Age | Commit message (Collapse) | Author |
|
The memory reference code doesn't maintain some of
the registers which contain valuable information in order
to log correct reset and wake events in the eventlog. Therefore
snapshot the registers which matter in this area so that
they can be consumed by ramstage.
BUG=chrome-os-partner:24907
BRANCH=rambi,squawks
TEST=Did various resets/wakes with logging patch which
consumes this structure. Eventlog can pick up reset
events and power failures.
Change-Id: Id8d2d782dd4e1133113f5308c4ccfe79bc6d3e03
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/181982
Reviewed-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/5032
Tested-by: build bot (Jenkins)
Reviewed-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
|
|
Fixing the location of the ram oops buffer can lead to certain
kernel and boot loaders being confused when there is a ram
reservation low in the address space. Alternatively provide
a mechanism to allocate the ram oops buffer in cbmem. As cbmem
is usually high in the address space it avoids low reservation
confusion.
The patch uncondtionally provides a GOOG9999 ACPI device with
a single memory resource describing the memory region used for
the ramoops region.
BUG=None
BRANCH=baytrail,haswell
TEST=Built and booted with and w/o dynamic ram oops. With
the corresponding kernel change things behave correctly.
Change-Id: Ide2bb4434768c9f9b90e125adae4324cb1d2d073
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/5257
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
|
|
Certain CPUs require the default SMM region to be backed up
on resume after a suspend. The reason is that in order to
relocate the SMM region the default SMM region has to be used.
As coreboot is unaware of how that memory is used it needs to
be backed up. Therefore provide a common method for doing this.
Change-Id: I65fe1317dc0b2203cb29118564fdba995770ffea
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/5216
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@google.com>
|
|
In order to identify the ram used in cbmem for
reference code blobs add common ids to be consumed
by downstream users.
BUG=chrome-os-partner:22866
BRANCH=None
TEST=Built and booted with ref code support. Noted reference
code entries in cbmem.
Change-Id: Iae3f0c2c1ffdb2eb0e82a52ee459d25db44c1904
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/174424
Reviewed-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/4896
Tested-by: build bot (Jenkins)
Reviewed-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
|
|
If we already initialized EHCI controller and USB device in romstage,
locate active configuration from salvaged CAR_GLOBAL and avoid doing
the hardware initialisation again.
Change-Id: I7cb3a359488b25abc9de49c96c0197f6563a4a2c
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/3476
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@google.com>
|
|
The IOMMU AGESA needs a reserved scratch space and it wants
to allocate the stuff for runtime. So provide a simple
allocator for 4 KB CBMEM page.
Change-Id: I53bdfcd2cd69f84fbfbc6edea53a051f516c05cc
Signed-off-by: Rudolf Marek <r.marek@assembler.cz>
Reviewed-on: http://review.coreboot.org/3315
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
|
|
There are some boards that do a significant amount of
work after cache-as-ram is torn down but before ramstage
is loaded. For example, using vboot to verify the ramstage
is one such operation. However, there are pieces of code
that are executed that reference global variables that
are linked in the cache-as-ram region. If those variables
are referenced after cache-as-ram is torn down then the
values observed will most likely be incorrect.
Therefore provide a Kconfig option to select cache-as-ram
migration to memory using cbmem. This option is named
CAR_MIGRATION. When enabled, the address of cache-as-ram
variables may be obtained dynamically. Additionally,
when cache-as-ram migration occurs the cache-as-ram
data region for global variables is copied into cbmem.
There are also automatic callbacks for other modules
to perform their own migration, if necessary.
Change-Id: I2e77219647c2bd2b1aa845b262be3b2543f1fcb7
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3232
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
|
|
The ACPI NVS region was setup in place and there was a CBMEM
table that pointed to it. In order to be able to use NVS
earlier the CBMEM region is allocated for NVS itself during
the LPC device init and the ACPI tables point to it in CBMEM.
The current cbmem region is renamed to ACPI_GNVS_PTR to
indicate that it is really a pointer to the GNVS and does
not actually contain the GNVS.
Change-Id: I31ace432411c7f825d86ca75c63dd79cd658e891
Signed-off-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/2970
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
|
|
The vboot firmware selection from romstage will need to
pass the resulting vboot data to other consumers. This will
be done using a cbmem entry.
Change-Id: I497caba53f9f3944513382f3929d21b04bf3ba9e
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2851
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
|
|
This patch adds a parallel implementation of cbmem that supports
dynamic sizing. The original implementation relied on reserving
a fixed-size block of memory for adding cbmem entries. In order to
allow for more flexibility for adding cbmem allocations the dynamic
cbmem infrastructure was developed as an alternative to the fixed block
approach. Also, the amount of memory to reserve for cbmem allocations
does not need to be known prior to the first allocation.
The dynamic cbmem code implements the same API as the existing cbmem
code except for cbmem_init() and cbmem_reinit(). The add and find
routines behave the same way. The dynamic cbmem infrastructure
uses a top down allocator that starts allocating from a board/chipset
defined function cbmem_top(). A root pointer lives just below
cbmem_top(). In turn that pointer points to the root block which
contains the entries for all the large alloctations. The corresponding
block for each large allocation falls just below the previous entry.
It should be noted that this implementation rounds all allocations
up to a 4096 byte granularity. Though a packing allocator could
be written for small allocations it was deemed OK to just fragment
the memory as there shouldn't be that many small allocations. The
result is less code with a tradeoff of some wasted memory.
+----------------------+ <- cbmem_top()
| +----| root pointer |
| | +----------------------+
| | | |--------+
| +--->| root block |-----+ |
| +----------------------+ | |
| | | | |
| | | | |
| | alloc N |<----+ |
| +----------------------+ |
| | | |
| | | |
\|/ | alloc N + 1 |<-------+
v +----------------------+
In addition to preserving the previous cbmem API, the dynamic
cbmem API allows for removing blocks from cbmem. This allows for
the boot process to allocate memory that can be discarded after
it's been used for performing more complex boot tasks in romstage.
In order to plumb this support in there were some issues to work
around regarding writing of coreboot tables. There were a few
assumptions to how cbmem was layed out which dictated some ifdef
guarding and other runtime checks so as not to incorrectly
tag the e820 and coreboot memory tables.
The example shown below is using dynamic cbmem infrastructure.
The reserved memory for cbmem is less than 512KiB.
coreboot memory table:
0. 0000000000000000-0000000000000fff: CONFIGURATION TABLES
1. 0000000000001000-000000000002ffff: RAM
2. 0000000000030000-000000000003ffff: RESERVED
3. 0000000000040000-000000000009ffff: RAM
4. 00000000000a0000-00000000000fffff: RESERVED
5. 0000000000100000-0000000000efffff: RAM
6. 0000000000f00000-0000000000ffffff: RESERVED
7. 0000000001000000-000000007bf80fff: RAM
8. 000000007bf81000-000000007bffffff: CONFIGURATION TABLES
9. 000000007c000000-000000007e9fffff: RESERVED
10. 00000000f0000000-00000000f3ffffff: RESERVED
11. 00000000fed10000-00000000fed19fff: RESERVED
12. 00000000fed84000-00000000fed84fff: RESERVED
13. 0000000100000000-00000001005fffff: RAM
Wrote coreboot table at: 7bf81000, 0x39c bytes, checksum f5bf
coreboot table: 948 bytes.
CBMEM ROOT 0. 7bfff000 00001000
MRC DATA 1. 7bffe000 00001000
ROMSTAGE 2. 7bffd000 00001000
TIME STAMP 3. 7bffc000 00001000
ROMSTG STCK 4. 7bff7000 00005000
CONSOLE 5. 7bfe7000 00010000
VBOOT 6. 7bfe6000 00001000
RAMSTAGE 7. 7bf98000 0004e000
GDT 8. 7bf97000 00001000
ACPI 9. 7bf8b000 0000c000
ACPI GNVS 10. 7bf8a000 00001000
SMBIOS 11. 7bf89000 00001000
COREBOOT 12. 7bf81000 00008000
And the corresponding e820 entries:
BIOS-e820: [mem 0x0000000000000000-0x0000000000000fff] type 16
BIOS-e820: [mem 0x0000000000001000-0x000000000002ffff] usable
BIOS-e820: [mem 0x0000000000030000-0x000000000003ffff] reserved
BIOS-e820: [mem 0x0000000000040000-0x000000000009ffff] usable
BIOS-e820: [mem 0x00000000000a0000-0x00000000000fffff] reserved
BIOS-e820: [mem 0x0000000000100000-0x0000000000efffff] usable
BIOS-e820: [mem 0x0000000000f00000-0x0000000000ffffff] reserved
BIOS-e820: [mem 0x0000000001000000-0x000000007bf80fff] usable
BIOS-e820: [mem 0x000000007bf81000-0x000000007bffffff] type 16
BIOS-e820: [mem 0x000000007c000000-0x000000007e9fffff] reserved
BIOS-e820: [mem 0x00000000f0000000-0x00000000f3ffffff] reserved
BIOS-e820: [mem 0x00000000fed10000-0x00000000fed19fff] reserved
BIOS-e820: [mem 0x00000000fed84000-0x00000000fed84fff] reserved
BIOS-e820: [mem 0x0000000100000000-0x00000001005fffff] usable
Change-Id: Ie3bca52211800a8652a77ca684140cfc9b3b9a6b
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2848
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
|