aboutsummaryrefslogtreecommitdiff
path: root/payloads/libpayload/drivers/video/graphics.c
blob: 563f2961c7bd9db7ce2b22f2e901a85bb921bbf2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
/*
 *
 * Copyright (C) 2015 Google, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <libpayload.h>
#include <cbfs.h>
#include <fpmath.h>
#include <sysinfo.h>
#include "bitmap.h"

/*
 * 'canvas' is the drawing area located in the center of the screen. It's a
 * square area, stretching vertically to the edges of the screen, leaving
 * non-drawing areas on the left and right. The screen is assumed to be
 * landscape.
 */
static struct rect canvas;
static struct rect screen;

static uint8_t *gfx_buffer;

/*
 * Framebuffer is assumed to assign a higher coordinate (larger x, y) to
 * a higher address
 */
static const struct cb_framebuffer *fbinfo;

/* Shorthand for up-to-date virtual framebuffer address */
#define REAL_FB ((unsigned char *)phys_to_virt(fbinfo->physical_address))
#define FB	(gfx_buffer ? gfx_buffer : REAL_FB)

#define LOG(x...)	printf("CBGFX: " x)
#define PIVOT_H_MASK	(PIVOT_H_LEFT|PIVOT_H_CENTER|PIVOT_H_RIGHT)
#define PIVOT_V_MASK	(PIVOT_V_TOP|PIVOT_V_CENTER|PIVOT_V_BOTTOM)
#define ROUNDUP(x, y)	((((x) + ((y) - 1)) / (y)) * (y))
#define ABS(x)		((x) < 0 ? -(x) : (x))

static char initialized = 0;

static const struct vector vzero = {
	.x = 0,
	.y = 0,
};

struct color_transformation {
	uint8_t base;
	int16_t scale;
};

struct color_mapping {
	struct color_transformation red;
	struct color_transformation green;
	struct color_transformation blue;
	int enabled;
};

static struct color_mapping color_map;

static inline void set_color_trans(struct color_transformation *trans,
				   uint8_t bg_color, uint8_t fg_color)
{
	trans->base = bg_color;
	trans->scale = fg_color - bg_color;
}

int set_color_map(const struct rgb_color *background,
		  const struct rgb_color *foreground)
{
	if (background == NULL || foreground == NULL)
		return CBGFX_ERROR_INVALID_PARAMETER;

	set_color_trans(&color_map.red, background->red, foreground->red);
	set_color_trans(&color_map.green, background->green,
			foreground->green);
	set_color_trans(&color_map.blue, background->blue, foreground->blue);
	color_map.enabled = 1;

	return CBGFX_SUCCESS;
}

void clear_color_map(void)
{
	color_map.enabled = 0;
}

struct blend_value {
	uint8_t alpha;
	struct rgb_color rgb;
};

static struct blend_value blend;

int set_blend(const struct rgb_color *rgb, uint8_t alpha)
{
	if (rgb == NULL)
		return CBGFX_ERROR_INVALID_PARAMETER;

	blend.alpha = alpha;
	blend.rgb = *rgb;

	return CBGFX_SUCCESS;
}

void clear_blend(void)
{
	blend.alpha = 0;
	blend.rgb.red = 0;
	blend.rgb.green = 0;
	blend.rgb.blue = 0;
}

static void add_vectors(struct vector *out,
			const struct vector *v1, const struct vector *v2)
{
	out->x = v1->x + v2->x;
	out->y = v1->y + v2->y;
}

static int fraction_equal(const struct fraction *f1, const struct fraction *f2)
{
	return (int64_t)f1->n * f2->d == (int64_t)f2->n * f1->d;
}

static int is_valid_fraction(const struct fraction *f)
{
	return f->d != 0;
}

static int is_valid_scale(const struct scale *s)
{
	return is_valid_fraction(&s->x) && is_valid_fraction(&s->y);
}

static void reduce_fraction(struct fraction *out, int64_t n, int64_t d)
{
	/* Simplest way to reduce the fraction until fitting in int32_t */
	int shift = log2(MAX(ABS(n), ABS(d)) >> 31) + 1;
	out->n = n >> shift;
	out->d = d >> shift;
}

/* out = f1 + f2 */
static void add_fractions(struct fraction *out,
			  const struct fraction *f1, const struct fraction *f2)
{
	reduce_fraction(out,
			(int64_t)f1->n * f2->d + (int64_t)f2->n * f1->d,
			(int64_t)f1->d * f2->d);
}

/* out = f1 - f2 */
static void subtract_fractions(struct fraction *out,
			       const struct fraction *f1,
			       const struct fraction *f2)
{
	reduce_fraction(out,
			(int64_t)f1->n * f2->d - (int64_t)f2->n * f1->d,
			(int64_t)f1->d * f2->d);
}

static void add_scales(struct scale *out,
		       const struct scale *s1, const struct scale *s2)
{
	add_fractions(&out->x, &s1->x, &s2->x);
	add_fractions(&out->y, &s1->y, &s2->y);
}

/*
 * Transform a vector:
 * 	x' = x * a_x + offset_x
 * 	y' = y * a_y + offset_y
 */
static int transform_vector(struct vector *out,
			    const struct vector *in,
			    const struct scale *a,
			    const struct vector *offset)
{
	if (!is_valid_scale(a))
		return CBGFX_ERROR_INVALID_PARAMETER;
	out->x = (int64_t)a->x.n * in->x / a->x.d + offset->x;
	out->y = (int64_t)a->y.n * in->y / a->y.d + offset->y;
	return CBGFX_SUCCESS;
}

/*
 * Returns 1 if v is exclusively within box, 0 if v is inclusively within box,
 * or -1 otherwise.
 */
static int within_box(const struct vector *v, const struct rect *bound)
{
	if (v->x > bound->offset.x &&
	    v->y > bound->offset.y &&
	    v->x < bound->offset.x + bound->size.width &&
	    v->y < bound->offset.y + bound->size.height)
		return 1;
	else if (v->x >= bound->offset.x &&
		 v->y >= bound->offset.y &&
		 v->x <= bound->offset.x + bound->size.width &&
		 v->y <= bound->offset.y + bound->size.height)
		return 0;
	else
		return -1;
}

/* Helper function that applies color_map to the color. */
static inline uint8_t apply_map(uint8_t color,
				const struct color_transformation *trans)
{
	if (!color_map.enabled)
		return color;
	return trans->base + trans->scale * color / UINT8_MAX;
}

/*
 * Helper function that applies color and opacity from blend struct
 * into the color.
 */
static inline uint8_t apply_blend(uint8_t color, uint8_t blend_color)
{
	if (blend.alpha == 0 || color == blend_color)
		return color;

	return (color * (256 - blend.alpha) +
		blend_color * blend.alpha) / 256;
}

static inline uint32_t calculate_color(const struct rgb_color *rgb,
				       uint8_t invert)
{
	uint32_t color = 0;

	color |= (apply_blend(apply_map(rgb->red, &color_map.red),
			      blend.rgb.red)
		  >> (8 - fbinfo->red_mask_size))
		 << fbinfo->red_mask_pos;
	color |= (apply_blend(apply_map(rgb->green, &color_map.green),
			      blend.rgb.green)
		  >> (8 - fbinfo->green_mask_size))
		 << fbinfo->green_mask_pos;
	color |= (apply_blend(apply_map(rgb->blue, &color_map.blue),
			      blend.rgb.blue)
		  >> (8 - fbinfo->blue_mask_size))
		 << fbinfo->blue_mask_pos;
	if (invert)
		color ^= 0xffffffff;
	return color;
}

/*
 * Plot a pixel in a framebuffer. This is called from tight loops. Keep it slim
 * and do the validation at callers' site.
 */
static inline void set_pixel(struct vector *coord, uint32_t color)
{
	const int bpp = fbinfo->bits_per_pixel;
	const int bpl = fbinfo->bytes_per_line;
	struct vector rcoord;
	int i;

	switch (fbinfo->orientation) {
	case CB_FB_ORIENTATION_NORMAL:
	default:
		rcoord.x = coord->x;
		rcoord.y = coord->y;
		break;
	case CB_FB_ORIENTATION_BOTTOM_UP:
		rcoord.x = screen.size.width - 1 - coord->x;
		rcoord.y = screen.size.height - 1 - coord->y;
		break;
	case CB_FB_ORIENTATION_LEFT_UP:
		rcoord.x = coord->y;
		rcoord.y = screen.size.width - 1 - coord->x;
		break;
	case CB_FB_ORIENTATION_RIGHT_UP:
		rcoord.x = screen.size.height - 1 - coord->y;
		rcoord.y = coord->x;
		break;
	}

	uint8_t * const pixel = FB + rcoord.y * bpl + rcoord.x * bpp / 8;
	for (i = 0; i < bpp / 8; i++)
		pixel[i] = (color >> (i * 8));
}

/*
 * Initializes the library. Automatically called by APIs. It sets up
 * the canvas and the framebuffer.
 */
static int cbgfx_init(void)
{
	if (initialized)
		return 0;

	fbinfo = &lib_sysinfo.framebuffer;

	if (!fbinfo->physical_address)
		return CBGFX_ERROR_FRAMEBUFFER_ADDR;

	switch (fbinfo->orientation) {
	default: /* Normal or rotated 180 degrees. */
		screen.size.width = fbinfo->x_resolution;
		screen.size.height = fbinfo->y_resolution;
		break;
	case CB_FB_ORIENTATION_LEFT_UP: /* 90 degree rotation. */
	case CB_FB_ORIENTATION_RIGHT_UP:
		screen.size.width = fbinfo->y_resolution;
		screen.size.height = fbinfo->x_resolution;
		break;
	}
	screen.offset.x = 0;
	screen.offset.y = 0;

	/* Calculate canvas size & offset. Canvas is always square. */
	if (screen.size.height > screen.size.width) {
		canvas.size.height = screen.size.width;
		canvas.size.width = canvas.size.height;
		canvas.offset.x = 0;
		canvas.offset.y = (screen.size.height - canvas.size.height) / 2;
	} else {
		canvas.size.height = screen.size.height;
		canvas.size.width = canvas.size.height;
		canvas.offset.x = (screen.size.width - canvas.size.width) / 2;
		canvas.offset.y = 0;
	}

	initialized = 1;
	LOG("cbgfx initialized: screen:width=%d, height=%d, offset=%d canvas:width=%d, height=%d, offset=%d\n",
	    screen.size.width, screen.size.height, screen.offset.x,
	    canvas.size.width, canvas.size.height, canvas.offset.x);

	return 0;
}

int draw_box(const struct rect *box, const struct rgb_color *rgb)
{
	struct vector top_left;
	struct vector p, t;

	if (cbgfx_init())
		return CBGFX_ERROR_INIT;

	const uint32_t color = calculate_color(rgb, 0);
	const struct scale top_left_s = {
		.x = { .n = box->offset.x, .d = CANVAS_SCALE, },
		.y = { .n = box->offset.y, .d = CANVAS_SCALE, }
	};
	const struct scale bottom_right_s = {
		.x = { .n = box->offset.x + box->size.x, .d = CANVAS_SCALE, },
		.y = { .n = box->offset.y + box->size.y, .d = CANVAS_SCALE, }
	};

	transform_vector(&top_left, &canvas.size, &top_left_s, &canvas.offset);
	transform_vector(&t, &canvas.size, &bottom_right_s, &canvas.offset);
	if (within_box(&t, &canvas) < 0) {
		LOG("Box exceeds canvas boundary\n");
		return CBGFX_ERROR_BOUNDARY;
	}

	for (p.y = top_left.y; p.y < t.y; p.y++)
		for (p.x = top_left.x; p.x < t.x; p.x++)
			set_pixel(&p, color);

	return CBGFX_SUCCESS;
}

int draw_rounded_box(const struct scale *pos_rel, const struct scale *dim_rel,
		     const struct rgb_color *rgb,
		     const struct fraction *thickness,
		     const struct fraction *radius)
{
	struct scale pos_end_rel;
	struct vector top_left;
	struct vector p, t;

	if (cbgfx_init())
		return CBGFX_ERROR_INIT;

	const uint32_t color = calculate_color(rgb, 0);

	if (!is_valid_scale(pos_rel) || !is_valid_scale(dim_rel))
		return CBGFX_ERROR_INVALID_PARAMETER;

	add_scales(&pos_end_rel, pos_rel, dim_rel);
	transform_vector(&top_left, &canvas.size, pos_rel, &canvas.offset);
	transform_vector(&t, &canvas.size, &pos_end_rel, &canvas.offset);
	if (within_box(&t, &canvas) < 0) {
		LOG("Box exceeds canvas boundary\n");
		return CBGFX_ERROR_BOUNDARY;
	}

	if (!is_valid_fraction(thickness) || !is_valid_fraction(radius))
		return CBGFX_ERROR_INVALID_PARAMETER;

	struct scale thickness_scale = {
		.x = { .n = thickness->n, .d = thickness->d },
		.y = { .n = thickness->n, .d = thickness->d },
	};
	struct scale radius_scale = {
		.x = { .n = radius->n, .d = radius->d },
		.y = { .n = radius->n, .d = radius->d },
	};
	struct vector d, r, s;
	transform_vector(&d, &canvas.size, &thickness_scale, &vzero);
	transform_vector(&r, &canvas.size, &radius_scale, &vzero);
	const uint8_t has_thickness = d.x > 0 && d.y > 0;
	if (thickness->n != 0 && !has_thickness)
		LOG("Thickness truncated to 0\n");
	const uint8_t has_radius = r.x > 0 && r.y > 0;
	if (radius->n != 0 && !has_radius)
		LOG("Radius truncated to 0\n");
	if (has_radius) {
		if (d.x > r.x || d.y > r.y) {
			LOG("Thickness cannot be greater than radius\n");
			return CBGFX_ERROR_INVALID_PARAMETER;
		}
		if (r.x * 2 > t.x - top_left.x || r.y * 2 > t.y - top_left.y) {
			LOG("Radius cannot be greater than half of the box\n");
			return CBGFX_ERROR_INVALID_PARAMETER;
		}
	}

	/* Step 1: Draw edges */
	int32_t x_begin, x_end;
	if (has_thickness) {
		/* top */
		for (p.y = top_left.y; p.y < top_left.y + d.y; p.y++)
			for (p.x = top_left.x + r.x; p.x < t.x - r.x; p.x++)
				set_pixel(&p, color);
		/* bottom */
		for (p.y = t.y - d.y; p.y < t.y; p.y++)
			for (p.x = top_left.x + r.x; p.x < t.x - r.x; p.x++)
				set_pixel(&p, color);
		for (p.y = top_left.y + r.y; p.y < t.y - r.y; p.y++) {
			/* left */
			for (p.x = top_left.x; p.x < top_left.x + d.x; p.x++)
				set_pixel(&p, color);
			/* right */
			for (p.x = t.x - d.x; p.x < t.x; p.x++)
				set_pixel(&p, color);
		}
	} else {
		/* Fill the regions except circular sectors */
		for (p.y = top_left.y; p.y < t.y; p.y++) {
			if (p.y >= top_left.y + r.y && p.y < t.y - r.y) {
				x_begin = top_left.x;
				x_end = t.x;
			} else {
				x_begin = top_left.x + r.x;
				x_end = t.x - r.x;
			}
			for (p.x = x_begin; p.x < x_end; p.x++)
				set_pixel(&p, color);
		}
	}

	if (!has_radius)
		return CBGFX_SUCCESS;

	/*
	 * Step 2: Draw rounded corners
	 * When has_thickness, only the border is drawn. With fixed thickness,
	 * the time complexity is linear to the size of the box.
	 */
	if (has_thickness) {
		s.x = r.x - d.x;
		s.y = r.y - d.y;
	} else {
		s.x = 0;
		s.y = 0;
	}

	/* Use 64 bits to avoid overflow */
	int32_t x, y;
	uint64_t yy;
	const uint64_t rrx = (uint64_t)r.x * r.x, rry = (uint64_t)r.y * r.y;
	const uint64_t ssx = (uint64_t)s.x * s.x, ssy = (uint64_t)s.y * s.y;
	x_begin = 0;
	x_end = 0;
	for (y = r.y - 1; y >= 0; y--) {
		/*
		 * The inequality is valid in the beginning of each iteration:
		 * y^2 + x_end^2 < r^2
		 */
		yy = (uint64_t)y * y;
		/* Check yy/ssy + xx/ssx < 1 */
		while (yy * ssx + x_begin * x_begin * ssy < ssx * ssy)
			x_begin++;
		/* The inequality must be valid now: y^2 + x_begin >= s^2 */
		x = x_begin;
		/* Check yy/rry + xx/rrx < 1 */
		while (x < x_end || yy * rrx + x * x * rry < rrx * rry) {
			/*
			 * Example sequence of (y, x) when s = (4, 4) and
			 * r = (5, 5):
			 *   [(4, 0), (4, 1), (4, 2), (3, 3), (2, 4),
			 *    (1, 4), (0, 4)].
			 * If s.x==s.y r.x==r.y, then the sequence will be
			 * symmetric, and x and y will range from 0 to (r-1).
			 */
			/* top left */
			p.y = top_left.y + r.y - 1 - y;
			p.x = top_left.x + r.x - 1 - x;
			set_pixel(&p, color);
			/* top right */
			p.y = top_left.y + r.y - 1 - y;
			p.x = t.x - r.x + x;
			set_pixel(&p, color);
			/* bottom left */
			p.y = t.y - r.y + y;
			p.x = top_left.x + r.x - 1 - x;
			set_pixel(&p, color);
			/* bottom right */
			p.y = t.y - r.y + y;
			p.x = t.x - r.x + x;
			set_pixel(&p, color);
			x++;
		}
		x_end = x;
		/* (x_begin <= x_end) must hold now */
	}

	return CBGFX_SUCCESS;
}

int draw_line(const struct scale *pos1, const struct scale *pos2,
	      const struct fraction *thickness, const struct rgb_color *rgb)
{
	struct fraction len;
	struct vector top_left;
	struct vector size;
	struct vector p, t;

	if (cbgfx_init())
		return CBGFX_ERROR_INIT;

	const uint32_t color = calculate_color(rgb, 0);

	if (!is_valid_fraction(thickness))
		return CBGFX_ERROR_INVALID_PARAMETER;

	transform_vector(&top_left, &canvas.size, pos1, &canvas.offset);
	if (fraction_equal(&pos1->y, &pos2->y)) {
		/* Horizontal line */
		subtract_fractions(&len, &pos2->x, &pos1->x);
		struct scale dim = {
			.x = { .n = len.n, .d = len.d },
			.y = { .n = thickness->n, .d = thickness->d },
		};
		transform_vector(&size, &canvas.size, &dim, &vzero);
		size.y = MAX(size.y, 1);
	} else if (fraction_equal(&pos1->x, &pos2->x)) {
		/* Vertical line */
		subtract_fractions(&len, &pos2->y, &pos1->y);
		struct scale dim = {
			.x = { .n = thickness->n, .d = thickness->d },
			.y = { .n = len.n, .d = len.d },
		};
		transform_vector(&size, &canvas.size, &dim, &vzero);
		size.x = MAX(size.x, 1);
	} else {
		LOG("Only support horizontal and vertical lines\n");
		return CBGFX_ERROR_INVALID_PARAMETER;
	}

	add_vectors(&t, &top_left, &size);
	if (within_box(&t, &canvas) < 0) {
		LOG("Line exceeds canvas boundary\n");
		return CBGFX_ERROR_BOUNDARY;
	}

	for (p.y = top_left.y; p.y < t.y; p.y++)
		for (p.x = top_left.x; p.x < t.x; p.x++)
			set_pixel(&p, color);

	return CBGFX_SUCCESS;
}

int clear_canvas(const struct rgb_color *rgb)
{
	const struct rect box = {
		vzero,
		.size = {
			.width = CANVAS_SCALE,
			.height = CANVAS_SCALE,
		},
	};

	if (cbgfx_init())
		return CBGFX_ERROR_INIT;

	return draw_box(&box, rgb);
}

int clear_screen(const struct rgb_color *rgb)
{
	if (cbgfx_init())
		return CBGFX_ERROR_INIT;

	struct vector p;
	uint32_t color = calculate_color(rgb, 0);
	const int bpp = fbinfo->bits_per_pixel;
	const int bpl = fbinfo->bytes_per_line;

	/* If all significant bytes in color are equal, fastpath through memset.
	 * We assume that for 32bpp the high byte gets ignored anyway. */
	if ((((color >> 8) & 0xff) == (color & 0xff)) && (bpp == 16 ||
	    (((color >> 16) & 0xff) == (color & 0xff)))) {
		memset(FB, color & 0xff, fbinfo->y_resolution * bpl);
	} else {
		for (p.y = 0; p.y < screen.size.height; p.y++)
			for (p.x = 0; p.x < screen.size.width; p.x++)
				set_pixel(&p, color);
	}

	return CBGFX_SUCCESS;
}

static int pal_to_rgb(uint8_t index, const struct bitmap_palette_element_v3 *pal,
		      size_t palcount, struct rgb_color *out)
{
	if (index >= palcount) {
		LOG("Color index %d exceeds palette boundary\n", index);
		return CBGFX_ERROR_BITMAP_DATA;
	}

	out->red = pal[index].red;
	out->green = pal[index].green;
	out->blue = pal[index].blue;
	return CBGFX_SUCCESS;
}

/*
 * We're using the Lanczos resampling algorithm to rescale images to a new size.
 * Since output size is often not cleanly divisible by input size, an output
 * pixel (ox,oy) corresponds to a point that lies in the middle between several
 * input pixels (ix,iy), meaning that if you transformed the coordinates of the
 * output pixel into the input image space, they would be fractional. To sample
 * the color of this "virtual" pixel with fractional coordinates, we gather the
 * 6x6 grid of nearest real input pixels in a sample array. Then we multiply the
 * color values for each of those pixels (separately for red, green and blue)
 * with a "weight" value that was calculated from the distance between that
 * input pixel and the fractional output pixel coordinates. This is done for
 * both X and Y dimensions separately. The combined weights for all 36 sample
 * pixels add up to 1.0, so by adding up the multiplied color values we get the
 * interpolated color for the output pixel.
 *
 * The CONFIG_LP_CBGFX_FAST_RESAMPLE option let's the user change the 'a'
 * parameter from the Lanczos weight formula from 3 to 2, which effectively
 * reduces the size of the sample array from 6x6 to 4x4. This is a bit faster
 * but doesn't look as good. Most use cases should be fine without it.
 */
#if CONFIG(LP_CBGFX_FAST_RESAMPLE)
#define LNCZ_A 2
#else
#define LNCZ_A 3
#endif

/*
 * When walking the sample array we often need to start at a pixel close to our
 * fractional output pixel (for convenience we choose the pixel on the top-left
 * which corresponds to the integer parts of the output pixel coordinates) and
 * then work our way outwards in both directions from there. Arrays in C must
 * start at 0 but we'd really prefer indexes to go from -2 to 3 (for 6x6)
 * instead, so that this "start pixel" could be 0. Since we cannot do that,
 * define a constant for the index of that "0th" pixel instead.
 */
#define S0 (LNCZ_A - 1)

/* The size of the sample array, which we need a lot. */
#define SSZ (LNCZ_A * 2)

/*
 * This is implementing the Lanczos kernel according to:
 * https://en.wikipedia.org/wiki/Lanczos_resampling
 *
 *         / 1							if x = 0
 * L(x) = <  a * sin(pi * x) * sin(pi * x / a) / (pi^2 * x^2)	if -a < x <= a
 *	   \ 0							otherwise
 */
static fpmath_t lanczos_weight(fpmath_t in, int off)
{
	/*
	 * |in| is the output pixel coordinate scaled into the input pixel
	 * space. |off| is the offset in the sample array for the pixel whose
	 * weight we're calculating. (off - S0) is the distance from that
	 * sample pixel to the S0 pixel, and the fractional part of |in|
	 * (in - floor(in)) is by definition the distance between S0 and the
	 * output pixel.
	 *
	 * So (off - S0) - (in - floor(in)) is the distance from the sample
	 * pixel to S0 minus the distance from S0 to the output pixel, aka
	 * the distance from the sample pixel to the output pixel.
	 */
	fpmath_t x = fpisub(off - S0, fpsubi(in, fpfloor(in)));

	if (fpequals(x, fp(0)))
		return fp(1);

	/* x * 2 / a can save some instructions if a == 2 */
	fpmath_t x2a = x;
	if (LNCZ_A != 2)
		x2a = fpmul(x, fpfrac(2, LNCZ_A));

	fpmath_t x_times_pi = fpmul(x, fppi());

	/*
	 * Rather than using sinr(pi*x), we leverage the "one-based" sine
	 * function (see <fpmath.h>) with sin1(2*x) so that the pi is eliminated
	 * since multiplication by an integer is a slightly faster operation.
	 */
	fpmath_t tmp = fpmuli(fpdiv(fpsin1(fpmuli(x, 2)), x_times_pi), LNCZ_A);
	return fpdiv(fpmul(tmp, fpsin1(x2a)), x_times_pi);
}

static int draw_bitmap_v3(const struct vector *top_left,
			  const struct vector *dim,
			  const struct vector *dim_org,
			  const struct bitmap_header_v3 *header,
			  const struct bitmap_palette_element_v3 *pal,
			  const uint8_t *pixel_array, uint8_t invert)
{
	const int bpp = header->bits_per_pixel;
	int32_t dir;
	struct vector p;
	int32_t ox, oy;		/* output (resampled) pixel coordinates */
	int32_t ix, iy;		/* input (source image) pixel coordinates */
	int sx, sy;	/* index into |sample| (not ringbuffer adjusted) */

	if (header->compression) {
		LOG("Compressed bitmaps are not supported\n");
		return CBGFX_ERROR_BITMAP_FORMAT;
	}
	if (bpp >= 16) {
		LOG("Non-palette bitmaps are not supported\n");
		return CBGFX_ERROR_BITMAP_FORMAT;
	}
	if (bpp != 8) {
		LOG("Unsupported bits per pixel: %d\n", bpp);
		return CBGFX_ERROR_BITMAP_FORMAT;
	}

	const int32_t y_stride = ROUNDUP(dim_org->width * bpp / 8, 4);
	/*
	 * header->height can be positive or negative.
	 *
	 * If it's negative, pixel data is stored from top to bottom. We render
	 * image from the lowest row to the highest row.
	 *
	 * If it's positive, pixel data is stored from bottom to top. We render
	 * image from the highest row to the lowest row.
	 */
	p.y = top_left->y;
	if (header->height < 0) {
		dir = 1;
	} else {
		p.y += dim->height - 1;
		dir = -1;
	}

	/* Don't waste time resampling when the scale is 1:1. */
	if (dim_org->width == dim->width && dim_org->height == dim->height) {
		for (oy = 0; oy < dim->height; oy++, p.y += dir) {
			p.x = top_left->x;
			for (ox = 0; ox < dim->width; ox++, p.x++) {
				struct rgb_color rgb;
				if (pal_to_rgb(pixel_array[oy * y_stride + ox],
					       pal, header->colors_used, &rgb))
					return CBGFX_ERROR_BITMAP_DATA;
				set_pixel(&p, calculate_color(&rgb, invert));
			}
		}
		return CBGFX_SUCCESS;
	}

	/* Precalculate the X-weights for every possible ox so that we only have
	   to multiply weights together in the end. */
	fpmath_t (*weight_x)[SSZ] = malloc(sizeof(fpmath_t) * SSZ * dim->width);
	if (!weight_x)
		return CBGFX_ERROR_UNKNOWN;
	for (ox = 0; ox < dim->width; ox++) {
		for (sx = 0; sx < SSZ; sx++) {
			fpmath_t ixfp = fpfrac(ox * dim_org->width, dim->width);
			weight_x[ox][sx] = lanczos_weight(ixfp, sx);
		}
	}

	/*
	 * For every sy in the sample array, we directly cache a pointer into
	 * the .BMP pixel array for the start of the corresponding line. On the
	 * edges of the image (where we don't have any real pixels to fill all
	 * lines in the sample array), we just reuse the last valid lines inside
	 * the image for all lines that would lie outside.
	 */
	const uint8_t *ypix[SSZ];
	for (sy = 0; sy < SSZ; sy++) {
		if (sy <= S0)
			ypix[sy] = pixel_array;
		else if (sy - S0 >= dim_org->height)
			ypix[sy] = ypix[sy - 1];
		else
			ypix[sy] = &pixel_array[y_stride * (sy - S0)];
	}

	/* iy and ix track the input pixel corresponding to sample[S0][S0]. */
	iy = 0;
	for (oy = 0; oy < dim->height; oy++, p.y += dir) {
		struct rgb_color sample[SSZ][SSZ];

		/* Like with X weights, we also cache all Y weights. */
		fpmath_t iyfp = fpfrac(oy * dim_org->height, dim->height);
		fpmath_t weight_y[SSZ];
		for (sy = 0; sy < SSZ; sy++)
			weight_y[sy] = lanczos_weight(iyfp, sy);

		/*
		 * If we have a new input pixel line between the last oy and
		 * this one, we have to adjust iy forward. When upscaling, this
		 * is not always the case for each new output line. When
		 * downscaling, we may even cross more than one line per output
		 * pixel.
		 */
		while (fpfloor(iyfp) > iy) {
			iy++;

			/* Shift ypix array up to center around next iy line. */
			for (sy = 0; sy < SSZ - 1; sy++)
				ypix[sy] = ypix[sy + 1];

			/* Calculate the last ypix that is being shifted in,
			   but beware of reaching the end of the input image. */
			if (iy + LNCZ_A < dim_org->height)
				ypix[SSZ - 1] = &pixel_array[y_stride *
							     (iy + LNCZ_A)];
		}

		/*
		 * Initialize the sample array for this line, and also
		 * the equals counter, which counts how many of the latest
		 * pixels were exactly equal.
		 */
		int equals = 0;
		uint8_t last_equal = ypix[0][0];
		for (sx = 0; sx < SSZ; sx++) {
			for (sy = 0; sy < SSZ; sy++) {
				if (sx - S0 >= dim_org->width) {
					sample[sx][sy] = sample[sx - 1][sy];
					equals++;
					continue;
				}
				/*
				 * For pixels to the left of S0 there are no
				 * corresponding input pixels so just use
				 * ypix[sy][0].
				 */
				uint8_t i = ypix[sy][MAX(0, sx - S0)];
				if (pal_to_rgb(i, pal, header->colors_used,
					       &sample[sx][sy]))
					goto bitmap_error;
				if (i == last_equal) {
					equals++;
				} else {
					last_equal = i;
					equals = 1;
				}
			}
		}

		ix = 0;
		p.x = top_left->x;
		for (ox = 0; ox < dim->width; ox++, p.x++) {
			/* Adjust ix forward, same as iy above. */
			fpmath_t ixfp = fpfrac(ox * dim_org->width, dim->width);
			while (fpfloor(ixfp) > ix) {
				ix++;

				/*
				 * We want to reuse the sample columns we
				 * already have, but we don't want to copy them
				 * all around for every new column either.
				 * Instead, treat the X dimension of the sample
				 * array like a ring buffer indexed by ix. rx is
				 * the ringbuffer-adjusted offset of the new
				 * column in sample (the rightmost one) we're
				 * trying to fill.
				 */
				int rx = (SSZ - 1 + ix) % SSZ;
				for (sy = 0; sy < SSZ; sy++) {
					if (ix + LNCZ_A >= dim_org->width) {
						sample[rx][sy] = sample[(SSZ - 2
							+ ix) % SSZ][sy];
						equals++;
						continue;
					}
					uint8_t i = ypix[sy][ix + LNCZ_A];
					if (i == last_equal) {
						if (equals++ >= (SSZ * SSZ))
							continue;
					} else {
						last_equal = i;
						equals = 1;
					}
					if (pal_to_rgb(i, pal,
						       header->colors_used,
						       &sample[rx][sy]))
						goto bitmap_error;
				}
			}

			/* If all pixels in sample are equal, fast path. */
			if (equals >= (SSZ * SSZ)) {
				set_pixel(&p, calculate_color(&sample[0][0],
							      invert));
				continue;
			}

			fpmath_t red = fp(0);
			fpmath_t green = fp(0);
			fpmath_t blue = fp(0);
			for (sy = 0; sy < SSZ; sy++) {
				for (sx = 0; sx < SSZ; sx++) {
					int rx = (sx + ix) % SSZ;
					fpmath_t weight = fpmul(weight_x[ox][sx],
								weight_y[sy]);
					red = fpadd(red, fpmuli(weight,
						sample[rx][sy].red));
					green = fpadd(green, fpmuli(weight,
						sample[rx][sy].green));
					blue = fpadd(blue, fpmuli(weight,
						sample[rx][sy].blue));
				}
			}

			/*
			 * Weights *should* sum up to 1.0 (making this not
			 * necessary) but just to hedge against rounding errors
			 * we should clamp color values to their legal limits.
			 */
			struct rgb_color rgb = {
				.red = MAX(0, MIN(UINT8_MAX, fpround(red))),
				.green = MAX(0, MIN(UINT8_MAX, fpround(green))),
				.blue = MAX(0, MIN(UINT8_MAX, fpround(blue))),
			};

			set_pixel(&p, calculate_color(&rgb, invert));
		}
	}

	free(weight_x);
	return CBGFX_SUCCESS;

bitmap_error:
	free(weight_x);
	return CBGFX_ERROR_BITMAP_DATA;
}

static int get_bitmap_file_header(const void *bitmap, size_t size,
				  struct bitmap_file_header *file_header)
{
	const struct bitmap_file_header *fh;

	if (sizeof(*file_header) > size) {
		LOG("Invalid bitmap data\n");
		return CBGFX_ERROR_BITMAP_DATA;
	}
	fh = (struct bitmap_file_header *)bitmap;
	if (fh->signature[0] != 'B' || fh->signature[1] != 'M') {
		LOG("Bitmap signature mismatch\n");
		return CBGFX_ERROR_BITMAP_SIGNATURE;
	}
	file_header->file_size = le32toh(fh->file_size);
	if (file_header->file_size != size) {
		LOG("Bitmap file size does not match cbfs file size\n");
		return CBGFX_ERROR_BITMAP_DATA;
	}
	file_header->bitmap_offset = le32toh(fh->bitmap_offset);

	return CBGFX_SUCCESS;
}

static int parse_bitmap_header_v3(
			const uint8_t *bitmap,
			size_t size,
			/* ^--- IN / OUT ---v */
			struct bitmap_header_v3 *header,
			const struct bitmap_palette_element_v3 **palette,
			const uint8_t **pixel_array,
			struct vector *dim_org)
{
	struct bitmap_file_header file_header;
	struct bitmap_header_v3 *h;
	int rv;

	rv = get_bitmap_file_header(bitmap, size, &file_header);
	if (rv)
		return rv;

	size_t header_offset = sizeof(struct bitmap_file_header);
	size_t header_size = sizeof(struct bitmap_header_v3);
	size_t palette_offset = header_offset + header_size;
	size_t file_size = file_header.file_size;

	h = (struct bitmap_header_v3 *)(bitmap + header_offset);
	header->header_size = le32toh(h->header_size);
	if (header->header_size != header_size) {
		LOG("Unsupported bitmap format\n");
		return CBGFX_ERROR_BITMAP_FORMAT;
	}

	header->width = le32toh(h->width);
	header->height = le32toh(h->height);
	if (header->width == 0 || header->height == 0) {
		LOG("Invalid image width or height\n");
		return CBGFX_ERROR_BITMAP_DATA;
	}
	dim_org->width = header->width;
	dim_org->height = ABS(header->height);

	header->bits_per_pixel = le16toh(h->bits_per_pixel);
	header->compression = le32toh(h->compression);
	header->size = le32toh(h->size);
	header->colors_used = le32toh(h->colors_used);
	size_t palette_size = header->colors_used
			* sizeof(struct bitmap_palette_element_v3);
	size_t pixel_offset = file_header.bitmap_offset;
	if (pixel_offset > file_size) {
		LOG("Bitmap pixel data exceeds buffer boundary\n");
		return CBGFX_ERROR_BITMAP_DATA;
	}
	if (palette_offset + palette_size > pixel_offset) {
		LOG("Bitmap palette data exceeds palette boundary\n");
		return CBGFX_ERROR_BITMAP_DATA;
	}
	*palette = (struct bitmap_palette_element_v3 *)(bitmap +
			palette_offset);

	size_t pixel_size = header->size;
	if (pixel_size != dim_org->height *
		ROUNDUP(dim_org->width * header->bits_per_pixel / 8, 4)) {
		LOG("Bitmap pixel array size does not match expected size\n");
		return CBGFX_ERROR_BITMAP_DATA;
	}
	if (pixel_offset + pixel_size > file_size) {
		LOG("Bitmap pixel array exceeds buffer boundary\n");
		return CBGFX_ERROR_BITMAP_DATA;
	}
	*pixel_array = bitmap + pixel_offset;

	return CBGFX_SUCCESS;
}

/*
 * This calculates the dimension of the image projected on the canvas from the
 * dimension relative to the canvas size. If either width or height is zero, it
 * is derived from the other (non-zero) value to keep the aspect ratio.
 */
static int calculate_dimension(const struct vector *dim_org,
			       const struct scale *dim_rel,
			       struct vector *dim)
{
	if (dim_rel->x.n == 0 && dim_rel->y.n == 0)
		return CBGFX_ERROR_INVALID_PARAMETER;

	if (dim_rel->x.n > dim_rel->x.d || dim_rel->y.n > dim_rel->y.d)
		return CBGFX_ERROR_INVALID_PARAMETER;

	if (dim_rel->x.n > 0) {
		if (!is_valid_fraction(&dim_rel->x))
			return CBGFX_ERROR_INVALID_PARAMETER;
		dim->width = canvas.size.width  * dim_rel->x.n / dim_rel->x.d;
	}
	if (dim_rel->y.n > 0) {
		if (!is_valid_fraction(&dim_rel->y))
			return CBGFX_ERROR_INVALID_PARAMETER;
		dim->height = canvas.size.height * dim_rel->y.n / dim_rel->y.d;
	}

	/* Derive height from width using aspect ratio */
	if (dim_rel->y.n == 0)
		dim->height = dim->width * dim_org->height / dim_org->width;
	/* Derive width from height using aspect ratio */
	if (dim_rel->x.n == 0)
		dim->width = dim->height * dim_org->width / dim_org->height;

	return CBGFX_SUCCESS;
}

static int calculate_position(const struct vector *dim,
			      const struct scale *pos_rel, uint8_t pivot,
			      struct vector *top_left)
{
	int rv;

	rv = transform_vector(top_left, &canvas.size, pos_rel, &canvas.offset);
	if (rv)
		return rv;

	switch (pivot & PIVOT_H_MASK) {
	case PIVOT_H_LEFT:
		break;
	case PIVOT_H_CENTER:
		top_left->x -= dim->width / 2;
		break;
	case PIVOT_H_RIGHT:
		top_left->x -= dim->width;
		break;
	default:
		return CBGFX_ERROR_INVALID_PARAMETER;
	}

	switch (pivot & PIVOT_V_MASK) {
	case PIVOT_V_TOP:
		break;
	case PIVOT_V_CENTER:
		top_left->y -= dim->height / 2;
		break;
	case PIVOT_V_BOTTOM:
		top_left->y -= dim->height;
		break;
	default:
		return CBGFX_ERROR_INVALID_PARAMETER;
	}

	return CBGFX_SUCCESS;
}

static int check_boundary(const struct vector *top_left,
			  const struct vector *dim,
			  const struct rect *bound)
{
	struct vector v;
	add_vectors(&v, dim, top_left);
	if (top_left->x < bound->offset.x
			|| top_left->y < bound->offset.y
			|| within_box(&v, bound) < 0)
		return CBGFX_ERROR_BOUNDARY;
	return CBGFX_SUCCESS;
}

int draw_bitmap(const void *bitmap, size_t size,
		const struct scale *pos_rel, const struct scale *dim_rel,
		uint32_t flags)
{
	struct bitmap_header_v3 header;
	const struct bitmap_palette_element_v3 *palette;
	const uint8_t *pixel_array;
	struct vector top_left, dim, dim_org;
	int rv;
	const uint8_t pivot = flags & PIVOT_MASK;
	const uint8_t invert = (flags & INVERT_COLORS) >> INVERT_SHIFT;

	if (cbgfx_init())
		return CBGFX_ERROR_INIT;

	/* only v3 is supported now */
	rv = parse_bitmap_header_v3(bitmap, size,
				    &header, &palette, &pixel_array, &dim_org);
	if (rv)
		return rv;

	/* Calculate height and width of the image */
	rv = calculate_dimension(&dim_org, dim_rel, &dim);
	if (rv)
		return rv;

	/* Calculate coordinate */
	rv = calculate_position(&dim, pos_rel, pivot, &top_left);
	if (rv)
		return rv;

	rv = check_boundary(&top_left, &dim, &canvas);
	if (rv) {
		LOG("Bitmap image exceeds canvas boundary\n");
		return rv;
	}

	return draw_bitmap_v3(&top_left, &dim, &dim_org,
			      &header, palette, pixel_array, invert);
}

int draw_bitmap_direct(const void *bitmap, size_t size,
		       const struct vector *top_left)
{
	struct bitmap_header_v3 header;
	const struct bitmap_palette_element_v3 *palette;
	const uint8_t *pixel_array;
	struct vector dim;
	int rv;

	if (cbgfx_init())
		return CBGFX_ERROR_INIT;

	/* only v3 is supported now */
	rv = parse_bitmap_header_v3(bitmap, size,
				    &header, &palette, &pixel_array, &dim);
	if (rv)
		return rv;

	rv = check_boundary(top_left, &dim, &screen);
	if (rv) {
		LOG("Bitmap image exceeds screen boundary\n");
		return rv;
	}

	return draw_bitmap_v3(top_left, &dim, &dim,
			      &header, palette, pixel_array, 0);
}

int get_bitmap_dimension(const void *bitmap, size_t sz, struct scale *dim_rel)
{
	struct bitmap_header_v3 header;
	const struct bitmap_palette_element_v3 *palette;
	const uint8_t *pixel_array;
	struct vector dim, dim_org;
	int rv;

	if (cbgfx_init())
		return CBGFX_ERROR_INIT;

	/* Only v3 is supported now */
	rv = parse_bitmap_header_v3(bitmap, sz,
				    &header, &palette, &pixel_array, &dim_org);
	if (rv)
		return rv;

	/* Calculate height and width of the image */
	rv = calculate_dimension(&dim_org, dim_rel, &dim);
	if (rv)
		return rv;

	/* Calculate size relative to the canvas */
	dim_rel->x.n = dim.width;
	dim_rel->x.d = canvas.size.width;
	dim_rel->y.n = dim.height;
	dim_rel->y.d = canvas.size.height;

	return CBGFX_SUCCESS;
}

int enable_graphics_buffer(void)
{
	if (gfx_buffer)
		return CBGFX_SUCCESS;

	if (cbgfx_init())
		return CBGFX_ERROR_INIT;

	size_t buffer_size = fbinfo->y_resolution * fbinfo->bytes_per_line;
	gfx_buffer = malloc(buffer_size);
	if (!gfx_buffer) {
		LOG("%s: Failed to create graphics buffer (%zu bytes).\n",
		    __func__, buffer_size);
		return CBGFX_ERROR_GRAPHICS_BUFFER;
	}

	return CBGFX_SUCCESS;
}

int flush_graphics_buffer(void)
{
	if (!gfx_buffer)
		return CBGFX_ERROR_GRAPHICS_BUFFER;

	memcpy(REAL_FB, gfx_buffer, fbinfo->y_resolution * fbinfo->bytes_per_line);
	return CBGFX_SUCCESS;
}

void disable_graphics_buffer(void)
{
	free(gfx_buffer);
	gfx_buffer = NULL;
}