summaryrefslogtreecommitdiff
path: root/src/commonlib/storage/mmc.c
blob: 3c82f51a4fc39b81ccb1199444834572f4e84ff9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
/*
 * Copyright 2008, Freescale Semiconductor, Inc
 * Andy Fleming
 *
 * Copyright 2013 Google Inc.  All rights reserved.
 * Copyright 2017 Intel Corporation
 *
 * MultiMediaCard (MMC) and eMMC specific support code
 * This code is controller independent
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <commonlib/storage.h>
#include <delay.h>
#include "mmc.h"
#include "sd_mmc.h"
#include "storage.h"
#include <string.h>
#include <timer.h>

/* We pass in the cmd since otherwise the init seems to fail */
static int mmc_send_op_cond_iter(struct storage_media *media,
	struct mmc_command *cmd, int use_arg)
{
	struct sd_mmc_ctrlr *ctrlr = media->ctrlr;

	cmd->cmdidx = MMC_CMD_SEND_OP_COND;
	cmd->resp_type = CARD_RSP_R3;

	/* Set the controller's operating conditions */
	if (use_arg) {
		uint32_t mask = media->op_cond_response &
			(OCR_VOLTAGE_MASK | OCR_ACCESS_MODE);
		cmd->cmdarg = ctrlr->voltages & mask;

		/* Always request high capacity if supported by the
		 * controller
		 */
		if (ctrlr->caps & DRVR_CAP_HC)
			cmd->cmdarg |= OCR_HCS;
	}
	cmd->flags = 0;
	int err = ctrlr->send_cmd(ctrlr, cmd, NULL);
	if (err)
		return err;

	media->op_cond_response = cmd->response[0];
	return 0;
}

int mmc_send_op_cond(struct storage_media *media)
{
	struct mmc_command cmd;
	int max_iters = 2;

	/* Ask the card for its operating conditions */
	cmd.cmdarg = 0;
	for (int i = 0; i < max_iters; i++) {
		int err = mmc_send_op_cond_iter(media, &cmd, i != 0);
		if (err)
			return err;

		// OCR_BUSY is active low, this bit set means
		// "initialization complete".
		if (media->op_cond_response & OCR_BUSY)
			return 0;
	}
	return CARD_IN_PROGRESS;
}

int mmc_complete_op_cond(struct storage_media *media)
{
	struct mmc_command cmd;
	struct stopwatch sw;

	stopwatch_init_msecs_expire(&sw, MMC_INIT_TIMEOUT_US_MS);
	while (1) {
		// CMD1 queries whether initialization is done.
		int err = mmc_send_op_cond_iter(media, &cmd, 1);
		if (err)
			return err;

		// OCR_BUSY means "initialization complete".
		if (media->op_cond_response & OCR_BUSY)
			break;

		// Check if init timeout has expired.
		if (stopwatch_expired(&sw))
			return CARD_UNUSABLE_ERR;

		udelay(100);
	}

	media->version = MMC_VERSION_UNKNOWN;
	media->ocr = cmd.response[0];

	media->high_capacity = ((media->ocr & OCR_HCS) == OCR_HCS);
	media->rca = 0;
	return 0;
}

int mmc_send_ext_csd(struct sd_mmc_ctrlr *ctrlr, unsigned char *ext_csd)
{
	struct mmc_command cmd;
	struct mmc_data data;
	int rv;

	/* Get the Card Status Register */
	cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
	cmd.resp_type = CARD_RSP_R1;
	cmd.cmdarg = 0;
	cmd.flags = 0;

	data.dest = (char *)ext_csd;
	data.blocks = 1;
	data.blocksize = 512;
	data.flags = DATA_FLAG_READ;

	rv = ctrlr->send_cmd(ctrlr, &cmd, &data);

	if (!rv && CONFIG(SD_MMC_TRACE)) {
		int i, size;

		size = data.blocks * data.blocksize;
		sd_mmc_trace("\t%p ext_csd:", ctrlr);
		for (i = 0; i < size; i++) {
			if (!(i % 32))
				sd_mmc_trace("\n");
			sd_mmc_trace(" %2.2x", ext_csd[i]);
		}
		sd_mmc_trace("\n");
	}
	return rv;
}

static int mmc_switch(struct storage_media *media, uint8_t index, uint8_t value)
{
	struct mmc_command cmd;
	struct sd_mmc_ctrlr *ctrlr = media->ctrlr;

	cmd.cmdidx = MMC_CMD_SWITCH;
	cmd.resp_type = CARD_RSP_R1b;
	cmd.cmdarg = ((MMC_SWITCH_MODE_WRITE_BYTE << 24) |
			   (index << 16) | (value << 8));
	cmd.flags = 0;

	int ret = ctrlr->send_cmd(ctrlr, &cmd, NULL);

	/* Waiting for the ready status */
	sd_mmc_send_status(media, SD_MMC_IO_RETRIES);
	return ret;

}

static void mmc_recalculate_clock(struct storage_media *media)
{
	uint32_t clock;

	clock = CLOCK_26MHZ;
	if (media->caps & DRVR_CAP_HS) {
		if ((media->caps & DRVR_CAP_HS200) ||
		    (media->caps & DRVR_CAP_HS400))
			clock = CLOCK_200MHZ;
		else if (media->caps & DRVR_CAP_HS52)
			clock = CLOCK_52MHZ;
	}
	SET_CLOCK(media->ctrlr, clock);
}

static int mmc_select_hs(struct storage_media *media)
{
	int ret;

	/* Switch the MMC device into high speed mode */
	ret = mmc_switch(media, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS);
	if (ret) {
		sd_mmc_error("Timing switch to high speed failed\n");
		return ret;
	}
	sdhc_debug("SDHCI switched MMC to high speed\n");

	/* Increase the controller clock speed */
	SET_TIMING(media->ctrlr, BUS_TIMING_MMC_HS);
	media->caps |= DRVR_CAP_HS52 | DRVR_CAP_HS;
	mmc_recalculate_clock(media);
	ret = sd_mmc_send_status(media, SD_MMC_IO_RETRIES);
	return ret;
}

static int mmc_send_tuning_seq(struct sd_mmc_ctrlr *ctrlr, char *buffer)
{
	struct mmc_command cmd;
	struct mmc_data data;

	/* Request the device send the tuning sequence to the host */
	cmd.cmdidx = MMC_CMD_AUTO_TUNING_SEQUENCE;
	cmd.resp_type = CARD_RSP_R1;
	cmd.cmdarg = 0;
	cmd.flags = CMD_FLAG_IGNORE_INHIBIT;

	data.dest = buffer;
	data.blocks = 1;
	data.blocksize = (ctrlr->bus_width == 8) ? 128 : 64;
	data.flags = DATA_FLAG_READ;
	return ctrlr->send_cmd(ctrlr, &cmd, &data);
}

static int mmc_bus_tuning(struct storage_media *media)
{
	ALLOC_CACHE_ALIGN_BUFFER(char, buffer, 128);
	struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
	int index;
	int successful;

	/* Request the device send the tuning sequence up to 40 times */
	ctrlr->tuning_start(ctrlr, 0);
	for (index = 0; index < 40; index++) {
		mmc_send_tuning_seq(ctrlr, buffer);
		if (ctrlr->is_tuning_complete(ctrlr, &successful)) {
			if (successful)
				return 0;
			break;
		}
	}
	sd_mmc_error("Bus tuning failed!\n");
	return -1;
}

static int mmc_select_hs400(struct storage_media *media)
{
	uint8_t bus_width;
	uint32_t caps;
	struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
	int ret;
	uint32_t timing;

	/* Switch the MMC device into high speed mode */
	ret = mmc_select_hs(media);
	if (ret)
		return ret;

	/* Switch MMC device to 8-bit DDR with strobe */
	bus_width = EXT_CSD_DDR_BUS_WIDTH_8;
	caps = DRVR_CAP_HS400 | DRVR_CAP_HS52 | DRVR_CAP_HS;
	timing = BUS_TIMING_MMC_HS400;
	if ((ctrlr->caps & DRVR_CAP_ENHANCED_STROBE)
		&& (media->caps & DRVR_CAP_ENHANCED_STROBE)) {
		bus_width |= EXT_CSD_BUS_WIDTH_STROBE;
		caps |= DRVR_CAP_ENHANCED_STROBE;
		timing = BUS_TIMING_MMC_HS400ES;
	}
	ret = mmc_switch(media, EXT_CSD_BUS_WIDTH, bus_width);
	if (ret) {
		sd_mmc_error("Switching bus width for HS400 failed\n");
		return ret;
	}
	sdhc_debug("SDHCI switched MMC to 8-bit DDR\n");

	/* Set controller to 8-bit mode */
	SET_BUS_WIDTH(ctrlr, 8);
	media->caps |= EXT_CSD_BUS_WIDTH_8;

	/* Switch MMC device to HS400 */
	ret = mmc_switch(media, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS400);
	if (ret) {
		sd_mmc_error("Switch to HS400 timing failed\n");
		return ret;
	}

	/* Set controller to 200 MHz and use receive strobe */
	SET_TIMING(ctrlr, timing);
	media->caps |= caps;
	mmc_recalculate_clock(media);
	ret = sd_mmc_send_status(media, SD_MMC_IO_RETRIES);
	return ret;
}

static int mmc_select_hs200(struct storage_media *media)
{
	struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
	int ret;

	/* Switch the MMC device to 8-bit SDR */
	ret = mmc_switch(media, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8);
	if (ret) {
		sd_mmc_error("Switching bus width for HS200 failed\n");
		return ret;
	}

	/* Set controller to 8-bit mode */
	SET_BUS_WIDTH(ctrlr, 8);
	media->caps |= EXT_CSD_BUS_WIDTH_8;

	/* Switch to HS200 */
	ret = mmc_switch(media, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS200);

	if (ret) {
		sd_mmc_error("Switch to HS200 failed\n");
		return ret;
	}
	sdhc_debug("SDHCI switched MMC to 8-bit SDR\n");

	/* Set controller to 200 MHz */
	SET_TIMING(ctrlr, BUS_TIMING_MMC_HS200);
	media->caps |= DRVR_CAP_HS200 | DRVR_CAP_HS52 | DRVR_CAP_HS;
	mmc_recalculate_clock(media);

	/* Tune the receive sampling point for the bus */
	if ((!ret) && (ctrlr->caps & DRVR_CAP_HS200_TUNING))
		ret = mmc_bus_tuning(media);
	return ret;
}

int mmc_change_freq(struct storage_media *media)
{
	struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
	int err;
	ALLOC_CACHE_ALIGN_BUFFER(unsigned char, ext_csd, 512);

	media->caps = 0;

	/* Only version 4 supports high-speed */
	if (media->version < MMC_VERSION_4)
		return 0;

	err = mmc_send_ext_csd(ctrlr, ext_csd);
	if (err)
		return err;

	/* Determine if the device supports enhanced strobe */
	media->caps |= ext_csd[EXT_CSD_STROBE_SUPPORT]
		? DRVR_CAP_ENHANCED_STROBE : 0;

	if ((ctrlr->caps & DRVR_CAP_HS400) &&
	    (ext_csd[EXT_CSD_CARD_TYPE] & MMC_HS400))
		err = mmc_select_hs400(media);
	else if ((ctrlr->caps & DRVR_CAP_HS200) &&
		 (ext_csd[EXT_CSD_CARD_TYPE] & MMC_HS_200MHZ))
		err = mmc_select_hs200(media);
	else
		err = mmc_select_hs(media);

	return err;
}

int mmc_set_bus_width(struct storage_media *media)
{
	struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
	int err;
	int width;

	ALLOC_CACHE_ALIGN_BUFFER(unsigned char, ext_csd, EXT_CSD_SIZE);
	ALLOC_CACHE_ALIGN_BUFFER(unsigned char, test_csd, EXT_CSD_SIZE);

	/* Set the bus width */
	err = 0;
	for (width = EXT_CSD_BUS_WIDTH_8; width >= 0; width--) {
		/* If HS200 is switched, Bus Width has been 8-bit */
		if ((media->caps & DRVR_CAP_HS200) ||
		    (media->caps & DRVR_CAP_HS400))
			break;

		/* Set the card to use 4 bit*/
		err = mmc_switch(media, EXT_CSD_BUS_WIDTH, width);
		if (err)
			continue;

		if (!width) {
			SET_BUS_WIDTH(ctrlr, 1);
			break;
		}
		SET_BUS_WIDTH(ctrlr, 4 * width);

		err = mmc_send_ext_csd(ctrlr, test_csd);
		if (!err &&
		    (ext_csd[EXT_CSD_PARTITIONING_SUPPORT] ==
		    test_csd[EXT_CSD_PARTITIONING_SUPPORT]) &&
		    (ext_csd[EXT_CSD_ERASE_GROUP_DEF] ==
		    test_csd[EXT_CSD_ERASE_GROUP_DEF]) &&
		    (ext_csd[EXT_CSD_REV] ==
		    test_csd[EXT_CSD_REV]) &&
		    (ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] ==
		    test_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
		    memcmp(&ext_csd[EXT_CSD_SEC_CNT],
			   &test_csd[EXT_CSD_SEC_CNT], 4) == 0) {
			media->caps |= width;
			break;
		}
	}
	return err;
}

int mmc_update_capacity(struct storage_media *media)
{
	uint64_t capacity;
	struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
	int err;
	ALLOC_CACHE_ALIGN_BUFFER(unsigned char, ext_csd, EXT_CSD_SIZE);
	uint32_t erase_size;
	uint32_t hc_erase_size;
	uint64_t hc_wp_size;
	int index;

	if (media->version < MMC_VERSION_4)
		return 0;

	/* check  ext_csd version and capacity */
	err = mmc_send_ext_csd(ctrlr, ext_csd);
	if (err)
		return err;

	if (ext_csd[EXT_CSD_REV] < 2)
		return 0;

	/* Determine the eMMC device information */
	media->partition_config = ext_csd[EXT_CSD_PART_CONF]
		& EXT_CSD_PART_ACCESS_MASK;

	/* Determine the user partition size
	 *
	 * According to the JEDEC Standard, the value of
	 * ext_csd's capacity is valid if the value is
	 * more than 2GB
	 */
	capacity = (uint32_t)(ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
		    ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
		    ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
		    ext_csd[EXT_CSD_SEC_CNT + 3] << 24);
	capacity *= 512;
	if ((capacity >> 20) > 2 * 1024)
		media->capacity[MMC_PARTITION_USER] = capacity;

	/* Determine the boot parition sizes */
	hc_erase_size = ext_csd[224] * 512 * KiB;
	capacity = ext_csd[EXT_CSD_BOOT_SIZE_MULT] * 128 * KiB;
	media->capacity[MMC_PARTITION_BOOT_1] = capacity;
	media->capacity[MMC_PARTITION_BOOT_2] = capacity;

	/* Determine the RPMB size */
	hc_wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE] * hc_erase_size;
	capacity = 128 * KiB * ext_csd[EXT_CSD_RPMB_SIZE_MULT];
	media->capacity[MMC_PARTITION_RPMB] = capacity;

	/* Determine the general partition sizes */
	capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP0 + 2] << 16)
		| (ext_csd[EXT_CSD_GP_SIZE_MULT_GP0 + 1] << 8)
		| ext_csd[EXT_CSD_GP_SIZE_MULT_GP0];
	capacity *= hc_wp_size;
	media->capacity[MMC_PARTITION_GP1] = capacity;

	capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP1 + 2] << 16)
		| (ext_csd[EXT_CSD_GP_SIZE_MULT_GP1 + 1] << 8)
		| ext_csd[EXT_CSD_GP_SIZE_MULT_GP1];
	capacity *= hc_wp_size;
	media->capacity[MMC_PARTITION_GP2] = capacity;

	capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP2 + 2] << 16)
		| (ext_csd[EXT_CSD_GP_SIZE_MULT_GP2 + 1] << 8)
		| ext_csd[EXT_CSD_GP_SIZE_MULT_GP2];
	capacity *= hc_wp_size;
	media->capacity[MMC_PARTITION_GP3] = capacity;

	capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP3 + 2] << 16)
		| (ext_csd[EXT_CSD_GP_SIZE_MULT_GP3 + 1] << 8)
		| ext_csd[EXT_CSD_GP_SIZE_MULT_GP3];
	capacity *= hc_wp_size;
	media->capacity[MMC_PARTITION_GP4] = capacity;

	/* Determine the erase size */
	erase_size = (sd_mmc_extract_uint32_bits(media->csd,
		81, 5) + 1) *
		(sd_mmc_extract_uint32_bits(media->csd, 86, 5)
		+ 1);
	for (index = MMC_PARTITION_BOOT_1; index <= MMC_PARTITION_GP4;
		index++) {
		if (media->capacity[index] != 0) {
			/* Enable the partitions  */
			err = mmc_switch(media, EXT_CSD_ERASE_GROUP_DEF,
				EXT_CSD_PARTITION_ENABLE);
			if (err) {
				sdhc_error("Failed to enable partition access\n");
				return err;
			}

			/* Use HC erase group size */
			erase_size = hc_erase_size / media->write_bl_len;
			break;
		}
	}
	media->erase_blocks = erase_size;
	media->trim_mult = ext_csd[EXT_CSD_TRIM_MULT];

	return 0;
}

int mmc_set_partition(struct storage_media *media,
	unsigned int partition_number)
{
	uint8_t partition_config;

	/* Validate the partition number */
	if ((partition_number > MMC_PARTITION_GP4)
		|| (!media->capacity[partition_number]))
		return -1;

	/* Update the partition register */
	partition_config = media->partition_config;
	partition_config &= ~EXT_CSD_PART_ACCESS_MASK;
	partition_config |= partition_number;

	/* Select the new partition */
	int ret = mmc_switch(media, EXT_CSD_PART_CONF, partition_config);
	if (!ret)
		media->partition_config = partition_config;

	return ret;
}

const char *mmc_partition_name(struct storage_media *media,
	unsigned int partition_number)
{
	static const char *const partition_name[8] = {
		"User",		/* 0 */
		"Boot 1",	/* 1 */
		"Boot 2",	/* 2 */
		"RPMB",		/* 3 */
		"GP 1",		/* 4 */
		"GP 2",		/* 5 */
		"GP 3",		/* 6 */
		"GP 4"		/* 7 */
	};

	if (partition_number >= ARRAY_SIZE(partition_name))
		return "";
	return partition_name[partition_number];
}