1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
# Writing unit tests for coreboot
## Introduction
General thoughts about unit testing coreboot can be found in [Unit
testing coreboot](../technotes/2020-03-unit-testing-coreboot.md).
Additionally, [code coverage](../technotes/2021-05-code-coverage.md)
support is available for unit tests.
This document aims to guide developers through the process of adding and
writing unit tests for coreboot modules.
As an example of unit under test, `src/device/i2c.c` (referred hereafter
as UUT "Unit Under Test") will be used. This is simple module, thus it
should be easy for the reader to focus solely on the testing logic,
without the need to spend too much time on digging deeply into the
source code details and flow of operations. That being said, a good
understanding of what the unit under test is doing is crucial for
writing unit tests.
This tutorial should also be helpful for developers who want to follow
[TDD](https://en.wikipedia.org/wiki/Test-driven_development). Even
though TDD has a different work flow of building tests first, followed
by the code that satisfies them, the process of writing tests and adding
them to the tree is the same.
## Analysis of unit under test
First of all, it is necessary to precisely establish what we want to
test in a particular module. Usually this will be an externally exposed
API, which can be used by other modules.
```eval_rst
.. admonition:: i2c-test example
In case of our UUT, API consist of two methods:
.. code-block:: c
int i2c_read_field(unsigned int bus, uint8_t chip, uint8_t reg,
uint8_t *data, uint8_t mask, uint8_t shift)
int i2c_write_field(unsigned int bus, uint8_t chip, uint8_t reg,
uint8_t data, uint8_t mask, uint8_t shift)
For sake of simplicity, let's focus on `i2c_read_field` in this
document.
```
Once the API is defined, the next question is __what__ this API is doing
(or what it will be doing in case of TDD). In other words, what outputs
we are expecting from particular functions, when providing particular
input parameters.
```eval_rst
.. admonition:: i2c-test example
.. code-block:: c
int i2c_read_field(unsigned int bus, uint8_t chip, uint8_t reg,
uint8_t *data, uint8_t mask, uint8_t shift)
This is a method which means to read content of register `reg` from
i2c device on i2c `bus` and slave address `chip`, applying bit `mask`
and offset `shift` to it. Returned data should be placed in `data`.
```
The next step is to determine all external dependencies of UUT in order
to mock them out. Usually we want to isolate the UUT as much as
possible, so that the test result depends __only__ on the behavior of
UUT and not on the other modules. While some software dependencies may
be hard to be mock (for example due to complicated dependencies) and
thus should be simply linked into the test binaries, all hardware
dependencies need to be mocked out, since in the user-space host
environment, targets hardware is not available.
```eval_rst
.. admonition:: i2c-test example
`i2c_read_field` is calling `i2c_readb`, which eventually invokes
`i2c_transfer`. This method simply calls `platform_i2c_transfer`. The
last function in the chain is a hardware-touching one, and defined
separately for different SOCs. It is responsible for issuing
transactions on the i2c bus. For the purpose of writing unit test,
we should mock this function.
```
## Adding new tests
In order to keep the tree clean, the `tests/` directory should mimic the
`src/` directory, so that test harness code is placed in a location
corresponding to UUT. Furthermore, the naming convention is to add the
suffix `-test` to the UUT name when creating a new test harness file.
```eval_rst
.. admonition:: i2c-test example
Considering that UUT is `src/device/i2c.c`, test file should be named
`tests/device/i2c-test.c`. When adding a new test file, it needs to
be registered with the coreboot unit testing infrastructure.
```
Every directory under `tests/` should contain a Makefile.inc, similar to
what can be seen under the `src/`. Register a new test in Makefile.inc,
by __appending__ test name to the `tests-y` variable.
```eval_rst
.. admonition:: i2c-test example
.. code-block:: c
tests-y += i2c-test
```
Next step is to list all source files, which should be linked together
in order to create test binary. Usually a tests requires only two files
- UUT and test harness code, but sometimes more is needed to provide the
test environment. Source files are registered in `<test_name>-srcs`
variable.
```eval_rst
.. admonition:: i2c-test example
.. code-block:: c
i2c-test-srcs += tests/device/i2c-test.c
i2c-test-srcs += src/device/i2c.c
```
Above minimal configuration is a basis for further work. One can try to
build and run test binary either by invoking `make
tests/<test_dir>/<test_name>` or by running all unit tests (whole suite)
for coreboot `make unit-tests`.
```eval_rst
.. admonition:: i2c-test example
.. code-block:: c
make tests/device/i2c-test
or
.. code-block:: c
make unit-tests
```
When trying to build test binary, one can often see linker complains
about `undefined reference` to couple of symbols. This is one of
solutions to determine all external dependencies of UUT - iteratively
build test and resolve errors one by one. At this step, developer should
decide either it's better to add an extra module to provide necessary
definitions or rather mock such dependency. Quick guide through adding
mocks is provided later in this doc.
## Writing new tests
In coreboot, [Cmocka](https://cmocka.org/) is used as unit test
framework. The project has exhaustive [API
documentation](https://api.cmocka.org/). Let's see how we may
incorporate it when writing tests.
### Assertions
Testing the UUT consists of calling the functions in the UUT and
comparing the returned values to the expected values. Cmocka implements
[a set of assert
macros](https://api.cmocka.org/group__cmocka__asserts.html) to compare a
value with an expected value. If the two values do not match, the test
fails with an error message.
```eval_rst
.. admonition:: i2c-test example
In our example, the simplest test is to call UUT for reading our fake
devices registers and do all calculation in the test harness itself.
At the end, let's compare integers with `assert_int_equal`.
.. code-block:: c
#define MASK 0x3
#define SHIFT 0x1
static void i2c_read_field_test(void **state)
{
int bus, slave, reg;
int i, j;
uint8_t buf;
mock_expect_params_platform_i2c_transfer();
/* Read particular bits in all registers in all devices, then compare
with expected value. */
for (i = 0; i < ARRAY_SIZE(i2c_ex_devs); i++)
for (j = 0; j < ARRAY_SIZE(i2c_ex_devs[0].regs); j++) {
i2c_read_field(i2c_ex_devs[i].bus,
i2c_ex_devs[i].slave,
i2c_ex_devs[i].regs[j].reg,
&buf, MASK, SHIFT);
assert_int_equal((i2c_ex_devs[i].regs[j].data &
(MASK << SHIFT)) >> SHIFT, buf);
};
}
```
### Mocks
#### Overview
Many coreboot modules are low level software that touch hardware
directly. Because of this, one of the most important and challenging
part of writing tests is to design and implement mocks. A mock is a
software component which implements the API of another component so that
the test can verify that certain functions are called (or not called),
verify the parameters passed to those functions, and specify the return
values from those functions. Mocks are especially useful when the API to
be implemented is one that accesses hardware components.
When writing a mock, the developer implements the same API as the module
being mocked. Such a mock may, for example, register a set of driver
methods. Behind this API, there is usually a simulation of real
hardware.
```eval_rst
.. admonition:: i2c-test example
For purpose of our i2c test, we may introduce two i2c devices with
set of registers, which simply are structs in memory.
.. code-block:: c
/* Simulate two i2c devices, both on bus 0, each with three uint8_t regs
implemented. */
typedef struct {
uint8_t reg;
uint8_t data;
} i2c_ex_regs_t;
typedef struct {
unsigned int bus;
uint8_t slave;
i2c_ex_regs_t regs[3];
} i2c_ex_devs_t;
i2c_ex_devs_t i2c_ex_devs[] = {
{.bus = 0, .slave = 0xA, .regs = {
{.reg = 0x0, .data = 0xB},
{.reg = 0x1, .data = 0x6},
{.reg = 0x2, .data = 0xF},
} },
{.bus = 0, .slave = 0x3, .regs = {
{.reg = 0x0, .data = 0xDE},
{.reg = 0x1, .data = 0xAD},
{.reg = 0x2, .data = 0xBE},
} },
};
These fake devices will be accessed instead of hardware ones:
.. code-block:: c
reg = tmp->buf[0];
/* Find object for requested device */
for (i = 0; i < ARRAY_SIZE(i2c_ex_devs); i++, i2c_dev++)
if (i2c_ex_devs[i].slave == tmp->slave) {
i2c_dev = &i2c_ex_devs[i];
break;
}
if (i2c_dev == NULL)
return -1;
/* Write commands */
if (tmp->len > 1) {
i2c_dev->regs[reg].data = tmp->buf[1];
};
/* Read commands */
for (i = 0; i < count; i++, tmp++)
if (tmp->flags & I2C_M_RD) {
*(tmp->buf) = i2c_dev->regs[reg].data;
};
```
Cmocka uses a feature that gcc provides for breaking dependencies at the
link time. It is possible to override implementation of some function,
with the method from test harness. This allows test harness to take
control of execution from binary (during the execution of test), and
stimulate UUT as required without changing the source code.
coreboot unit test infrastructure supports overriding of functions at
link time. This is as simple as adding a `name_of_function` to be
mocked into <test_name>-mocks variable in Makefile.inc. The result is
that the test's implementation of that function is called instead of
coreboot's.
```eval_rst
.. admonition:: i2c-test example
.. code-block:: c
i2c-test-mocks += platform_i2c_transfer
Now, dev can write own implementation of `platform_i2c_transfer`.
This implementation instead of accessing real i2c bus, will
write/read from fake structs.
.. code-block:: c
int platform_i2c_transfer(unsigned int bus, struct i2c_msg
*segments, int count)
{
}
```
#### Checking mock's arguments
A test can verify the parameters provided by the UUT to the mock
function. The developer may also verify that number of calls to mock is
correct and the order of calls to particular mocks is as expected (See
[this](https://api.cmocka.org/group__cmocka__call__order.html)). The
Cmocka macros for checking parameters are described
[here](https://api.cmocka.org/group__cmocka__param.html). In general, in
mock function, one makes a call to `check_expected(<param_name>)` and in
the corresponding test function, `expect*()` macro, with description
which parameter in which mock should have particular value, or be inside
a described range.
```eval_rst
.. admonition:: i2c-test example
In our example, we may want to check that `platform_i2c_transfer` is
fed with number of segments bigger than 0, each segment has flags
which are in supported range and each segment has buf which is
non-NULL. We are expecting such values for _every_ call, thus the
last parameter in `expect*` macros is -1.
.. code-block:: c
static void mock_expect_params_platform_i2c_transfer(void)
{
unsigned long int expected_flags[] = {0, I2C_M_RD,
I2C_M_TEN, I2C_M_RECV_LEN, I2C_M_NOSTART};
/* Flags should always be only within supported range */
expect_in_set_count(platform_i2c_transfer, segments->flags,
expected_flags, -1);
expect_not_value_count(platform_i2c_transfer, segments->buf,
NULL, -1);
expect_in_range_count(platform_i2c_transfer, count, 1,
INT_MAX, -1);
}
And the checks below should be added to our mock
.. code-block:: c
check_expected(count);
for (i = 0; i < count; i++, segments++) {
check_expected_ptr(segments->buf);
check_expected(segments->flags);
}
```
#### Instrument mocks
It is possible for the test function to instrument what the mock will
return to the UUT. This can be done by using the `will_return*()` and
`mock()` macros. These are described in [the Mock Object
section](https://api.cmocka.org/group__cmocka__mock.html) of the Cmocka
API documentation.
```eval_rst
.. admonition:: Example
There is an non-coreboot example for using Cmocka available
`here <https://lwn.net/Articles/558106/>`_.
```
### Test runner
Finally, the developer needs to implement the test `main()` function.
All tests should be registered there and cmocka test runner invoked. All
methods for invoking Cmocka test are described
[here](https://api.cmocka.org/group__cmocka__exec.html).
```eval_rst
.. admonition:: i2c-test example
We don't need any extra setup and teardown functions for i2c-test, so
let's simply register test for `i2c_read_field` and return from main
value which is output of Cmocka's runner (it returns number of tests
that failed).
.. code-block:: c
int main(void)
{
const struct CMUnitTest tests[] = {
cmocka_unit_test(i2c_read_field_test),
};
return cb_run_group_tests(tests, NULL, NULL);
}
```
|