struct device *root;
set_vga_bridge_bits();
printk(BIOS_INFO, "Allocating resources...\n");
root = &dev_root;
/*
* Each domain should create resources which contain the entire address
* space for IO, MEM, and PREFMEM resources in the domain. The
* allocation of device resources will be done from this address space.
*/
/* Read the resources for the entire tree. */
printk(BIOS_INFO, "Reading resources...\n");
read_resources(root->link_list);
printk(BIOS_INFO, "Done reading resources.\n");
print_resource_tree(root, BIOS_SPEW, "After reading.");
allocate_resources(root);
assign_resources(root->link_list);
printk(BIOS_INFO, "Done setting resources.\n");
print_resource_tree(root, BIOS_SPEW, "After assigning values.");
printk(BIOS_INFO, "Done allocating resources.\n");
}
/**
* Enable devices on the device tree.
*
* Starting at the root, walk the tree and enable all devices/bridges by
* calling the device's enable_resources() method.
*/
void dev_enable(void)
{
struct bus *link;
printk(BIOS_INFO, "Enabling resources...\n");
/* Now enable everything. */
for (link = dev_root.link_list; link; link = link->next)
enable_resources(link);
printk(BIOS_INFO, "done.\n");
}
/**
* Initialize a specific device.
*
* The parent should be initialized first to avoid having an ordering problem.
* This is done by calling the parent's init() method before its children's
* init() methods.
*
* @param dev The device to be initialized.
*/
static void init_dev(struct device *dev)
{
if (!dev->enabled)
return;
if (!dev->initialized && dev->ops && dev->ops->init) {
struct stopwatch sw;
long init_time;
if (dev->path.type == DEVICE_PATH_I2C) {
printk(BIOS_DEBUG, "smbus: %s[%d]->",
dev_path(dev->bus->dev), dev->bus->link_num);
}
printk(BIOS_DEBUG, "%s init\n", dev_path(dev));
stopwatch_init(&sw);
dev->initialized = 1;
dev->ops->init(dev);
init_time = stopwatch_duration_msecs(&sw);
printk(BIOS_DEBUG, "%s init finished in %ld msecs\n", dev_path(dev),
init_time);
}
}
static void init_link(struct bus *link)
{
struct device *dev;
struct bus *c_link;
for (dev = link->children; dev; dev = dev->sibling) {
post_code(POST_BS_DEV_INIT);
post_log_path(dev);
init_dev(dev);
}
for (dev = link->children; dev; dev = dev->sibling) {
for (c_link = dev->link_list; c_link; c_link = c_link->next)
init_link(c_link);
}
}
/**
* Initialize all devices in the global device tree.
*
* Starting at the root device, call the device's init() method to do
* device-specific setup, then call each child's init() method.
*/
void dev_initialize(void)
{
struct bus *link;
printk(BIOS_INFO, "Initializing devices...\n");
#if ENV_X86
/* Ensure EBDA is prepared before Option ROMs. */
setup_default_ebda();
#endif
/* First call the mainboard init. */
init_dev(&dev_root);
/* Now initialize everything. */
for (link = dev_root.link_list; link; link = link->next)
init_link(link);
post_log_clear();
printk(BIOS_INFO, "Devices initialized\n");
show_all_devs(BIOS_SPEW, "After init.");
}
/**
* Finalize a specific device.
*
* The parent should be finalized first to avoid having an ordering problem.
* This is done by calling the parent's final() method before its childrens'
* final() methods.
*
* @param dev The device to be initialized.
*/
static void final_dev(struct device *dev)
{
if (!dev->enabled)
return;
if (dev->ops && dev->ops->final) {
printk(BIOS_DEBUG, "%s final\n", dev_path(dev));
dev->ops->final(dev);
}
}
static void final_link(struct bus *link)
{
struct device *dev;
struct bus *c_link;
for (dev = link->children; dev; dev = dev->sibling)
final_dev(dev);
for (dev = link->children; dev; dev = dev->sibling) {
for (c_link = dev->link_list; c_link; c_link = c_link->next)
final_link(c_link);
}
}
/**
* Finalize all devices in the global device tree.
*
* Starting at the root device, call the device's final() method to do
* device-specific cleanup, then call each child's final() method.
*/
void dev_finalize(void)
{
struct bus *link;
printk(BIOS_INFO, "Finalize devices...\n");
/* First call the mainboard finalize. */
final_dev(&dev_root);
/* Now finalize everything. */
for (link = dev_root.link_list; link; link = link->next)
final_link(link);
printk(BIOS_INFO, "Devices finalized\n");
}
|