1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2009 coresystems GmbH
* 2012 secunet Security Networks AG
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <types.h>
#include <console/console.h>
#include <arch/acpi.h>
#include <arch/acpigen.h>
#include <arch/cpu.h>
#include <cpu/x86/msr.h>
#include <cpu/intel/speedstep.h>
#include <device/device.h>
static int determine_total_number_of_cores(void)
{
struct device *cpu;
int count = 0;
for (cpu = all_devices; cpu; cpu = cpu->next) {
if ((cpu->path.type != DEVICE_PATH_APIC) ||
(cpu->bus->dev->path.type != DEVICE_PATH_CPU_CLUSTER)) {
continue;
}
if (!cpu->enabled)
continue;
count++;
}
return count;
}
/**
* @brief Returns three times the FSB clock in MHz
*
* The result of calculations with the returned value shall be divided by 3.
* This helps to avoid rounding errors.
*/
static int get_fsb(void)
{
const u32 fsbcode = rdmsr(MSR_FSB_FREQ).lo & 7;
switch (fsbcode) {
case 0: return 800; /* / 3 == 266 */
case 1: return 400; /* / 3 == 133 */
case 2: return 600; /* / 3 == 200 */
case 3: return 500; /* / 3 == 166 */
case 4: return 1000; /* / 3 == 333 */
case 5: return 300; /* / 3 == 100 */
case 6: return 1200; /* / 3 == 400 */
}
printk(BIOS_WARNING,
"Warning: No supported FSB frequency. Assuming 200MHz\n");
return 600;
}
static void gen_pstate_entries(const sst_table_t *const pstates,
const int cpuID, const int cores_per_package,
const uint8_t coordination)
{
int i;
int frequency;
acpigen_write_empty_PCT();
acpigen_write_PSD_package(
cpuID, cores_per_package, coordination);
acpigen_write_name("_PSS");
const int fsb3 = get_fsb();
const int min_ratio2 = SPEEDSTEP_DOUBLE_RATIO(
pstates->states[pstates->num_states - 1]);
const int max_ratio2 = SPEEDSTEP_DOUBLE_RATIO(pstates->states[0]);
printk(BIOS_DEBUG, "clocks between %d and %d MHz.\n",
(min_ratio2 * fsb3)
/ (pstates->states[pstates->num_states - 1].is_slfm ? 12 : 6),
(max_ratio2 * fsb3) / 6);
printk(BIOS_DEBUG,
"adding %x P-States between busratio %x and %x, incl. P0\n",
pstates->num_states, min_ratio2 / 2, max_ratio2 / 2);
acpigen_write_package(pstates->num_states);
for (i = 0; i < pstates->num_states; ++i) {
const sst_state_t *const pstate = &pstates->states[i];
/* Report frequency of turbo mode as that of HFM + 1. */
if (pstate->is_turbo)
frequency = (SPEEDSTEP_DOUBLE_RATIO(
pstates->states[i + 1]) * fsb3) / 6 + 1;
/* Super-LFM runs at half frequency. */
else if (pstate->is_slfm)
frequency = (SPEEDSTEP_DOUBLE_RATIO(*pstate)*fsb3)/12;
else
frequency = (SPEEDSTEP_DOUBLE_RATIO(*pstate)*fsb3)/6;
acpigen_write_PSS_package(
frequency, pstate->power, 0, 0,
SPEEDSTEP_ENCODE_STATE(*pstate),
SPEEDSTEP_ENCODE_STATE(*pstate));
}
acpigen_pop_len();
acpigen_write_PPC(0);
}
/**
* @brief Generate ACPI entries for Speedstep for each cpu
*/
void generate_cpu_entries(device_t device)
{
int coreID, cpuID, pcontrol_blk = PMB0_BASE, plen = 6;
int totalcores = determine_total_number_of_cores();
int cores_per_package = (cpuid_ebx(1)>>16) & 0xff;
int numcpus = totalcores/cores_per_package; /* This assumes that all
CPUs share the same
layout. */
int num_cstates;
acpi_cstate_t *cstates;
sst_table_t pstates;
uint8_t coordination;
printk(BIOS_DEBUG, "Found %d CPU(s) with %d core(s) each.\n",
numcpus, cores_per_package);
num_cstates = get_cst_entries(&cstates);
speedstep_gen_pstates(&pstates);
if (((cpuid_eax(1) >> 4) & 0xffff) == 0x1067)
/* For Penryn use HW_ALL. */
coordination = HW_ALL;
else
/* Use SW_ANY as that was the default. */
coordination = SW_ANY;
for (cpuID = 0; cpuID < numcpus; ++cpuID) {
for (coreID = 1; coreID <= cores_per_package; coreID++) {
if (coreID > 1) {
pcontrol_blk = 0;
plen = 0;
}
/* Generate processor \_PR.CPUx. */
acpigen_write_processor(
cpuID * cores_per_package + coreID - 1,
pcontrol_blk, plen);
/* Generate p-state entries. */
gen_pstate_entries(&pstates, cpuID,
cores_per_package, coordination);
/* Generate c-state entries. */
if (num_cstates > 0)
acpigen_write_CST_package(
cstates, num_cstates);
acpigen_pop_len();
}
}
/* PPKG is usually used for thermal management
of the first and only package. */
acpigen_write_processor_package("PPKG", 0, cores_per_package);
}
|