1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2012 Henrik Nordstrom <henrik@henriknordstrom.net>
* Copyright (C) 2013 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Setup helpers for Two Wire Interface (TWI) (I2C) Allwinner CPUs
*
* Only functionality for I2C master is provided.
* Largely based on the uboot-sunxi code.
*/
#include "memmap.h"
#include "twi.h"
#include <device/mmio.h>
#include <delay.h>
#include <device/i2c_simple.h>
#define TWI_BASE(n) (A1X_TWI0_BASE + 0x400 * (n))
#define TWI_TIMEOUT (50 * 1000)
static u8 is_busy(struct a1x_twi *twi)
{
return (read32(&twi->stat) != TWI_STAT_IDLE);
}
static enum cb_err wait_until_idle(struct a1x_twi *twi)
{
u32 i = TWI_TIMEOUT;
while (i-- && is_busy((twi)))
udelay(1);
return i ? CB_SUCCESS : CB_ERR;
}
/* FIXME: This function is basic, and unintelligent */
static void configure_clock(struct a1x_twi *twi, u32 speed_hz)
{
/* FIXME: We assume clock is 24MHz, which may not be the case */
u32 apb_clk = 24000000, m, n;
/* Pre-divide the clock by 8 */
n = 3;
m = (apb_clk >> n) / speed_hz;
write32(&twi->clk, TWI_CLK_M(m) | TWI_CLK_N(n));
}
void a1x_twi_init(u8 bus, u32 speed_hz)
{
u32 i = TWI_TIMEOUT;
struct a1x_twi *twi = (void *)TWI_BASE(bus);
configure_clock(twi, speed_hz);
/* Enable the I2C bus */
write32(&twi->ctl, TWI_CTL_BUS_EN);
/* Issue soft reset */
write32(&twi->reset, 1);
while (i-- && read32(&twi->reset))
udelay(1);
}
static void clear_interrupt_flag(struct a1x_twi *twi)
{
write32(&twi->ctl, read32(&twi->ctl) & ~TWI_CTL_INT_FLAG);
}
static void i2c_send_data(struct a1x_twi *twi, u8 data)
{
write32(&twi->data, data);
clear_interrupt_flag(twi);
}
static enum twi_status wait_for_status(struct a1x_twi *twi)
{
u32 i = TWI_TIMEOUT;
/* Wait until interrupt is asserted again */
while (i-- && !(read32(&twi->ctl) & TWI_CTL_INT_FLAG))
udelay(1);
/* A timeout here most likely indicates a bus error */
return i ? read32(&twi->stat) : TWI_STAT_BUS_ERROR;
}
static void i2c_send_start(struct a1x_twi *twi)
{
u32 reg32, i;
/* Send START condition */
reg32 = read32(&twi->ctl);
reg32 &= ~TWI_CTL_INT_FLAG;
reg32 |= TWI_CTL_M_START;
write32(&twi->ctl, reg32);
/* M_START is automatically cleared after condition is transmitted */
i = TWI_TIMEOUT;
while (i-- && (read32(&twi->ctl) & TWI_CTL_M_START))
udelay(1);
}
static void i2c_send_stop(struct a1x_twi *twi)
{
u32 reg32;
/* Send STOP condition */
reg32 = read32(&twi->ctl);
reg32 &= ~TWI_CTL_INT_FLAG;
reg32 |= TWI_CTL_M_STOP;
write32(&twi->ctl, reg32);
}
static int i2c_read(struct a1x_twi *twi, uint8_t chip,
uint8_t *buf, size_t len)
{
unsigned count = len;
enum twi_status expected_status;
/* Send restart for read */
i2c_send_start(twi);
if (wait_for_status(twi) != TWI_STAT_TX_RSTART)
return CB_ERR;
/* Send chip address */
i2c_send_data(twi, chip << 1 | 1);
if (wait_for_status(twi) != TWI_STAT_TX_AR_ACK)
return CB_ERR;
/* Start ACK-ing received data */
setbits_le32(&twi->ctl, TWI_CTL_A_ACK);
expected_status = TWI_STAT_RXD_ACK;
/* Read data */
while (count > 0) {
if (count == 1) {
/* Do not ACK the last byte */
clrbits_le32(&twi->ctl, TWI_CTL_A_ACK);
expected_status = TWI_STAT_RXD_NAK;
}
clear_interrupt_flag(twi);
if (wait_for_status(twi) != expected_status)
return CB_ERR;
*buf++ = read32(&twi->data);
count--;
}
return len;
}
static int i2c_write(struct a1x_twi *twi, uint8_t chip,
const uint8_t *buf, size_t len)
{
size_t count = len;
i2c_send_start(twi);
if (wait_for_status(twi) != TWI_STAT_TX_START)
return CB_ERR;
/* Send chip address */
i2c_send_data(twi, chip << 1);
if (wait_for_status(twi) != TWI_STAT_TX_AW_ACK)
return CB_ERR;
/* Send data */
while (count > 0) {
i2c_send_data(twi, *buf++);
if (wait_for_status(twi) != TWI_STAT_TXD_ACK)
return CB_ERR;
count--;
}
return len;
}
int platform_i2c_transfer(unsigned bus, struct i2c_msg *segments, int count)
{
int i, ret = CB_SUCCESS;
struct i2c_msg *seg = segments;
struct a1x_twi *twi = (void *)TWI_BASE(bus);
if (wait_until_idle(twi) != CB_SUCCESS)
return CB_ERR;
for (i = 0; i < count; i++) {
seg = segments + i;
if (seg->flags & I2C_M_RD) {
ret = i2c_read(twi, seg->slave, seg->buf, seg->len);
if (ret < 0)
break;
} else {
ret = i2c_write(twi, seg->slave, seg->buf, seg->len);
if (ret < 0)
break;
}
}
/* Don't worry about the status. STOP is on a best-effort basis */
i2c_send_stop(twi);
return ret;
}
|