1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <string.h>
#include <rmodule.h>
#include <commonlib/helpers.h>
#include <cpu/cpu.h>
#include <cpu/intel/microcode.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/gdt.h>
#include <cpu/x86/lapic.h>
#include <cpu/x86/name.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/smm.h>
#include <cpu/x86/topology.h>
#include <cpu/x86/mp.h>
#include <delay.h>
#include <device/device.h>
#include <device/path.h>
#include <smp/atomic.h>
#include <smp/spinlock.h>
#include <symbols.h>
#include <timer.h>
#include <thread.h>
#include <types.h>
/* Generated header */
#include <ramstage/cpu/x86/smm_start32_offset.h>
#include <security/intel/stm/SmmStm.h>
struct mp_callback {
void (*func)(void *);
void *arg;
int logical_cpu_number;
};
static char processor_name[49];
/*
* A mp_flight_record details a sequence of calls for the APs to perform
* along with the BSP to coordinate sequencing. Each flight record either
* provides a barrier for each AP before calling the callback or the APs
* are allowed to perform the callback without waiting. Regardless, each
* record has the cpus_entered field incremented for each record. When
* the BSP observes that the cpus_entered matches the number of APs
* the bsp_call is called with bsp_arg and upon returning releases the
* barrier allowing the APs to make further progress.
*
* Note that ap_call() and bsp_call() can be NULL. In the NULL case the
* callback will just not be called.
*/
struct mp_flight_record {
atomic_t barrier;
atomic_t cpus_entered;
void (*ap_call)(void);
void (*bsp_call)(void);
} __aligned(CACHELINE_SIZE);
#define _MP_FLIGHT_RECORD(barrier_, ap_func_, bsp_func_) \
{ \
.barrier = ATOMIC_INIT(barrier_), \
.cpus_entered = ATOMIC_INIT(0), \
.ap_call = ap_func_, \
.bsp_call = bsp_func_, \
}
#define MP_FR_BLOCK_APS(ap_func_, bsp_func_) \
_MP_FLIGHT_RECORD(0, ap_func_, bsp_func_)
#define MP_FR_NOBLOCK_APS(ap_func_, bsp_func_) \
_MP_FLIGHT_RECORD(1, ap_func_, bsp_func_)
/* The mp_params structure provides the arguments to the mp subsystem
* for bringing up APs. */
struct mp_params {
int num_cpus; /* Total cpus include BSP */
int parallel_microcode_load;
const void *microcode_pointer;
/* Flight plan for APs and BSP. */
struct mp_flight_record *flight_plan;
int num_records;
};
/* This needs to match the layout in the .module_parametrs section. */
struct sipi_params {
uint16_t gdtlimit;
uint32_t gdt;
uint16_t unused;
uint32_t idt_ptr;
uint32_t per_cpu_segment_descriptors;
uint32_t per_cpu_segment_selector;
uint32_t stack_top;
uint32_t stack_size;
uint32_t microcode_lock; /* 0xffffffff means parallel loading. */
uint32_t microcode_ptr;
uint32_t msr_table_ptr;
uint32_t msr_count;
uint32_t c_handler;
uint32_t cr3;
atomic_t ap_count;
} __packed;
/* This also needs to match the assembly code for saved MSR encoding. */
struct saved_msr {
uint32_t index;
uint32_t lo;
uint32_t hi;
} __packed;
/* The sipi vector rmodule is included in the ramstage using 'objdump -B'. */
extern char _binary_sipi_vector_start[];
/* The SIPI vector is loaded at the SMM_DEFAULT_BASE. The reason is that the
* memory range is already reserved so the OS cannot use it. That region is
* free to use for AP bringup before SMM is initialized. */
static const uintptr_t sipi_vector_location = SMM_DEFAULT_BASE;
static const int sipi_vector_location_size = SMM_DEFAULT_SIZE;
struct mp_flight_plan {
int num_records;
struct mp_flight_record *records;
};
static int global_num_aps;
static struct mp_flight_plan mp_info;
static inline void barrier_wait(atomic_t *b)
{
while (atomic_read(b) == 0)
asm ("pause");
mfence();
}
static inline void release_barrier(atomic_t *b)
{
mfence();
atomic_set(b, 1);
}
static enum cb_err wait_for_aps(atomic_t *val, int target, int total_delay,
int delay_step)
{
int delayed = 0;
while (atomic_read(val) != target) {
udelay(delay_step);
delayed += delay_step;
if (delayed >= total_delay) {
/* Not all APs ready before timeout */
return CB_ERR;
}
}
/* APs ready before timeout */
printk(BIOS_SPEW, "APs are ready after %dus\n", delayed);
return CB_SUCCESS;
}
static void ap_do_flight_plan(void)
{
int i;
for (i = 0; i < mp_info.num_records; i++) {
struct mp_flight_record *rec = &mp_info.records[i];
atomic_inc(&rec->cpus_entered);
barrier_wait(&rec->barrier);
if (rec->ap_call != NULL)
rec->ap_call();
}
}
static void park_this_cpu(void *unused)
{
stop_this_cpu();
}
static struct bus *g_cpu_bus;
/* By the time APs call ap_init() caching has been setup, and microcode has
* been loaded. */
static asmlinkage void ap_init(unsigned int index)
{
/* Ensure the local APIC is enabled */
enable_lapic();
setup_lapic_interrupts();
struct device *dev;
int i = 0;
for (dev = g_cpu_bus->children; dev; dev = dev->sibling)
if (i++ == index)
break;
if (!dev) {
printk(BIOS_ERR, "Could not find allocated device for index %u\n", index);
return;
}
set_cpu_info(index, dev);
/* Fix up APIC id with reality. */
dev->path.apic.apic_id = lapicid();
dev->path.apic.initial_lapicid = initial_lapicid();
dev->enabled = 1;
set_cpu_topology_from_leaf_b(dev);
if (cpu_is_intel())
printk(BIOS_INFO, "AP: slot %u apic_id %x, MCU rev: 0x%08x\n", index,
dev->path.apic.apic_id, get_current_microcode_rev());
else
printk(BIOS_INFO, "AP: slot %u apic_id %x\n", index,
dev->path.apic.apic_id);
/* Walk the flight plan */
ap_do_flight_plan();
/* Park the AP. */
park_this_cpu(NULL);
}
static __aligned(16) uint8_t ap_stack[CONFIG_AP_STACK_SIZE * CONFIG_MAX_CPUS];
static void setup_default_sipi_vector_params(struct sipi_params *sp)
{
sp->gdt = (uintptr_t)&gdt;
sp->gdtlimit = (uintptr_t)&gdt_end - (uintptr_t)&gdt - 1;
sp->idt_ptr = (uintptr_t)&idtarg;
sp->per_cpu_segment_descriptors = (uintptr_t)&per_cpu_segment_descriptors;
sp->per_cpu_segment_selector = per_cpu_segment_selector;
sp->stack_size = CONFIG_AP_STACK_SIZE;
sp->stack_top = (uintptr_t)ap_stack + ARRAY_SIZE(ap_stack);
}
static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
MTRR_FIX_64K_00000, MTRR_FIX_16K_80000, MTRR_FIX_16K_A0000,
MTRR_FIX_4K_C0000, MTRR_FIX_4K_C8000, MTRR_FIX_4K_D0000,
MTRR_FIX_4K_D8000, MTRR_FIX_4K_E0000, MTRR_FIX_4K_E8000,
MTRR_FIX_4K_F0000, MTRR_FIX_4K_F8000,
};
static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
{
msr_t msr;
msr = rdmsr(index);
entry->index = index;
entry->lo = msr.lo;
entry->hi = msr.hi;
/* Return the next entry. */
entry++;
return entry;
}
static int save_bsp_msrs(char *start, int size)
{
int msr_count;
int num_var_mtrrs;
struct saved_msr *msr_entry;
int i;
/* Determine number of MTRRs need to be saved. */
num_var_mtrrs = get_var_mtrr_count();
/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE. */
msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
if ((msr_count * sizeof(struct saved_msr)) > size) {
printk(BIOS_CRIT, "Cannot mirror all %d msrs.\n", msr_count);
return -1;
}
fixed_mtrrs_expose_amd_rwdram();
msr_entry = (void *)start;
for (i = 0; i < NUM_FIXED_MTRRS; i++)
msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
for (i = 0; i < num_var_mtrrs; i++) {
msr_entry = save_msr(MTRR_PHYS_BASE(i), msr_entry);
msr_entry = save_msr(MTRR_PHYS_MASK(i), msr_entry);
}
msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
fixed_mtrrs_hide_amd_rwdram();
/* Tell static analysis we know value is left unused. */
(void)msr_entry;
return msr_count;
}
static atomic_t *load_sipi_vector(struct mp_params *mp_params)
{
struct rmodule sipi_mod;
int module_size;
int num_msrs;
struct sipi_params *sp;
char *mod_loc = (void *)sipi_vector_location;
const int loc_size = sipi_vector_location_size;
atomic_t *ap_count = NULL;
if (rmodule_parse(&_binary_sipi_vector_start, &sipi_mod)) {
printk(BIOS_CRIT, "Unable to parse sipi module.\n");
return ap_count;
}
if (rmodule_entry_offset(&sipi_mod) != 0) {
printk(BIOS_CRIT, "SIPI module entry offset is not 0!\n");
return ap_count;
}
if (rmodule_load_alignment(&sipi_mod) != 4096) {
printk(BIOS_CRIT, "SIPI module load alignment(%d) != 4096.\n",
rmodule_load_alignment(&sipi_mod));
return ap_count;
}
module_size = rmodule_memory_size(&sipi_mod);
/* Align to 4 bytes. */
module_size = ALIGN_UP(module_size, 4);
if (module_size > loc_size) {
printk(BIOS_CRIT, "SIPI module size (%d) > region size (%d).\n",
module_size, loc_size);
return ap_count;
}
num_msrs = save_bsp_msrs(&mod_loc[module_size], loc_size - module_size);
if (num_msrs < 0) {
printk(BIOS_CRIT, "Error mirroring BSP's msrs.\n");
return ap_count;
}
if (rmodule_load(mod_loc, &sipi_mod)) {
printk(BIOS_CRIT, "Unable to load SIPI module.\n");
return ap_count;
}
sp = rmodule_parameters(&sipi_mod);
if (sp == NULL) {
printk(BIOS_CRIT, "SIPI module has no parameters.\n");
return ap_count;
}
setup_default_sipi_vector_params(sp);
/* Setup MSR table. */
sp->msr_table_ptr = (uintptr_t)&mod_loc[module_size];
sp->msr_count = num_msrs;
/* Provide pointer to microcode patch. */
sp->microcode_ptr = (uintptr_t)mp_params->microcode_pointer;
/* Pass on ability to load microcode in parallel. */
if (mp_params->parallel_microcode_load)
sp->microcode_lock = ~0;
else
sp->microcode_lock = 0;
sp->c_handler = (uintptr_t)&ap_init;
sp->cr3 = read_cr3();
ap_count = &sp->ap_count;
atomic_set(ap_count, 0);
/* Make sure SIPI data hits RAM so the APs that come up will see the
startup code even if the caches are disabled. */
if (clflush_supported())
clflush_region((uintptr_t)mod_loc, module_size);
else
wbinvd();
return ap_count;
}
static int allocate_cpu_devices(struct bus *cpu_bus, struct mp_params *p)
{
int i;
int max_cpus;
struct cpu_info *info;
max_cpus = p->num_cpus;
if (max_cpus > CONFIG_MAX_CPUS) {
printk(BIOS_CRIT, "CPU count(%d) exceeds CONFIG_MAX_CPUS(%d)\n",
max_cpus, CONFIG_MAX_CPUS);
max_cpus = CONFIG_MAX_CPUS;
}
info = cpu_info();
for (i = 1; i < max_cpus; i++) {
/* Assuming linear APIC space allocation. AP will set its own
APIC id in the ap_init() path above. */
struct device *new = add_cpu_device(cpu_bus, info->cpu->path.apic.apic_id + i, 1);
if (new == NULL) {
printk(BIOS_CRIT, "Could not allocate CPU device\n");
max_cpus--;
continue;
}
new->name = processor_name;
new->enabled = 0; /* Runtime will enable it */
}
return max_cpus;
}
static enum cb_err apic_wait_timeout(int total_delay, int delay_step)
{
int total = 0;
while (lapic_busy()) {
udelay(delay_step);
total += delay_step;
if (total >= total_delay) {
/* LAPIC not ready before the timeout */
return CB_ERR;
}
}
/* LAPIC ready before the timeout */
return CB_SUCCESS;
}
/* Send Startup IPI to APs */
static enum cb_err send_sipi_to_aps(int ap_count, atomic_t *num_aps, int sipi_vector)
{
if (lapic_busy()) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...\n");
if (apic_wait_timeout(1000 /* 1 ms */, 50) != CB_SUCCESS) {
printk(BIOS_ERR, "timed out. Aborting.\n");
return CB_ERR;
}
printk(BIOS_DEBUG, "done.\n");
}
lapic_send_ipi_others(LAPIC_INT_ASSERT | LAPIC_DM_STARTUP | sipi_vector);
printk(BIOS_DEBUG, "Waiting for SIPI to complete...\n");
if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */) != CB_SUCCESS) {
printk(BIOS_ERR, "timed out.\n");
return CB_ERR;
}
printk(BIOS_DEBUG, "done.\n");
return CB_SUCCESS;
}
static enum cb_err start_aps(struct bus *cpu_bus, int ap_count, atomic_t *num_aps)
{
int sipi_vector, total_delay;
/* Max location is 4KiB below 1MiB */
const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
if (ap_count == 0)
return CB_SUCCESS;
/* The vector is sent as a 4k aligned address in one byte. */
sipi_vector = sipi_vector_location >> 12;
if (sipi_vector > max_vector_loc) {
printk(BIOS_CRIT, "SIPI vector too large! 0x%08x\n",
sipi_vector);
return CB_ERR;
}
printk(BIOS_DEBUG, "Attempting to start %d APs\n", ap_count);
if (lapic_busy()) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...\n");
if (apic_wait_timeout(1000 /* 1 ms */, 50) != CB_SUCCESS) {
printk(BIOS_ERR, "timed out. Aborting.\n");
return CB_ERR;
}
printk(BIOS_DEBUG, "done.\n");
}
/* Send INIT IPI to all but self. */
lapic_send_ipi_others(LAPIC_INT_ASSERT | LAPIC_DM_INIT);
if (!CONFIG(X86_INIT_NEED_1_SIPI)) {
printk(BIOS_DEBUG, "Waiting for 10ms after sending INIT.\n");
mdelay(10);
/* Send 1st Startup IPI (SIPI) */
if (send_sipi_to_aps(ap_count, num_aps, sipi_vector) != CB_SUCCESS)
return CB_ERR;
/* Wait for CPUs to check in. */
wait_for_aps(num_aps, ap_count, 200 /* us */, 15 /* us */);
}
/* Send final SIPI */
if (send_sipi_to_aps(ap_count, num_aps, sipi_vector) != CB_SUCCESS)
return CB_ERR;
/* Wait for CPUs to check in. */
total_delay = 50000 * ap_count; /* 50 ms per AP */
if (wait_for_aps(num_aps, ap_count, total_delay, 50 /* us */) != CB_SUCCESS) {
printk(BIOS_ERR, "Not all APs checked in: %d/%d.\n",
atomic_read(num_aps), ap_count);
return CB_ERR;
}
return CB_SUCCESS;
}
static enum cb_err bsp_do_flight_plan(struct mp_params *mp_params)
{
int i;
enum cb_err ret = CB_SUCCESS;
/*
* Set time out for flight plan to a huge minimum value (>=1 second).
* CPUs with many APs may take longer if there is contention for
* resources such as UART, so scale the time out up by increments of
* 100ms if needed.
*/
const int timeout_us = MAX(1000000, 100000 * mp_params->num_cpus);
const int step_us = 100;
int num_aps = mp_params->num_cpus - 1;
struct stopwatch sw;
stopwatch_init(&sw);
for (i = 0; i < mp_params->num_records; i++) {
struct mp_flight_record *rec = &mp_params->flight_plan[i];
/* Wait for APs if the record is not released. */
if (atomic_read(&rec->barrier) == 0) {
/* Wait for the APs to check in. */
if (wait_for_aps(&rec->cpus_entered, num_aps,
timeout_us, step_us) != CB_SUCCESS) {
printk(BIOS_ERR, "MP record %d timeout.\n", i);
ret = CB_ERR;
}
}
if (rec->bsp_call != NULL)
rec->bsp_call();
release_barrier(&rec->barrier);
}
printk(BIOS_INFO, "%s done after %lld msecs.\n", __func__,
stopwatch_duration_msecs(&sw));
return ret;
}
static enum cb_err init_bsp(struct bus *cpu_bus)
{
struct cpu_info *info;
/* Print processor name */
fill_processor_name(processor_name);
printk(BIOS_INFO, "CPU: %s.\n", processor_name);
/* Ensure the local APIC is enabled */
enable_lapic();
setup_lapic_interrupts();
struct device *bsp = add_cpu_device(cpu_bus, lapicid(), 1);
if (bsp == NULL) {
printk(BIOS_CRIT, "Failed to find or allocate BSP struct device\n");
return CB_ERR;
}
bsp->path.apic.initial_lapicid = initial_lapicid();
set_cpu_topology_from_leaf_b(bsp);
/* Find the device structure for the boot CPU. */
set_cpu_info(0, bsp);
info = cpu_info();
info->cpu = bsp;
info->cpu->name = processor_name;
if (info->index != 0) {
printk(BIOS_CRIT, "BSP index(%zd) != 0!\n", info->index);
return CB_ERR;
}
return CB_SUCCESS;
}
/*
* mp_init() will set up the SIPI vector and bring up the APs according to
* mp_params. Each flight record will be executed according to the plan. Note
* that the MP infrastructure uses SMM default area without saving it. It's
* up to the chipset or mainboard to either e820 reserve this area or save this
* region prior to calling mp_init() and restoring it after mp_init returns.
*
* At the time mp_init() is called the MTRR MSRs are mirrored into APs then
* caching is enabled before running the flight plan.
*
* The MP initialization has the following properties:
* 1. APs are brought up in parallel.
* 2. The ordering of coreboot CPU number and APIC ids is not deterministic.
* Therefore, one cannot rely on this property or the order of devices in
* the device tree unless the chipset or mainboard know the APIC ids
* a priori.
*/
static enum cb_err mp_init(struct bus *cpu_bus, struct mp_params *p)
{
int num_cpus;
atomic_t *ap_count;
g_cpu_bus = cpu_bus;
if (init_bsp(cpu_bus) != CB_SUCCESS) {
printk(BIOS_CRIT, "Setting up BSP failed\n");
return CB_ERR;
}
if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
printk(BIOS_CRIT, "Invalid MP parameters\n");
return CB_ERR;
}
/* We just need to run things on the BSP */
if (!CONFIG(SMP))
return bsp_do_flight_plan(p);
/* Default to currently running CPU. */
num_cpus = allocate_cpu_devices(cpu_bus, p);
if (num_cpus < p->num_cpus) {
printk(BIOS_CRIT,
"ERROR: More cpus requested (%d) than supported (%d).\n",
p->num_cpus, num_cpus);
return CB_ERR;
}
/* Copy needed parameters so that APs have a reference to the plan. */
mp_info.num_records = p->num_records;
mp_info.records = p->flight_plan;
/* Load the SIPI vector. */
ap_count = load_sipi_vector(p);
if (ap_count == NULL)
return CB_ERR;
/* Start the APs providing number of APs and the cpus_entered field. */
global_num_aps = p->num_cpus - 1;
if (start_aps(cpu_bus, global_num_aps, ap_count) != CB_SUCCESS) {
mdelay(1000);
printk(BIOS_DEBUG, "%d/%d eventually checked in?\n",
atomic_read(ap_count), global_num_aps);
return CB_ERR;
}
/* Walk the flight plan for the BSP. */
return bsp_do_flight_plan(p);
}
void smm_initiate_relocation_parallel(void)
{
if (lapic_busy()) {
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
if (apic_wait_timeout(1000 /* 1 ms */, 50) != CB_SUCCESS) {
printk(BIOS_DEBUG, "timed out. Aborting.\n");
return;
}
printk(BIOS_DEBUG, "done.\n");
}
lapic_send_ipi_self(LAPIC_INT_ASSERT | LAPIC_DM_SMI);
if (lapic_busy()) {
if (apic_wait_timeout(1000 /* 1 ms */, 100 /* us */) != CB_SUCCESS) {
printk(BIOS_DEBUG, "SMI Relocation timed out.\n");
return;
}
}
printk(BIOS_DEBUG, "Relocation complete.\n");
}
DECLARE_SPIN_LOCK(smm_relocation_lock);
/* Send SMI to self with single user serialization. */
void smm_initiate_relocation(void)
{
spin_lock(&smm_relocation_lock);
smm_initiate_relocation_parallel();
spin_unlock(&smm_relocation_lock);
}
struct mp_state {
struct mp_ops ops;
int cpu_count;
uintptr_t perm_smbase;
size_t perm_smsize;
size_t smm_save_state_size;
bool do_smm;
} mp_state;
static bool is_smm_enabled(void)
{
return CONFIG(HAVE_SMI_HANDLER) && mp_state.do_smm;
}
static void smm_disable(void)
{
mp_state.do_smm = false;
}
static void smm_enable(void)
{
if (CONFIG(HAVE_SMI_HANDLER))
mp_state.do_smm = true;
}
/*
* This code is built as part of ramstage, but it actually runs in SMM. This
* means that ENV_SMM is 0, but we are actually executing in the environment
* setup by the smm_stub.
*/
static asmlinkage void smm_do_relocation(void *arg)
{
const struct smm_module_params *p;
int cpu;
const uintptr_t curr_smbase = SMM_DEFAULT_BASE;
uintptr_t perm_smbase;
p = arg;
cpu = p->cpu;
if (cpu >= CONFIG_MAX_CPUS) {
printk(BIOS_CRIT,
"Invalid CPU number assigned in SMM stub: %d\n", cpu);
return;
}
/*
* The permanent handler runs with all cpus concurrently. Precalculate
* the location of the new SMBASE. If using SMM modules then this
* calculation needs to match that of the module loader.
*/
perm_smbase = smm_get_cpu_smbase(cpu);
if (!perm_smbase) {
printk(BIOS_ERR, "%s: bad SMBASE for CPU %d\n", __func__, cpu);
return;
}
/* Setup code checks this callback for validity. */
printk(BIOS_INFO, "%s : curr_smbase 0x%x perm_smbase 0x%x, cpu = %d\n",
__func__, (int)curr_smbase, (int)perm_smbase, cpu);
mp_state.ops.relocation_handler(cpu, curr_smbase, perm_smbase);
if (CONFIG(STM)) {
uintptr_t mseg;
mseg = mp_state.perm_smbase +
(mp_state.perm_smsize - CONFIG_MSEG_SIZE);
stm_setup(mseg, p->cpu,
perm_smbase,
mp_state.perm_smbase,
SMM_START32_OFFSET);
}
}
static enum cb_err install_relocation_handler(int num_cpus, size_t save_state_size)
{
if (CONFIG(X86_SMM_SKIP_RELOCATION_HANDLER))
return CB_SUCCESS;
struct smm_loader_params smm_params = {
.num_cpus = num_cpus,
.cpu_save_state_size = save_state_size,
.num_concurrent_save_states = 1,
.handler = smm_do_relocation,
.cr3 = read_cr3(),
};
if (smm_setup_relocation_handler(&smm_params)) {
printk(BIOS_ERR, "%s: smm setup failed\n", __func__);
return CB_ERR;
}
return CB_SUCCESS;
}
static enum cb_err install_permanent_handler(int num_cpus, uintptr_t smbase,
size_t smsize, size_t save_state_size)
{
/*
* All the CPUs will relocate to permanent handler now. Set parameters
* needed for all CPUs. The placement of each CPUs entry point is
* determined by the loader. This code simply provides the beginning of
* SMRAM region, the number of CPUs who will use the handler, the stack
* size and save state size for each CPU.
*/
struct smm_loader_params smm_params = {
.num_cpus = num_cpus,
.cpu_save_state_size = save_state_size,
.num_concurrent_save_states = num_cpus,
.cr3 = read_cr3(),
};
printk(BIOS_DEBUG, "Installing permanent SMM handler to 0x%08lx\n", smbase);
if (smm_load_module(smbase, smsize, &smm_params))
return CB_ERR;
return CB_SUCCESS;
}
/* Load SMM handlers as part of MP flight record. */
static void load_smm_handlers(void)
{
const size_t save_state_size = mp_state.smm_save_state_size;
/* Do nothing if SMM is disabled.*/
if (!is_smm_enabled())
return;
if (smm_setup_stack(mp_state.perm_smbase, mp_state.perm_smsize, mp_state.cpu_count,
CONFIG_SMM_MODULE_STACK_SIZE)) {
printk(BIOS_ERR, "Unable to install SMM relocation handler.\n");
smm_disable();
}
/* Install handlers. */
if (install_relocation_handler(mp_state.cpu_count, save_state_size) != CB_SUCCESS) {
printk(BIOS_ERR, "Unable to install SMM relocation handler.\n");
smm_disable();
}
if (install_permanent_handler(mp_state.cpu_count, mp_state.perm_smbase,
mp_state.perm_smsize, save_state_size) != CB_SUCCESS) {
printk(BIOS_ERR, "Unable to install SMM permanent handler.\n");
smm_disable();
}
/* Ensure the SMM handlers hit DRAM before performing first SMI. */
wbinvd();
/*
* Indicate that the SMM handlers have been loaded and MP
* initialization is about to start.
*/
if (is_smm_enabled() && mp_state.ops.pre_mp_smm_init != NULL)
mp_state.ops.pre_mp_smm_init();
}
/* Trigger SMM as part of MP flight record. */
static void trigger_smm_relocation(void)
{
/* Do nothing if SMM is disabled.*/
if (!is_smm_enabled() || mp_state.ops.per_cpu_smm_trigger == NULL)
return;
/* Trigger SMM mode for the currently running processor. */
mp_state.ops.per_cpu_smm_trigger();
}
static struct mp_callback *ap_callbacks[CONFIG_MAX_CPUS];
enum AP_STATUS {
/* AP takes the task but not yet finishes */
AP_BUSY = 1,
/* AP finishes the task or no task to run yet */
AP_NOT_BUSY
};
static atomic_t ap_status[CONFIG_MAX_CPUS];
static struct mp_callback *read_callback(struct mp_callback **slot)
{
struct mp_callback *ret;
asm volatile ("mov %1, %0\n"
: "=r" (ret)
: "m" (*slot)
: "memory"
);
return ret;
}
static void store_callback(struct mp_callback **slot, struct mp_callback *val)
{
asm volatile ("mov %1, %0\n"
: "=m" (*slot)
: "r" (val)
: "memory"
);
}
static enum cb_err run_ap_work(struct mp_callback *val, long expire_us, bool wait_ap_finish)
{
int i;
int cpus_accepted, cpus_finish;
struct stopwatch sw;
int cur_cpu;
if (!CONFIG(PARALLEL_MP_AP_WORK)) {
printk(BIOS_ERR, "APs already parked. PARALLEL_MP_AP_WORK not selected.\n");
return CB_ERR;
}
cur_cpu = cpu_index();
if (cur_cpu < 0) {
printk(BIOS_ERR, "Invalid CPU index.\n");
return CB_ERR;
}
/* Signal to all the APs to run the func. */
for (i = 0; i < ARRAY_SIZE(ap_callbacks); i++) {
if (cur_cpu == i)
continue;
store_callback(&ap_callbacks[i], val);
}
mfence();
/* Wait for all the APs to signal back that call has been accepted. */
if (expire_us > 0)
stopwatch_init_usecs_expire(&sw, expire_us);
do {
cpus_accepted = 0;
cpus_finish = 0;
for (i = 0; i < ARRAY_SIZE(ap_callbacks); i++) {
if (cur_cpu == i)
continue;
if (read_callback(&ap_callbacks[i]) == NULL) {
cpus_accepted++;
/* Only increase cpus_finish if AP took the task and not busy */
if (atomic_read(&ap_status[i]) == AP_NOT_BUSY)
cpus_finish++;
}
}
/*
* if wait_ap_finish is true, need to make sure all CPUs finish task and return
* else just need to make sure all CPUs take task
*/
if (cpus_accepted == global_num_aps)
if (!wait_ap_finish || (cpus_finish == global_num_aps))
return CB_SUCCESS;
} while (expire_us <= 0 || !stopwatch_expired(&sw));
printk(BIOS_CRIT, "CRITICAL ERROR: AP call expired. %d/%d CPUs accepted.\n",
cpus_accepted, global_num_aps);
return CB_ERR;
}
static void ap_wait_for_instruction(void)
{
struct mp_callback lcb;
struct mp_callback **per_cpu_slot;
int cur_cpu;
if (!CONFIG(PARALLEL_MP_AP_WORK))
return;
cur_cpu = cpu_index();
if (cur_cpu < 0) {
printk(BIOS_ERR, "Invalid CPU index.\n");
return;
}
per_cpu_slot = &ap_callbacks[cur_cpu];
/* Init ap_status[cur_cpu] to AP_NOT_BUSY and ready to take job */
atomic_set(&ap_status[cur_cpu], AP_NOT_BUSY);
while (1) {
struct mp_callback *cb = read_callback(per_cpu_slot);
if (cb == NULL) {
asm ("pause");
continue;
}
/*
* Set ap_status to AP_BUSY before store_callback(per_cpu_slot, NULL).
* it's to let BSP know APs take tasks and busy to avoid race condition.
*/
atomic_set(&ap_status[cur_cpu], AP_BUSY);
/* Copy to local variable before signaling consumption. */
memcpy(&lcb, cb, sizeof(lcb));
mfence();
store_callback(per_cpu_slot, NULL);
if (lcb.logical_cpu_number == MP_RUN_ON_ALL_CPUS ||
(cur_cpu == lcb.logical_cpu_number))
lcb.func(lcb.arg);
atomic_set(&ap_status[cur_cpu], AP_NOT_BUSY);
}
}
enum cb_err mp_run_on_aps(void (*func)(void *), void *arg, int logical_cpu_num,
long expire_us)
{
struct mp_callback lcb = { .func = func, .arg = arg,
.logical_cpu_number = logical_cpu_num};
return run_ap_work(&lcb, expire_us, false);
}
static enum cb_err mp_run_on_aps_and_wait_for_complete(void (*func)(void *), void *arg,
int logical_cpu_num, long expire_us)
{
struct mp_callback lcb = { .func = func, .arg = arg,
.logical_cpu_number = logical_cpu_num};
return run_ap_work(&lcb, expire_us, true);
}
enum cb_err mp_run_on_all_aps(void (*func)(void *), void *arg, long expire_us,
bool run_parallel)
{
int ap_index, bsp_index;
if (run_parallel)
return mp_run_on_aps(func, arg, MP_RUN_ON_ALL_CPUS, expire_us);
bsp_index = cpu_index();
const int total_threads = global_num_aps + 1; /* +1 for BSP */
for (ap_index = 0; ap_index < total_threads; ap_index++) {
/* skip if BSP */
if (ap_index == bsp_index)
continue;
if (mp_run_on_aps(func, arg, ap_index, expire_us) != CB_SUCCESS)
return CB_ERR;
}
return CB_SUCCESS;
}
enum cb_err mp_run_on_all_cpus(void (*func)(void *), void *arg)
{
/* Run on BSP first. */
func(arg);
/* For up to 1 second for AP to finish previous work. */
return mp_run_on_aps(func, arg, MP_RUN_ON_ALL_CPUS, 1000 * USECS_PER_MSEC);
}
enum cb_err mp_run_on_all_cpus_synchronously(void (*func)(void *), void *arg)
{
/* Run on BSP first. */
func(arg);
/* For up to 1 second per AP (console can be slow) to finish previous work. */
return mp_run_on_aps_and_wait_for_complete(func, arg, MP_RUN_ON_ALL_CPUS,
1000 * USECS_PER_MSEC * global_num_aps);
}
enum cb_err mp_park_aps(void)
{
struct stopwatch sw;
enum cb_err ret;
long duration_msecs;
stopwatch_init(&sw);
ret = mp_run_on_aps(park_this_cpu, NULL, MP_RUN_ON_ALL_CPUS,
1000 * USECS_PER_MSEC);
duration_msecs = stopwatch_duration_msecs(&sw);
if (ret == CB_SUCCESS)
printk(BIOS_DEBUG, "%s done after %ld msecs.\n", __func__,
duration_msecs);
else
printk(BIOS_ERR, "%s failed after %ld msecs.\n", __func__,
duration_msecs);
return ret;
}
static struct mp_flight_record mp_steps[] = {
/* Once the APs are up load the SMM handlers. */
MP_FR_BLOCK_APS(NULL, load_smm_handlers),
/* Perform SMM relocation. */
MP_FR_NOBLOCK_APS(trigger_smm_relocation, trigger_smm_relocation),
/* Initialize each CPU through the driver framework. */
MP_FR_BLOCK_APS(cpu_initialize, cpu_initialize),
/* Wait for APs to finish then optionally start looking for work. */
MP_FR_BLOCK_APS(ap_wait_for_instruction, NULL),
};
static void fill_mp_state_smm(struct mp_state *state, const struct mp_ops *ops)
{
if (ops->get_smm_info != NULL)
ops->get_smm_info(&state->perm_smbase, &state->perm_smsize,
&state->smm_save_state_size);
/*
* Make sure there is enough room for the SMM descriptor
*/
state->smm_save_state_size += STM_PSD_SIZE;
/*
* Default to smm_initiate_relocation() if trigger callback isn't
* provided.
*/
if (ops->per_cpu_smm_trigger == NULL)
mp_state.ops.per_cpu_smm_trigger = smm_initiate_relocation;
}
static void fill_mp_state(struct mp_state *state, const struct mp_ops *ops)
{
/*
* Make copy of the ops so that defaults can be set in the non-const
* structure if needed.
*/
memcpy(&state->ops, ops, sizeof(*ops));
if (ops->get_cpu_count != NULL)
state->cpu_count = ops->get_cpu_count();
if (CONFIG(HAVE_SMI_HANDLER))
fill_mp_state_smm(state, ops);
}
static enum cb_err do_mp_init_with_smm(struct bus *cpu_bus, const struct mp_ops *mp_ops)
{
enum cb_err ret;
void *default_smm_area;
struct mp_params mp_params;
if (mp_ops->pre_mp_init != NULL)
mp_ops->pre_mp_init();
fill_mp_state(&mp_state, mp_ops);
memset(&mp_params, 0, sizeof(mp_params));
if (mp_state.cpu_count <= 0) {
printk(BIOS_ERR, "Invalid cpu_count: %d\n", mp_state.cpu_count);
return CB_ERR;
}
/* Sanity check SMM state. */
smm_enable();
if (mp_state.perm_smsize == 0)
smm_disable();
if (mp_state.smm_save_state_size == 0)
smm_disable();
if (!CONFIG(X86_SMM_SKIP_RELOCATION_HANDLER) && mp_state.ops.relocation_handler == NULL)
smm_disable();
if (is_smm_enabled())
printk(BIOS_INFO, "Will perform SMM setup.\n");
mp_params.num_cpus = mp_state.cpu_count;
/* Gather microcode information. */
if (mp_state.ops.get_microcode_info != NULL)
mp_state.ops.get_microcode_info(&mp_params.microcode_pointer,
&mp_params.parallel_microcode_load);
mp_params.flight_plan = &mp_steps[0];
mp_params.num_records = ARRAY_SIZE(mp_steps);
/* Perform backup of default SMM area when using SMM relocation handler. */
if (!CONFIG(X86_SMM_SKIP_RELOCATION_HANDLER))
default_smm_area = backup_default_smm_area();
ret = mp_init(cpu_bus, &mp_params);
if (!CONFIG(X86_SMM_SKIP_RELOCATION_HANDLER))
restore_default_smm_area(default_smm_area);
/* Signal callback on success if it's provided. */
if (ret == CB_SUCCESS && mp_state.ops.post_mp_init != NULL)
mp_state.ops.post_mp_init();
return ret;
}
enum cb_err mp_init_with_smm(struct bus *cpu_bus, const struct mp_ops *mp_ops)
{
enum cb_err ret = do_mp_init_with_smm(cpu_bus, mp_ops);
if (ret != CB_SUCCESS)
printk(BIOS_ERR, "MP initialization failure.\n");
return ret;
}
|