Age | Commit message (Collapse) | Author |
|
It wasn't even hooked up to the build system anymore.
Change-Id: I4b962ffd945b39451e19da3ec2f7b8e0eecf2e53
Signed-off-by: Patrick Georgi <patrick@georgi-clan.de>
Reviewed-on: http://review.coreboot.org/3892
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
|
|
This stuff is not used, so let's drop it.
Change-Id: I671a5e87855b4c59622cafacdefe466ab3d70143
Signed-off-by: Stefan Reinauer <reinauer@chromium.org>
Signed-off-by: Gabe Black <gabeblack@chromium.org>
Reviewed-on: http://review.coreboot.org/3660
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
|
|
Change-Id: I999987af9cb44906e3c3135c0351a0cd6eb210ff
Signed-off-by: Martin Roth <martin.roth@se-eng.com>
Reviewed-on: http://review.coreboot.org/3756
Reviewed-by: Dave Frodin <dave.frodin@se-eng.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
|
|
The notion of loading a payload in the current boot state
machine isn't actually loading the payload. The reason is
that cbfs is just walked to find the payload. The actual
loading and booting were occuring in selfboot(). Change this
balance so that loading occurs in one function and actual
booting happens in another. This allows for ample opportunity
to delay work until just before booting.
Change-Id: Ic91ed6050fc5d8bb90c8c33a44eea3b1ec84e32d
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3139
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
|
|
On x86 systems there is a concept of cachings the ROM. However,
the typical policy is that the boot cpu is the only one with
it enabled. In order to ensure the MTRRs are the same across cores
the rom cache needs to be disabled prior to OS resume or boot handoff.
Therefore, utilize the boot state callbacks to schedule the disabling
of the ROM cache at the ramstage exit points.
Change-Id: I4da5886d9f1cf4c6af2f09bb909f0d0f0faa4e62
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3138
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
|
|
Utilize the static boot state callback scheduling to initialize
and tear down the coverage infrastructure at the appropriate points.
The coverage initialization is performed at BS_PRE_DEVICE which is the
earliest point a callback can be called. The tear down occurs at the
2 exit points of ramstage: OS resume and payload boot.
Change-Id: Ie5ee51268e1f473f98fa517710a266e38dc01b6d
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3135
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
|
|
On certain architectures such as x86 the bootstrap processor
does most of the work. When CACHE_ROM is employed it's appropriate
to ensure that the caching enablement of the ROM is disabled so that
the caching settings are symmetric before booting the payload or OS.
Tested this on an x86 machine that turned on ROM caching. Linux did not
complain about asymmetric MTRR settings nor did the ROM show up as
cached in the MTRR settings.
Change-Id: Ia32ff9fdb1608667a0e9a5f23b9c8af27d589047
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2980
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
|
|
This patch adds an option to build the ramstage as a reloctable binary.
It uses the rmodule library for the relocation. The main changes
consist of the following:
1. The ramstage is loaded just under the cmbem space.
2. Payloads cannot be loaded over where ramstage is loaded. If a payload
is attempted to load where the relocatable ramstage resides the load
is aborted.
3. The memory occupied by the ramstage is reserved from the OS's usage
using the romstage_handoff structure stored in cbmem. This region is
communicated to ramstage by an CBMEM_ID_ROMSTAGE_INFO entry in cbmem.
4. There is no need to reserve cbmem space for the OS controlled memory for
the resume path because the ramsage region has been reserved in #3.
5. Since no memory needs to be preserved in the wake path, the loading
and begin of execution of a elf payload is straight forward.
Change-Id: Ia66cf1be65c29fa25ca7bd9ea6c8f11d7eee05f5
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2792
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@google.com>
|
|
In certain situations boot speed can be increased by providing an
alternative implementation to cbfs_load_payload(). The
ALT_CBFS_LOAD_PAYLOAD option allows for the mainboard or chipset to
provide its own implementation.
Booted baskingridge board with alternative and regular
cbfs_load_payload().
Change-Id: I547ac9881a82bacbdb3bbdf38088dfcc22fd0c2c
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2782
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marc.jones@se-eng.com>
|
|
Entry point in payload segment header is a 64 bit integer (ntohll). The debug
message is currently reading that as a 32 bit integer (which will produce
00000000 for most platforms).
Change-Id: I931072bbb82c099ce7fae04f15c8a35afa02e510
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2535
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Tested-by: build bot (Jenkins)
|
|
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
|
|
In order to provide some insight on what code is executed during
coreboot's run time and how well our test scenarios work, this
adds code coverage support to coreboot's ram stage. This should
be easily adaptable for payloads, and maybe even romstage.
See http://gcc.gnu.org/onlinedocs/gcc/Gcov.html for
more information.
To instrument coreboot, select CONFIG_COVERAGE ("Code coverage
support") in Kconfig, and recompile coreboot. coreboot will then
store its code coverage information into CBMEM, if possible.
Then, run "cbmem -CV" as root on the target system running the
instrumented coreboot binary. This will create a whole bunch of
.gcda files that contain coverage information. Tar them up, copy
them to your build system machine, and untar them. Then you can
use your favorite coverage utility (gcov, lcov, ...) to visualize
code coverage.
For a sneak peak of what will expect you, please take a look
at http://www.coreboot.org/~stepan/coreboot-coverage/
Change-Id: Ib287d8309878a1f5c4be770c38b1bc0bb3aa6ec7
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/2052
Tested-by: build bot (Jenkins)
Reviewed-by: David Hendricks <dhendrix@chromium.org>
Reviewed-by: Martin Roth <martin@se-eng.com>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
|
|
It only has two files, move them to src/lib
Change-Id: I17943db4c455aa3a934db1cf56e56e89c009679f
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/1959
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
|