1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Secure Digital (SD) card specific support code
* This code is controller independent
*/
#include <commonlib/sd_mmc_ctrlr.h>
#include <commonlib/storage.h>
#include <delay.h>
#include <endian.h>
#include "sd_mmc.h"
#include "storage.h"
int sd_send_if_cond(struct storage_media *media)
{
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* Set if controller supports voltages between 2.7 and 3.6 V. */
cmd.cmdarg = ((ctrlr->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = CARD_RSP_R7;
cmd.flags = 0;
int err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
if ((cmd.response[0] & 0xff) != 0xaa)
return CARD_UNUSABLE_ERR;
media->version = SD_VERSION_2;
return 0;
}
int sd_send_op_cond(struct storage_media *media)
{
int err;
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
int tries = SD_MMC_IO_RETRIES;
while (tries--) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = CARD_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg = (ctrlr->voltages & 0xff8000);
if (media->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
// OCR_BUSY means "initialization complete".
if (cmd.response[0] & OCR_BUSY)
break;
udelay(100);
}
if (tries < 0)
return CARD_UNUSABLE_ERR;
if (media->version != SD_VERSION_2)
media->version = SD_VERSION_1_0;
media->ocr = cmd.response[0];
media->high_capacity = ((media->ocr & OCR_HCS) == OCR_HCS);
media->rca = 0;
return 0;
}
static int sd_switch(struct sd_mmc_ctrlr *ctrlr, int mode, int group,
uint8_t value, uint8_t *resp)
{
/* Switch the frequency */
struct mmc_command cmd;
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = (mode << 31) | (0xffffff & ~(0xf << (group * 4))) |
(value << (group * 4));
cmd.flags = 0;
struct mmc_data data;
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = DATA_FLAG_READ;
return ctrlr->send_cmd(ctrlr, &cmd, &data);
}
static void sd_recalculate_clock(struct storage_media *media)
{
uint32_t clock = 1;
if (media->caps & DRVR_CAP_HS)
clock = CLOCK_50MHZ;
else
clock = CLOCK_25MHZ;
SET_CLOCK(media->ctrlr, clock);
}
int sd_change_freq(struct storage_media *media)
{
int delay;
int err, timeout;
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
struct mmc_data data;
ALLOC_CACHE_ALIGN_BUFFER(uint32_t, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(uint32_t, switch_status, 16);
media->caps = 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = media->rca << 16;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
timeout = 3;
while (timeout--) {
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = DATA_FLAG_READ;
err = ctrlr->send_cmd(ctrlr, &cmd, &data);
if (!err)
break;
}
if (err) {
sd_mmc_error("%s returning %d\n", __func__, err);
return err;
}
media->scr[0] = be32toh(scr[0]);
media->scr[1] = be32toh(scr[1]);
switch ((media->scr[0] >> 24) & 0xf) {
case 0:
media->version = SD_VERSION_1_0;
break;
case 1:
media->version = SD_VERSION_1_10;
break;
case 2:
media->version = SD_VERSION_2;
break;
default:
media->version = SD_VERSION_1_0;
break;
}
if (media->scr[0] & SD_DATA_4BIT)
media->caps |= DRVR_CAP_4BIT;
/* Version 1.0 doesn't support switching */
if (media->version == SD_VERSION_1_0)
goto out;
timeout = 4;
while (timeout--) {
err = sd_switch(ctrlr, SD_SWITCH_CHECK, 0, 1,
(uint8_t *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(ntohl(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(ntohl(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
goto out;
/*
* If the controller doesn't support SD_HIGHSPEED, do not switch the
* card to HIGHSPEED mode even if the card support SD_HIGHSPPED.
* This can avoid a further problem when the card runs in different
* mode than the controller.
*/
if (!((ctrlr->caps & DRVR_CAP_HS52) && (ctrlr->caps & DRVR_CAP_HS)))
goto out;
/* Give the card time to recover after the switch operation. Wait for
* 9 (>= 8) clock cycles receiving the switch status.
*/
delay = (9000000 + ctrlr->bus_hz - 1) / ctrlr->bus_hz;
udelay(delay);
/* Switch to high speed */
err = sd_switch(ctrlr, SD_SWITCH_SWITCH, 0, 1,
(uint8_t *)switch_status);
if (err)
return err;
/* Give the card time to perform the switch operation. Wait for 9
* (>= 8) clock cycles receiving the switch status.
*/
udelay(delay);
if ((ntohl(switch_status[4]) & 0x0f000000) == 0x01000000) {
media->caps |= DRVR_CAP_HS;
SET_TIMING(ctrlr, BUS_TIMING_SD_HS);
}
out:
sd_recalculate_clock(media);
return 0;
}
int sd_set_bus_width(struct storage_media *media)
{
int err;
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
if (media->caps & DRVR_CAP_4BIT) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = media->rca << 16;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = 2;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
SET_BUS_WIDTH(ctrlr, 4);
}
return 0;
}
int sd_set_partition(struct storage_media *media,
unsigned int partition_number)
{
/* Validate the partition number */
if (partition_number)
return -1;
/* Update the partition number */
media->partition_config = partition_number;
return 0;
}
const char *sd_partition_name(struct storage_media *media,
unsigned int partition_number)
{
return "";
}
|