1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
#include <console/console.h>
#include <cpu/cpu.h>
#include <arch/io.h>
#include <string.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/lapic.h>
#include <arch/cpu.h>
#include <device/path.h>
#include <device/device.h>
#include <smp/spinlock.h>
/* Standard macro to see if a specific flag is changeable */
static inline int flag_is_changeable_p(uint32_t flag)
{
uint32_t f1, f2;
asm(
"pushfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"movl %0,%1\n\t"
"xorl %2,%0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"popfl\n\t"
: "=&r" (f1), "=&r" (f2)
: "ir" (flag));
return ((f1^f2) & flag) != 0;
}
/* Probe for the CPUID instruction */
int cpu_have_cpuid(void)
{
return flag_is_changeable_p(X86_EFLAGS_ID);
}
/*
* Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
* by the fact that they preserve the flags across the division of 5/2.
* PII and PPro exhibit this behavior too, but they have cpuid available.
*/
/*
* Perform the Cyrix 5/2 test. A Cyrix won't change
* the flags, while other 486 chips will.
*/
static inline int test_cyrix_52div(void)
{
unsigned int test;
__asm__ __volatile__(
"sahf\n\t" /* clear flags (%eax = 0x0005) */
"div %b2\n\t" /* divide 5 by 2 */
"lahf" /* store flags into %ah */
: "=a" (test)
: "0" (5), "q" (2)
: "cc");
/* AH is 0x02 on Cyrix after the divide.. */
return (unsigned char) (test >> 8) == 0x02;
}
/*
* Detect a NexGen CPU running without BIOS hypercode new enough
* to have CPUID. (Thanks to Herbert Oppmann)
*/
static int deep_magic_nexgen_probe(void)
{
int ret;
__asm__ __volatile__ (
" movw $0x5555, %%ax\n"
" xorw %%dx,%%dx\n"
" movw $2, %%cx\n"
" divw %%cx\n"
" movl $0, %%eax\n"
" jnz 1f\n"
" movl $1, %%eax\n"
"1:\n"
: "=a" (ret) : : "cx", "dx" );
return ret;
}
/* List of cpu vendor strings along with their normalized
* id values.
*/
static struct {
int vendor;
const char *name;
} x86_vendors[] = {
{ X86_VENDOR_INTEL, "GenuineIntel", },
{ X86_VENDOR_CYRIX, "CyrixInstead", },
{ X86_VENDOR_AMD, "AuthenticAMD", },
{ X86_VENDOR_UMC, "UMC UMC UMC ", },
{ X86_VENDOR_NEXGEN, "NexGenDriven", },
{ X86_VENDOR_CENTAUR, "CentaurHauls", },
{ X86_VENDOR_RISE, "RiseRiseRise", },
{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
{ X86_VENDOR_NSC, "Geode by NSC", },
{ X86_VENDOR_SIS, "SiS SiS SiS ", },
};
static const char *x86_vendor_name[] = {
[X86_VENDOR_INTEL] = "Intel",
[X86_VENDOR_CYRIX] = "Cyrix",
[X86_VENDOR_AMD] = "AMD",
[X86_VENDOR_UMC] = "UMC",
[X86_VENDOR_NEXGEN] = "NexGen",
[X86_VENDOR_CENTAUR] = "Centaur",
[X86_VENDOR_RISE] = "Rise",
[X86_VENDOR_TRANSMETA] = "Transmeta",
[X86_VENDOR_NSC] = "NSC",
[X86_VENDOR_SIS] = "SiS",
};
static const char *cpu_vendor_name(int vendor)
{
const char *name;
name = "<invalid cpu vendor>";
if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
(x86_vendor_name[vendor] != 0))
{
name = x86_vendor_name[vendor];
}
return name;
}
static int cpu_cpuid_extended_level(void)
{
return cpuid_eax(0x80000000);
}
#define CPUID_FEATURE_PAE (1 << 6)
#define CPUID_FEATURE_PSE36 (1 << 17)
int cpu_phys_address_size(void)
{
if (!(cpu_have_cpuid()))
return 32;
if (cpu_cpuid_extended_level() >= 0x80000008)
return cpuid_eax(0x80000008) & 0xff;
if (cpuid_edx(1) & (CPUID_FEATURE_PAE | CPUID_FEATURE_PSE36))
return 36;
return 32;
}
static void identify_cpu(struct device *cpu)
{
char vendor_name[16];
int i;
vendor_name[0] = '\0'; /* Unset */
/* Find the id and vendor_name */
if (!cpu_have_cpuid()) {
/* Its a 486 if we can modify the AC flag */
if (flag_is_changeable_p(X86_EFLAGS_AC)) {
cpu->device = 0x00000400; /* 486 */
} else {
cpu->device = 0x00000300; /* 386 */
}
if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
memcpy(vendor_name, "CyrixInstead", 13);
/* If we ever care we can enable cpuid here */
}
/* Detect NexGen with old hypercode */
else if (deep_magic_nexgen_probe()) {
memcpy(vendor_name, "NexGenDriven", 13);
}
}
if (cpu_have_cpuid()) {
int cpuid_level;
struct cpuid_result result;
result = cpuid(0x00000000);
cpuid_level = result.eax;
vendor_name[ 0] = (result.ebx >> 0) & 0xff;
vendor_name[ 1] = (result.ebx >> 8) & 0xff;
vendor_name[ 2] = (result.ebx >> 16) & 0xff;
vendor_name[ 3] = (result.ebx >> 24) & 0xff;
vendor_name[ 4] = (result.edx >> 0) & 0xff;
vendor_name[ 5] = (result.edx >> 8) & 0xff;
vendor_name[ 6] = (result.edx >> 16) & 0xff;
vendor_name[ 7] = (result.edx >> 24) & 0xff;
vendor_name[ 8] = (result.ecx >> 0) & 0xff;
vendor_name[ 9] = (result.ecx >> 8) & 0xff;
vendor_name[10] = (result.ecx >> 16) & 0xff;
vendor_name[11] = (result.ecx >> 24) & 0xff;
vendor_name[12] = '\0';
/* Intel-defined flags: level 0x00000001 */
if (cpuid_level >= 0x00000001) {
cpu->device = cpuid_eax(0x00000001);
}
else {
/* Have CPUID level 0 only unheard of */
cpu->device = 0x00000400;
}
}
cpu->vendor = X86_VENDOR_UNKNOWN;
for(i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
cpu->vendor = x86_vendors[i].vendor;
break;
}
}
}
static void set_cpu_ops(struct device *cpu)
{
struct cpu_driver *driver;
cpu->ops = 0;
for (driver = cpu_drivers; driver < ecpu_drivers; driver++) {
struct cpu_device_id *id;
for(id = driver->id_table; id->vendor != X86_VENDOR_INVALID; id++) {
if ((cpu->vendor == id->vendor) &&
(cpu->device == id->device))
{
goto found;
}
}
}
return;
found:
cpu->ops = driver->ops;
}
void cpu_initialize(void)
{
/* Because we busy wait at the printk spinlock.
* It is important to keep the number of printed messages
* from secondary cpus to a minimum, when debugging is
* disabled.
*/
struct device *cpu;
struct cpu_info *info;
struct cpuinfo_x86 c;
info = cpu_info();
printk(BIOS_INFO, "Initializing CPU #%ld\n", info->index);
cpu = info->cpu;
if (!cpu) {
die("CPU: missing cpu device structure");
}
/* Find what type of cpu we are dealing with */
identify_cpu(cpu);
printk(BIOS_DEBUG, "CPU: vendor %s device %x\n",
cpu_vendor_name(cpu->vendor), cpu->device);
get_fms(&c, cpu->device);
printk(BIOS_DEBUG, "CPU: family %02x, model %02x, stepping %02x\n",
c.x86, c.x86_model, c.x86_mask);
/* Lookup the cpu's operations */
set_cpu_ops(cpu);
if(!cpu->ops) {
/* mask out the stepping and try again */
cpu->device -= c.x86_mask;
set_cpu_ops(cpu);
cpu->device += c.x86_mask;
if(!cpu->ops) die("Unknown cpu");
printk(BIOS_DEBUG, "Using generic cpu ops (good)\n");
}
/* Initialize the cpu */
if (cpu->ops && cpu->ops->init) {
cpu->enabled = 1;
cpu->initialized = 1;
cpu->ops->init(cpu);
}
printk(BIOS_INFO, "CPU #%ld initialized\n", info->index);
return;
}
|