Age | Commit message (Collapse) | Author |
|
Use the value of CONSOLE_PRERAM_BUFFER_SIZE to determine if we can
do CBMEM console in bootblock and romstage. Kconfig forces it to zero
if _BASE is unset or we cannot do CAR migration on x86.
Add CBMEM console to bootblock, except for x86. Only one of bootblock
and romstage clears the pre-RAM buffer.
To start with empty console log on S3 wakeup, ramstage now clears
previous contents of CBMEM buffer if there was no pre-RAM buffer.
Unify Kconfig variable naming.
TODO: ARM configurations do not define PRERAM_BUFFER_BASE values.
Change-Id: I70d82da629529dbfd7bc9491223abd703cbc0115
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/7862
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@google.com>
|
|
There is no need to call cbmemc_reinit() exclusively in romstage,
that is done as part of the CAR migration of cbmem_recovery().
CBMEM console for romstage remains disabled for boards flagged with
BROKEN_CAR_MIGRATE, but with this change it is possible to have it for
ramstage.
Change-Id: I48c4afcd847d0d5f8864d23c0786935341e3f752
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/7592
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Martin Roth <gaumless@gmail.com>
|
|
Consoles on CBMEM and USB have somewhat complex rules and dependencies
when they can be active. Use simple variables to test which stage
of boot is being built for each console.
Change-Id: I2489e7731d07ca7d5dd2ea8b6501c73f05d6edd8
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/5341
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@gmail.com>
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
|
|
This preprocessor guard was used to disable CBMEM console from
romstage of ROMCC boards. It unintentionally disabled it for ARM
too as they do not have CACHE_AS_RAM selected.
Option EARLY_CBMEM_INIT implies CAR migration which is required
to have CBMEM console in romstage. This change should have been
done in commit f8bf5a10 already, but we missed it.
Change-Id: I03e95183be0e78bc7dd439d5fef5b10e54966dc3
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/5356
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Aaron Durbin <adurbin@google.com>
|
|
the part !CAR && PRE_RAM is obviously meant as dummies. Unfortunately
cbmemc_tx_byte has wrong number of arguments and hence causes compilation
failure.
Found out when compiling for vexpress-a9.
Change-Id: Ic84d142bac5c455c2371fbc9439c898de04a974e
Signed-off-by: Vladimir Serbinenko <phcoder@gmail.com>
Reviewed-on: http://review.coreboot.org/4267
Tested-by: build bot (Jenkins)
Reviewed-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
|
|
These features depend on CAR_GLOBAL region, which is not available
when romstage is built with ROMCC. Exclude these from romstage, keep
them available for ramstage.
A follow-up patch will fix the dependencies and allows enabling these
features in menuconfig.
Change-Id: I9de5ad41ea733655a3fbdc734646f818e39cc471
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: http://review.coreboot.org/3919
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Aaron Durbin <adurbin@google.com>
|
|
The CBMEM console driver saves console output in a CBMEM area, which
then is made available to Linux applications for perusing.
There are some system limitations which need to be worked around
to achieve this goal:
- some console traffic is generated before DRAM is initialized,
leave alone CBMEM initialized.
- after the RAM based stage starts, a lot of traffic is generated
before CBMEM is initialized.
As a result, the console log lives in three different places -
the bottom of the cache as RAM space, the CBMEM buffer (where it
is expected to be) and a static buffer used early in the RAM
stage.
When execution starts (in the cache as RAM mode), the console
buffer is allocated at the bottom of the cache as RAM memory
address range. Once DRAM is initialized, the CBMEM structure is
initialized, and then the console buffer contents are copied from
the bottom of the cache as RAM space into the CBMEM area right
before the cache as RAM mode is disabled. The
src/lib/cbmem_console.c:cbmemc_reinit() takes care of the
copying.
At this point the cache as RAM memory is about to be disabled,
but the ROM stage is still going generating console output. To
make sure this output is not lost, cbmemc_reinit() saves the new
buffer address at a fixed location (0x600 was chosen for this),
and the actual "printing" function checks to see if the RAM is
already initialized (the stack is in RAM), and if so, gets the
console buffer pointer from this location instead of using the
cache as RAM address.
When the RAM stage starts, a static buffer is used to store the
console output, as the CBMEM buffer location is not known. Then,
when CBMEM is reinitialized, cbmemc_reinit() again takes care of
the copying.
In case the allocated buffers are not large enough, the excessive
data is dropped, and the copying routine adds some text to the
output buffer to indicate that there has been data lost and how
many characters were dropped.
Change-Id: I8c126e31db6cb2141f7f4f97c5047f39a8db44fc
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: http://review.coreboot.org/719
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
|