1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
/*
* Allwinner A10 DRAM controller initialization
*
* Based on sun4i Linux kernel sources mach-sunxi/pm/standby/dram*.c
* and earlier U-Boot Allwiner A10 SPL work
*
* Copyright (C) 2012 Henrik Nordstrom <henrik@henriknordstrom.net>
* Copyright (C) 2013 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
* Copyright (C) 2007-2012 Allwinner Technology Co., Ltd.
* Berg Xing <bergxing@allwinnertech.com>
* Tom Cubie <tangliang@allwinnertech.com>
* Copyright (C) 2013 Alexandru Gagniuc <mr.nuke.me@gmail.com>
* Subject to the GNU GPL v2, or (at your option) any later version.
*/
#include "clock.h"
#include "dramc.h"
#include "memmap.h"
#include "timer.h"
#include <arch/io.h>
#include <console/console.h>
#include <delay.h>
static struct a1x_dramc *const dram = (void *)A1X_DRAMC_BASE;
static void mctl_ddr3_reset(void)
{
if (a1x_get_cpu_chip_revision() != A1X_CHIP_REV_A) {
setbits_le32(&dram->mcr, DRAM_MCR_RESET);
udelay(2);
clrbits_le32(&dram->mcr, DRAM_MCR_RESET);
} else {
clrbits_le32(&dram->mcr, DRAM_MCR_RESET);
udelay(2);
setbits_le32(&dram->mcr, DRAM_MCR_RESET);
}
}
static void mctl_set_drive(void)
{
clrsetbits_le32(&dram->mcr, DRAM_MCR_MODE_NORM(0x3),
DRAM_MCR_MODE_EN(0x3) | 0xffc);
}
static void mctl_itm_disable(void)
{
clrsetbits_le32(&dram->ccr, DRAM_CCR_INIT, DRAM_CCR_ITM_OFF);
}
static void mctl_itm_enable(void)
{
clrbits_le32(&dram->ccr, DRAM_CCR_ITM_OFF);
}
static void mctl_enable_dll0(u32 phase)
{
clrsetbits_le32(&dram->dllcr[0], 0x3f << 6,
((phase >> 16) & 0x3f) << 6);
clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET, DRAM_DLLCR_DISABLE);
udelay(2);
clrbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET | DRAM_DLLCR_DISABLE);
udelay(22);
clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_DISABLE, DRAM_DLLCR_NRESET);
udelay(22);
}
/*
* Note: This differs from pm/standby in that it checks the bus width
*/
static void mctl_enable_dllx(u32 phase)
{
u32 i, n, bus_width;
bus_width = read32(&dram->dcr);
if ((bus_width & DRAM_DCR_BUS_WIDTH_MASK) ==
DRAM_DCR_BUS_WIDTH(DRAM_DCR_BUS_WIDTH_32BIT))
n = DRAM_DCR_NR_DLLCR_32BIT;
else
n = DRAM_DCR_NR_DLLCR_16BIT;
for (i = 1; i < n; i++) {
clrsetbits_le32(&dram->dllcr[i], 0x4 << 14,
(phase & 0xf) << 14);
clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET,
DRAM_DLLCR_DISABLE);
phase >>= 4;
}
udelay(2);
for (i = 1; i < n; i++)
clrbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET |
DRAM_DLLCR_DISABLE);
udelay(22);
for (i = 1; i < n; i++)
clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_DISABLE,
DRAM_DLLCR_NRESET);
udelay(22);
}
static u32 hpcr_value[32] = {
0x0301, 0x0301, 0x0301, 0x0301,
0x0301, 0x0301, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0x1031, 0x1031, 0x0735, 0x1035,
0x1035, 0x0731, 0x1031, 0x0735,
0x1035, 0x1031, 0x0731, 0x1035,
0x1031, 0x0301, 0x0301, 0x0731
};
static void mctl_configure_hostport(void)
{
u32 i;
for (i = 0; i < 32; i++)
writel(hpcr_value[i], &dram->hpcr[i]);
}
static void mctl_setup_dram_clock(u32 clk)
{
/* setup DRAM PLL */
a1x_pll5_configure(clk / 24, 2, 2, 1);
/* FIXME: This bit is not documented for A10, and altering it doesn't
* seem to change anything.
*
* #define CCM_PLL5_CTRL_VCO_GAIN (0x1 << 19)
* reg_val = read32(&ccm->pll5_cfg);
* reg_val &= ~CCM_PLL5_CTRL_VCO_GAIN; // PLL VCO Gain off
* write32(reg_val, &ccm->pll5_cfg);
*/
udelay(5500);
a1x_pll5_enable_dram_clock_output();
/* reset GPS */
/* FIXME: These bits are also undocumented, and seem to have no effect
* on A10.
*
* #define CCM_GPS_CTRL_RESET (0x1 << 0)
* #define CCM_GPS_CTRL_GATE (0x1 << 1)
* clrbits_le32(&ccm->gps_clk_cfg, CCM_GPS_CTRL_RESET | CCM_GPS_CTRL_GATE);
*/
a1x_periph_clock_enable(A1X_CLKEN_GPS);
udelay(1);
a1x_periph_clock_disable(A1X_CLKEN_GPS);
/* setup MBUS clock */
/* FIXME: The MBUS does not seem to be present or do anything on A10. It
* is documented in the A13 user manual, but changing settings on A10
* has no effect.
*
* #define CCM_MBUS_CTRL_M(n) (((n) & 0xf) << 0)
* #define CCM_MBUS_CTRL_M_MASK CCM_MBUS_CTRL_M(0xf)
* #define CCM_MBUS_CTRL_M_X(n) ((n) - 1)
* #define CCM_MBUS_CTRL_N(n) (((n) & 0xf) << 16)
* #define CCM_MBUS_CTRL_N_MASK CCM_MBUS_CTRL_N(0xf)
* #define CCM_MBUS_CTRL_N_X(n) (((n) >> 3) ? 3 : (((n) >> 2) ? 2 : (((n) >> 1) ? 1 : 0)))
* #define CCM_MBUS_CTRL_CLK_SRC(n) (((n) & 0x3) << 24)
* #define CCM_MBUS_CTRL_CLK_SRC_MASK CCM_MBUS_CTRL_CLK_SRC(0x3)
* #define CCM_MBUS_CTRL_CLK_SRC_HOSC 0x0
* #define CCM_MBUS_CTRL_CLK_SRC_PLL6 0x1
* #define CCM_MBUS_CTRL_CLK_SRC_PLL5 0x2
* #define CCM_MBUS_CTRL_GATE (0x1 << 31)
* reg_val = CCM_MBUS_CTRL_GATE |
* CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL5) |
* CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) |
* CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(2));
* write32(reg_val, &ccm->mbus_clk_cfg);
*/
/*
* open DRAMC AHB & DLL register clock
* close it first
*/
a1x_periph_clock_disable(A1X_CLKEN_SDRAM);
udelay(22);
/* then open it */
a1x_periph_clock_enable(A1X_CLKEN_SDRAM);
udelay(22);
}
static int dramc_scan_readpipe(void)
{
u32 reg32;
/* data training trigger */
setbits_le32(&dram->ccr, DRAM_CCR_DATA_TRAINING);
/* check whether data training process has completed */
while (read32(&dram->ccr) & DRAM_CCR_DATA_TRAINING) ;
/* check data training result */
reg32 = read32(&dram->csr);
if (reg32 & DRAM_CSR_FAILED)
return -1;
return 0;
}
static int dramc_scan_dll_para(void)
{
const u32 dqs_dly[7] = { 0x3, 0x2, 0x1, 0x0, 0xe, 0xd, 0xc };
const u32 clk_dly[15] = { 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x00, 0x08, 0x10,
0x18, 0x20, 0x28, 0x30, 0x38
};
u32 clk_dqs_count[15];
u32 dqs_i, clk_i, cr_i;
u32 max_val, min_val;
u32 dqs_index, clk_index;
/* Find DQS_DLY Pass Count for every CLK_DLY */
for (clk_i = 0; clk_i < 15; clk_i++) {
clk_dqs_count[clk_i] = 0;
clrsetbits_le32(&dram->dllcr[0], 0x3f << 6,
(clk_dly[clk_i] & 0x3f) << 6);
for (dqs_i = 0; dqs_i < 7; dqs_i++) {
for (cr_i = 1; cr_i < 5; cr_i++) {
clrsetbits_le32(&dram->dllcr[cr_i],
0x4f << 14,
(dqs_dly[dqs_i] & 0x4f) << 14);
}
udelay(2);
if (dramc_scan_readpipe() == 0)
clk_dqs_count[clk_i]++;
}
}
/* Test DQS_DLY Pass Count for every CLK_DLY from up to down */
for (dqs_i = 15; dqs_i > 0; dqs_i--) {
max_val = 15;
min_val = 15;
for (clk_i = 0; clk_i < 15; clk_i++) {
if (clk_dqs_count[clk_i] == dqs_i) {
max_val = clk_i;
if (min_val == 15)
min_val = clk_i;
}
}
if (max_val < 15)
break;
}
/* Check if Find a CLK_DLY failed */
if (!dqs_i)
goto fail;
/* Find the middle index of CLK_DLY */
clk_index = (max_val + min_val) >> 1;
if ((max_val == (15 - 1)) && (min_val > 0))
/* if CLK_DLY[MCTL_CLK_DLY_COUNT] is very good, then the middle
* value can be more close to the max_val
*/
clk_index = (15 + clk_index) >> 1;
else if ((max_val < (15 - 1)) && (min_val == 0))
/* if CLK_DLY[0] is very good, then the middle value can be more
* close to the min_val
*/
clk_index >>= 1;
if (clk_dqs_count[clk_index] < dqs_i)
clk_index = min_val;
/* Find the middle index of DQS_DLY for the CLK_DLY got above, and Scan
* read pipe again
*/
clrsetbits_le32(&dram->dllcr[0], 0x3f << 6,
(clk_dly[clk_index] & 0x3f) << 6);
max_val = 7;
min_val = 7;
for (dqs_i = 0; dqs_i < 7; dqs_i++) {
clk_dqs_count[dqs_i] = 0;
for (cr_i = 1; cr_i < 5; cr_i++) {
clrsetbits_le32(&dram->dllcr[cr_i],
0x4f << 14,
(dqs_dly[dqs_i] & 0x4f) << 14);
}
udelay(2);
if (dramc_scan_readpipe() == 0) {
clk_dqs_count[dqs_i] = 1;
max_val = dqs_i;
if (min_val == 7)
min_val = dqs_i;
}
}
if (max_val < 7) {
dqs_index = (max_val + min_val) >> 1;
if ((max_val == (7 - 1)) && (min_val > 0))
dqs_index = (7 + dqs_index) >> 1;
else if ((max_val < (7 - 1)) && (min_val == 0))
dqs_index >>= 1;
if (!clk_dqs_count[dqs_index])
dqs_index = min_val;
for (cr_i = 1; cr_i < 5; cr_i++) {
clrsetbits_le32(&dram->dllcr[cr_i],
0x4f << 14,
(dqs_dly[dqs_index] & 0x4f) << 14);
}
udelay(2);
return dramc_scan_readpipe();
}
fail:
clrbits_le32(&dram->dllcr[0], 0x3f << 6);
for (cr_i = 1; cr_i < 5; cr_i++)
clrbits_le32(&dram->dllcr[cr_i], 0x4f << 14);
udelay(2);
return dramc_scan_readpipe();
}
static void dramc_set_autorefresh_cycle(u32 clk)
{
u32 reg32;
u32 tmp_val;
u32 reg_dcr;
if (clk < 600) {
reg_dcr = read32(&dram->dcr);
if ((reg_dcr & DRAM_DCR_CHIP_DENSITY_MASK) <=
DRAM_DCR_CHIP_DENSITY(DRAM_DCR_CHIP_DENSITY_1024M))
reg32 = (131 * clk) >> 10;
else
reg32 = (336 * clk) >> 10;
tmp_val = (7987 * clk) >> 10;
tmp_val = tmp_val * 9 - 200;
reg32 |= tmp_val << 8;
reg32 |= 0x8 << 24;
writel(reg32, &dram->drr);
} else {
writel(0x0, &dram->drr);
}
}
unsigned long dramc_init(struct dram_para *para)
{
u32 reg32;
int ret_val;
/* check input dram parameter structure */
if (!para)
return 0;
/* setup DRAM relative clock */
mctl_setup_dram_clock(para->clock);
/* reset external DRAM */
mctl_ddr3_reset();
mctl_set_drive();
/* dram clock off */
a1x_gate_dram_clock_output();
/* select dram controller 1 */
writel(DRAM_CSEL_MAGIC, &dram->csel);
mctl_itm_disable();
mctl_enable_dll0(para->tpr3);
/* configure external DRAM */
reg32 = 0x0;
if (para->type == DRAM_MEMORY_TYPE_DDR3)
reg32 |= DRAM_DCR_TYPE_DDR3;
reg32 |= DRAM_DCR_IO_WIDTH(para->io_width >> 3);
if (para->density == 256)
reg32 |= DRAM_DCR_CHIP_DENSITY(DRAM_DCR_CHIP_DENSITY_256M);
else if (para->density == 512)
reg32 |= DRAM_DCR_CHIP_DENSITY(DRAM_DCR_CHIP_DENSITY_512M);
else if (para->density == 1024)
reg32 |= DRAM_DCR_CHIP_DENSITY(DRAM_DCR_CHIP_DENSITY_1024M);
else if (para->density == 2048)
reg32 |= DRAM_DCR_CHIP_DENSITY(DRAM_DCR_CHIP_DENSITY_2048M);
else if (para->density == 4096)
reg32 |= DRAM_DCR_CHIP_DENSITY(DRAM_DCR_CHIP_DENSITY_4096M);
else if (para->density == 8192)
reg32 |= DRAM_DCR_CHIP_DENSITY(DRAM_DCR_CHIP_DENSITY_8192M);
else
reg32 |= DRAM_DCR_CHIP_DENSITY(DRAM_DCR_CHIP_DENSITY_256M);
reg32 |= DRAM_DCR_BUS_WIDTH((para->bus_width >> 3) - 1);
reg32 |= DRAM_DCR_RANK_SEL(para->rank_num - 1);
reg32 |= DRAM_DCR_CMD_RANK_ALL;
reg32 |= DRAM_DCR_MODE(DRAM_DCR_MODE_INTERLEAVE);
writel(reg32, &dram->dcr);
/* dram clock on */
a1x_ungate_dram_clock_output();
udelay(1);
while (read32(&dram->ccr) & DRAM_CCR_INIT) ;
mctl_enable_dllx(para->tpr3);
/* set odt impendance divide ratio */
reg32 = ((para->zq) >> 8) & 0xfffff;
reg32 |= ((para->zq) & 0xff) << 20;
reg32 |= (para->zq) & 0xf0000000;
writel(reg32, &dram->zqcr0);
/* set I/O configure register */
reg32 = 0x00cc0000;
reg32 |= (para->odt_en) & 0x3;
reg32 |= ((para->odt_en) & 0x3) << 30;
writel(reg32, &dram->iocr);
/* set refresh period */
dramc_set_autorefresh_cycle(para->clock);
/* set timing parameters */
writel(para->tpr0, &dram->tpr0);
writel(para->tpr1, &dram->tpr1);
writel(para->tpr2, &dram->tpr2);
if (para->type == DRAM_MEMORY_TYPE_DDR3) {
reg32 = DRAM_MR_BURST_LENGTH(0x0);
reg32 |= DRAM_MR_CAS_LAT(para->cas - 4);
reg32 |= DRAM_MR_WRITE_RECOVERY(0x5);
} else if (para->type == DRAM_MEMORY_TYPE_DDR2) {
reg32 = DRAM_MR_BURST_LENGTH(0x2);
reg32 |= DRAM_MR_CAS_LAT(para->cas);
reg32 |= DRAM_MR_WRITE_RECOVERY(0x5);
}
writel(reg32, &dram->mr);
writel(para->emr1, &dram->emr);
writel(para->emr2, &dram->emr2);
writel(para->emr3, &dram->emr3);
/* set DQS window mode */
clrsetbits_le32(&dram->ccr, DRAM_CCR_DQS_DRIFT_COMP, DRAM_CCR_DQS_GATE);
/* reset external DRAM */
setbits_le32(&dram->ccr, DRAM_CCR_INIT);
while (read32(&dram->ccr) & DRAM_CCR_INIT) ;
/* scan read pipe value */
mctl_itm_enable();
if (para->tpr3 & (0x1 << 31)) {
ret_val = dramc_scan_dll_para();
if (ret_val == 0)
para->tpr3 =
(((read32(&dram->dllcr[0]) >> 6) & 0x3f) << 16) |
(((read32(&dram->dllcr[1]) >> 14) & 0xf) << 0) |
(((read32(&dram->dllcr[2]) >> 14) & 0xf) << 4) |
(((read32(&dram->dllcr[3]) >> 14) & 0xf) << 8) |
(((read32(&dram->dllcr[4]) >> 14) & 0xf) << 12);
} else {
ret_val = dramc_scan_readpipe();
}
if (ret_val < 0)
return 0;
/* configure all host port */
mctl_configure_hostport();
return para->size;
}
|