aboutsummaryrefslogtreecommitdiff
path: root/src/vendorcode/amd/agesa/Proc/Mem/Tech/DDR3/mtspd3.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/vendorcode/amd/agesa/Proc/Mem/Tech/DDR3/mtspd3.c')
-rw-r--r--src/vendorcode/amd/agesa/Proc/Mem/Tech/DDR3/mtspd3.c1153
1 files changed, 1153 insertions, 0 deletions
diff --git a/src/vendorcode/amd/agesa/Proc/Mem/Tech/DDR3/mtspd3.c b/src/vendorcode/amd/agesa/Proc/Mem/Tech/DDR3/mtspd3.c
new file mode 100644
index 0000000000..c2f93724f8
--- /dev/null
+++ b/src/vendorcode/amd/agesa/Proc/Mem/Tech/DDR3/mtspd3.c
@@ -0,0 +1,1153 @@
+/* $NoKeywords:$ */
+/**
+ * @file
+ *
+ * mtspd3.c
+ *
+ * Technology SPD supporting functions for DDR3
+ *
+ * @xrefitem bom "File Content Label" "Release Content"
+ * @e project: AGESA
+ * @e sub-project: (Mem/Tech/DDR3)
+ * @e \$Revision: 36054 $ @e \$Date: 2010-08-10 05:26:12 +0800 (Tue, 10 Aug 2010) $
+ *
+ **/
+/*
+ *****************************************************************************
+ *
+ * Copyright (c) 2011, Advanced Micro Devices, Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Advanced Micro Devices, Inc. nor the names of
+ * its contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * ***************************************************************************
+ *
+ */
+
+/*
+ *----------------------------------------------------------------------------
+ * MODULES USED
+ *
+ *----------------------------------------------------------------------------
+ */
+
+
+
+#include "AGESA.h"
+#include "AdvancedApi.h"
+#include "Ids.h"
+#include "mport.h"
+#include "mm.h"
+#include "mn.h"
+#include "mt.h"
+#include "mt3.h"
+#include "mu.h"
+#include "mtspd3.h"
+#include "mftds.h"
+#include "GeneralServices.h"
+#include "Filecode.h"
+CODE_GROUP (G1_PEICC)
+RDATA_GROUP (G1_PEICC)
+
+#define FILECODE PROC_MEM_TECH_DDR3_MTSPD3_FILECODE
+
+/*----------------------------------------------------------------------------
+ * DEFINITIONS AND MACROS
+ *
+ *----------------------------------------------------------------------------
+ */
+
+/*----------------------------------------------------------------------------
+ * TYPEDEFS AND STRUCTURES
+ *
+ *----------------------------------------------------------------------------
+ */
+
+/*----------------------------------------------------------------------------
+ * PROTOTYPES OF LOCAL FUNCTIONS
+ *
+ *----------------------------------------------------------------------------
+ */
+BOOLEAN
+STATIC
+MemTCRCCheck3 (
+ IN OUT UINT8 *SPDPtr
+ );
+
+UINT8
+STATIC
+MemTSPDGetTCL3 (
+ IN OUT MEM_TECH_BLOCK *TechPtr
+ );
+
+BOOLEAN
+STATIC
+MemTCheckBankAddr3 (
+ IN UINT8 Encode,
+ OUT UINT8 *Index
+ );
+
+/*----------------------------------------------------------------------------
+ * EXPORTED FUNCTIONS
+ *
+ *----------------------------------------------------------------------------
+ */
+
+extern BUILD_OPT_CFG UserOptions;
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function sets the DRAM mode
+ *
+ * @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
+ *
+ * @return TRUE - indicates that the DRAM mode is set to DDR3
+ */
+
+BOOLEAN
+MemTSetDramMode3 (
+ IN OUT MEM_TECH_BLOCK *TechPtr
+ )
+{
+ TechPtr->NBPtr->SetBitField (TechPtr->NBPtr, BFLegacyBiosMode, 0);
+ TechPtr->NBPtr->SetBitField (TechPtr->NBPtr, BFDdr3Mode, 1);
+ return TRUE;
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function determines if DIMMs are present. It checks checksum and interrogates the SPDs
+ *
+ * @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
+ *
+ * @return TRUE - indicates that a FATAL error has not occurred
+ * @return FALSE - indicates that a FATAL error has occurred
+ */
+
+BOOLEAN
+MemTDIMMPresence3 (
+ IN OUT MEM_TECH_BLOCK *TechPtr
+ )
+{
+ UINT8 Dct;
+ UINT8 Channel;
+ UINT8 i;
+ MEM_PARAMETER_STRUCT *RefPtr;
+ UINT8 *SpdBufferPtr;
+ DIE_STRUCT *MCTPtr;
+ DCT_STRUCT *DCTPtr;
+ CH_DEF_STRUCT *ChannelPtr;
+ MEM_NB_BLOCK *NBPtr;
+ BOOLEAN SPDCtrl;
+ UINT8 Devwidth;
+ UINT8 MaxDimms;
+ UINT8 Value8;
+ UINT16 DimmMask;
+
+ NBPtr = TechPtr->NBPtr;
+ RefPtr = NBPtr->RefPtr;
+ MCTPtr = NBPtr->MCTPtr;
+
+ SPDCtrl = UserOptions.CfgIgnoreSpdChecksum;
+ for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
+ NBPtr->SwitchDCT (NBPtr, Dct);
+ DCTPtr = NBPtr->DCTPtr;
+ for (Channel = 0; Channel < NBPtr->ChannelCount; Channel++) {
+ NBPtr->SwitchChannel (NBPtr, Channel);
+ ChannelPtr = NBPtr->ChannelPtr;
+ ChannelPtr->DimmQrPresent = 0;
+ //
+ // Get the maximum number of DIMMs
+ //
+ MaxDimms = MAX_DIMMS_PER_CHANNEL;
+ for (i = 0; i < MaxDimms; i++) {
+ // Bitmask representing dimm #i.
+ DimmMask = (UINT16)1 << i;
+ //
+ if (MemTGetDimmSpdBuffer3 (TechPtr, &SpdBufferPtr, i)) {
+ MCTPtr->DimmPresent |= DimmMask;
+ //
+ // Check for valid checksum value
+ //
+ AGESA_TESTPOINT (TpProcMemSPDChecking, &(NBPtr->MemPtr->StdHeader));
+ if (SpdBufferPtr[SPD_TYPE] == JED_DDR3SDRAM) {
+ ChannelPtr->ChDimmValid |= DimmMask;
+ MCTPtr->DimmValid |= DimmMask;
+ } else {
+ // Current socket is set up to only support DDR3 dimms.
+ IDS_ERROR_TRAP;
+ }
+ if (!MemTCRCCheck3 (SpdBufferPtr) && !SPDCtrl) {
+ //
+ // NV_SPDCHK_RESTRT is set to 0,
+ // cannot ignore faulty SPD checksum
+ //
+ // Indicate checksum error
+ ChannelPtr->DimmSpdCse |= DimmMask;
+ PutEventLog (AGESA_ERROR, MEM_ERROR_CHECKSUM_NV_SPDCHK_RESTRT_ERROR, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
+ SetMemError (AGESA_ERROR, MCTPtr);
+ }
+ //
+ // Check module type information.
+ //
+ if (SpdBufferPtr[SPD_DIMM_TYPE] == JED_LRDIMM) {
+ //
+ // LRDIMMS
+ //
+ ChannelPtr->LrDimmPresent |= DimmMask;
+ MCTPtr->LrDimmPresent |= DimmMask;
+ if (!UserOptions.CfgMemoryLRDimmCapable) {
+ PutEventLog (AGESA_WARNING, MEM_WARNING_UNSUPPORTED_LRDIMM, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
+ IDS_ERROR_TRAP;
+ }
+ }
+ if (SpdBufferPtr[SPD_DIMM_TYPE] == JED_RDIMM || SpdBufferPtr[SPD_DIMM_TYPE] == JED_MINIRDIMM) {
+ //
+ // RDIMMS
+ //
+ ChannelPtr->RegDimmPresent |= DimmMask;
+ MCTPtr->RegDimmPresent |= DimmMask;
+ if (!UserOptions.CfgMemoryRDimmCapable) {
+ PutEventLog (AGESA_WARNING, MEM_WARNING_UNSUPPORTED_RDIMM, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
+ IDS_ERROR_TRAP;
+ }
+ }
+ if ((SpdBufferPtr[SPD_DIMM_TYPE] == JED_UDIMM) && !UserOptions.CfgMemoryUDimmCapable) {
+ PutEventLog (AGESA_WARNING, MEM_WARNING_UNSUPPORTED_UDIMM, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
+ IDS_ERROR_TRAP;
+ }
+ if (SpdBufferPtr[SPD_DIMM_TYPE] == JED_SODIMM) {
+ ChannelPtr->SODimmPresent |= DimmMask;
+ if (!UserOptions.CfgMemorySODimmCapable) {
+ PutEventLog (AGESA_WARNING, MEM_WARNING_UNSUPPORTED_SODIMM, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
+ IDS_ERROR_TRAP;
+ }
+ }
+ //
+ // Check error correction type
+ //
+ if ((SpdBufferPtr[SPD_ECCBITS] & JED_ECC) != 0) {
+ MCTPtr->DimmEccPresent |= DimmMask; // Dimm has ECC
+ }
+ //
+ // Get the Dimm width data
+ //
+ Devwidth = SpdBufferPtr[SPD_DEV_WIDTH] & 0x7;
+ switch (Devwidth) {
+ case 0:
+ ChannelPtr->Dimmx4Present |= DimmMask;
+ Devwidth = 4;
+ break;
+ case 1:
+ ChannelPtr->Dimmx8Present |= DimmMask;
+ Devwidth = 8;
+ break;
+ case 2:
+ ChannelPtr->Dimmx16Present |= DimmMask;
+ Devwidth = 16;
+ break;
+ default:
+ IDS_ERROR_TRAP;
+ }
+ //
+ // Check for 'analysis probe installed'
+ // if (SpdBufferPtr[SPD_ATTRIB] & JED_PROBE_MSK)
+ //
+ // Determine the geometry of the DIMM module
+ // if (SpdBufferPtr[SPD_DM_BANKS] & SP_DPL_BIT)
+ //
+ // specify the number of ranks
+ //
+ Value8 = ((SpdBufferPtr[SPD_RANKS] >> 3) & 0x07) + 1;
+ if (Value8 == 5) {
+ // Octal Rank
+ Value8 = 8;
+ }
+ //
+ // For LRDIMMS we will assume that if there are at least 4 Physical ranks, then it Could be used
+ // as a QR RDIMM with a rank Mux of x1 and therefore all four CS will be used. So an 8R LRDIMM will
+ // be marked as a QR even if Rank multiplication allows it to use only 2 logical ranks.
+ //
+ if (ChannelPtr->LrDimmPresent |= DimmMask) {
+ //
+ // LRDIMM Physical Ranks
+ //
+ ChannelPtr->LrdimmPhysicalRanks[i] = Value8;
+ }
+ if (Value8 > 2) {
+ if (!UserOptions.CfgMemoryQuadRankCapable) {
+ PutEventLog (AGESA_WARNING, MEM_WARNING_UNSUPPORTED_QRDIMM, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
+ }
+ //
+ // Mark this Dimm as Quad Rank
+ //
+ ChannelPtr->DimmQrPresent |= DimmMask;
+ Value8 = 2;
+ } else if (Value8 == 2) {
+ ChannelPtr->DimmDrPresent |= DimmMask; // Dual rank dimms
+ } else {
+ ChannelPtr->DimmSRPresent |= DimmMask; // Single rank dimms
+ }
+ //
+ // Calculate bus loading per Channel
+ if (Devwidth == 16) {
+ Devwidth = 4;
+ } else if (Devwidth == 4) {
+ Devwidth = 16;
+ }
+ //
+ // Double Addr bus load value for dual rank DIMMs (Unless LRDIMM)
+ //
+ if ( ((ChannelPtr->LrDimmPresent |= DimmMask) == 0) && (Value8 == 2) ) {
+ Devwidth = Devwidth << 1;
+ }
+ //
+ ChannelPtr->Ranks = ChannelPtr->Ranks + Value8;
+ ChannelPtr->Loads = ChannelPtr->Loads + Devwidth;
+ if ((i < 2) || ((ChannelPtr->DimmQrPresent & DimmMask) == 0)) {
+ ChannelPtr->Dimms++;
+ }
+ //
+ // Check address mirror support for Unbuffered Dimms or LRDimms
+ //
+ if ((ChannelPtr->RegDimmPresent & DimmMask) == 0) {
+ if ((SpdBufferPtr[SPD_ADDRMAP] & 1) != 0) {
+ ChannelPtr->DimmMirrorPresent |= DimmMask;
+ }
+ }
+ //
+ // Get byte62: Reference Raw Card information
+ //
+ ChannelPtr->RefRawCard[i] = SpdBufferPtr[SPD_RAWCARD] & 0x1F;
+ //
+ // Get control word values for RC3, RC4 and RC5
+ //
+ ChannelPtr->CtrlWrd03[i] = SpdBufferPtr[SPD_CTLWRD03] >> 4;
+ ChannelPtr->CtrlWrd04[i] = SpdBufferPtr[SPD_CTLWRD04] & 0x0F;
+ ChannelPtr->CtrlWrd05[i] = SpdBufferPtr[SPD_CTLWRD05] >> 4;
+ //
+ // Temporarily store info. of SPD byte 63 into CtrlWrd02(s),
+ // and they will be used late to calculate real RC2 and RC8 value
+ //
+ ChannelPtr->CtrlWrd02[i] = SpdBufferPtr[SPD_ADDRMAP] & 0x03;
+ //
+ // Copy the number of registers to the Ps Block to persist across frequency changes
+ //
+ NBPtr->PsPtr->NumOfReg[i] = SpdBufferPtr[SPD_ADDRMAP] & 0x03;
+ //
+ } // if DIMM present
+ } // Dimm loop
+
+ if (Channel == 0) {
+ DCTPtr->Timings.DctDimmValid = ChannelPtr->ChDimmValid;
+ DCTPtr->Timings.DimmMirrorPresent = ChannelPtr->DimmMirrorPresent;
+ DCTPtr->Timings.DimmSpdCse = ChannelPtr->DimmSpdCse;
+ DCTPtr->Timings.DimmQrPresent = ChannelPtr->DimmQrPresent;
+ DCTPtr->Timings.DimmDrPresent = ChannelPtr->DimmDrPresent;
+ DCTPtr->Timings.DimmSRPresent = ChannelPtr->DimmSRPresent;
+ DCTPtr->Timings.Dimmx4Present = ChannelPtr->Dimmx4Present;
+ DCTPtr->Timings.Dimmx8Present = ChannelPtr->Dimmx8Present;
+ DCTPtr->Timings.Dimmx16Present = ChannelPtr->Dimmx16Present;
+ }
+ if ((Channel != 1) || (Dct != 1)) {
+ MCTPtr->DimmPresent <<= 8;
+ MCTPtr->DimmValid <<= 8;
+ MCTPtr->RegDimmPresent <<= 8;
+ MCTPtr->LrDimmPresent <<= 8;
+ MCTPtr->DimmEccPresent <<= 8;
+ MCTPtr->DimmParPresent <<= 8;
+ }
+ } // Channel loop
+ } // DCT loop
+
+ // If we have DIMMs, some further general characteristics checking
+ if (MCTPtr->DimmValid != 0) {
+ // If there are registered dimms, all the dimms must be registered
+ if (MCTPtr->RegDimmPresent == MCTPtr->DimmValid) {
+ // All dimms registered
+ MCTPtr->Status[SbRegistered] = TRUE;
+ MCTPtr->Status[SbParDimms] = TRUE; // All DDR3 RDIMMs are parity capable
+ TechPtr->SetDqsEccTmgs = MemTSetDQSEccTmgsRDdr3; // Change the function pointer for DQS ECC timing
+ } else if (MCTPtr->RegDimmPresent != 0) {
+ // We have an illegal DIMM mismatch
+ PutEventLog (AGESA_FATAL, MEM_ERROR_MODULE_TYPE_MISMATCH_DIMM, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
+ SetMemError (AGESA_FATAL, MCTPtr);
+ }
+ // If there are LrDimms, all the dimms must be LrDimms
+ if (MCTPtr->LrDimmPresent == MCTPtr->DimmValid) {
+ // All dimms LRDIMMs
+ MCTPtr->Status[SbLrdimms] = TRUE;
+ } else if (MCTPtr->LrDimmPresent != 0) {
+ // We have an illegal DIMM mismatch
+ PutEventLog (AGESA_FATAL, MEM_ERROR_MODULE_TYPE_MISMATCH_DIMM, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
+ SetMemError (AGESA_FATAL, MCTPtr);
+ }
+
+ // check the ECC capability of the DIMMs
+ if (MCTPtr->DimmEccPresent == MCTPtr->DimmValid) {
+ MCTPtr->Status[SbEccDimms] = TRUE; // All dimms ECC capable
+ }
+ } else {
+ }
+
+ NBPtr->SwitchDCT (NBPtr, 0);
+ NBPtr->SwitchChannel (NBPtr, 0);
+ return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
+}
+
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function finds the maximum frequency that each channel is capable to run at.
+ *
+ * @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
+ *
+ * @return TRUE - indicates that a FATAL error has not occurred
+ * @return FALSE - indicates that a FATAL error has occurred
+ */
+
+BOOLEAN
+MemTSPDGetTargetSpeed3 (
+ IN OUT MEM_TECH_BLOCK *TechPtr
+ )
+{
+ UINT8 *SpdBufferPtr;
+ UINT8 Dimm;
+ UINT8 Dct;
+ UINT8 Channel;
+ INT32 MTB_ps;
+ INT32 FTB_ps;
+ INT32 TCKmin_ps;
+ INT32 Value32;
+ MEM_NB_BLOCK *NBPtr;
+ DCT_STRUCT *DCTPtr;
+ CH_DEF_STRUCT *ChannelPtr;
+
+ NBPtr = TechPtr->NBPtr;
+ for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
+ NBPtr->SwitchDCT (NBPtr, Dct);
+ DCTPtr = NBPtr->DCTPtr;
+ TCKmin_ps = 0;
+ for (Channel = 0; Channel < NBPtr->ChannelCount; Channel++) {
+ NBPtr->SwitchChannel (NBPtr, Channel);
+ ChannelPtr = NBPtr->ChannelPtr;
+ for (Dimm = 0; Dimm < MAX_DIMMS_PER_CHANNEL; Dimm++) {
+ if ((ChannelPtr->ChDimmValid & ((UINT8)1 << Dimm)) != 0) {
+ MemTGetDimmSpdBuffer3 (TechPtr, &SpdBufferPtr, Dimm);
+
+ // Determine tCKmin(all) which is the largest tCKmin
+ // value for all modules on the memory Channel (SPD byte 12).
+ //
+ MTB_ps = ((INT32) SpdBufferPtr[SPD_DIVIDENT] * 1000) / SpdBufferPtr[SPD_DIVISOR];
+ FTB_ps = (SpdBufferPtr[SPD_FTB] >> 4) / (SpdBufferPtr[SPD_FTB] & 0xF);
+ Value32 = (MTB_ps * SpdBufferPtr[SPD_TCK]) + (FTB_ps * (INT8) SpdBufferPtr[SPD_TCK_FTB]) ;
+ if (TCKmin_ps < Value32) {
+ TCKmin_ps = Value32;
+ }
+ }
+ }
+ }
+ if (TCKmin_ps <= 1071) {
+ DCTPtr->Timings.TargetSpeed = DDR1866_FREQUENCY;
+ } else if (TCKmin_ps <= 1250) {
+ DCTPtr->Timings.TargetSpeed = DDR1600_FREQUENCY;
+ } else if (TCKmin_ps <= 1500) {
+ DCTPtr->Timings.TargetSpeed = DDR1333_FREQUENCY;
+ } else if (TCKmin_ps <= 1875) {
+ DCTPtr->Timings.TargetSpeed = DDR1066_FREQUENCY;
+ } else if (TCKmin_ps <= 2500) {
+ DCTPtr->Timings.TargetSpeed = DDR800_FREQUENCY;
+ } else {
+ DCTPtr->Timings.TargetSpeed = DDR667_FREQUENCY;
+ }
+ }
+
+ // Ensure the target speed can be applied to all channels of the current node
+ NBPtr->SyncTargetSpeed (NBPtr);
+
+ // Set the start-up frequency
+ for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
+ NBPtr->SwitchDCT (NBPtr, Dct);
+ NBPtr->DCTPtr->Timings.Speed = TechPtr->NBPtr->StartupSpeed;
+ }
+ return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL);
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function check the symmetry of DIMM pairs (DIMM on Channel A matching with
+ * DIMM on Channel B), the overall DIMM population, and determine the width mode:
+ * 64-bit, 64-bit muxed, 128-bit.
+ *
+ * @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
+ *
+ * @return TRUE - indicates that a FATAL error has not occurred
+ * @return FALSE - indicates that a FATAL error has occurred
+ */
+
+BOOLEAN
+MemTSPDCalcWidth3 (
+ IN OUT MEM_TECH_BLOCK *TechPtr
+ )
+{
+ UINT8 *SpdBufferAPtr;
+ UINT8 *SpdBufferBPtr;
+ MEM_NB_BLOCK *NBPtr;
+ DIE_STRUCT *MCTPtr;
+ DCT_STRUCT *DCTPtr;
+ UINT8 i;
+ UINT16 DimmMask;
+ UINT8 UngangMode;
+
+ NBPtr = TechPtr->NBPtr;
+ MCTPtr = NBPtr->MCTPtr;
+ DCTPtr = NBPtr->DCTPtr;
+ UngangMode = UserOptions.CfgMemoryModeUnganged;
+ // Does not support ganged mode for DDR3 dimms
+ ASSERT (UngangMode);
+ IDS_OPTION_HOOK (IDS_GANGING_MODE, &UngangMode, &(NBPtr->MemPtr->StdHeader));
+
+ // Check symmetry of channel A and channel B dimms for 128-bit mode
+ // capability.
+ //
+ AGESA_TESTPOINT (TpProcMemModeChecking, &(NBPtr->MemPtr->StdHeader));
+ i = 0;
+ if (!UngangMode) {
+ if (MCTPtr->DctData[0].Timings.DctDimmValid == MCTPtr->DctData[1].Timings.DctDimmValid) {
+ for (; i < MAX_DIMMS_PER_CHANNEL; i++) {
+ DimmMask = (UINT16)1 << i;
+ if ((DCTPtr->Timings.DctDimmValid & DimmMask) != 0) {
+ NBPtr->SwitchDCT (NBPtr, 0);
+ MemTGetDimmSpdBuffer3 (TechPtr, &SpdBufferAPtr, i);
+ NBPtr->SwitchDCT (NBPtr, 1);
+ MemTGetDimmSpdBuffer3 (TechPtr, &SpdBufferBPtr, i);
+ // compare rows and columns
+ if ((SpdBufferAPtr[SPD_ROW_SZ]&0x3F) != (SpdBufferBPtr[SPD_ROW_SZ]&0x3F)) {
+ break;
+ }
+ if ((SpdBufferAPtr[SPD_DENSITY]&0x0F) != (SpdBufferBPtr[SPD_DENSITY]&0x0F)) {
+ break;
+ }
+ // compare ranks and devwidth
+ if ((SpdBufferAPtr[SPD_DEV_WIDTH]&0x7F) != (SpdBufferBPtr[SPD_DEV_WIDTH]&0x7F)) {
+ break;
+ }
+ }
+ }
+ }
+ if (i < MAX_DIMMS_PER_CHANNEL) {
+ PutEventLog (AGESA_ALERT, MEM_ALERT_ORG_MISMATCH_DIMM, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
+ SetMemError (AGESA_ALERT, MCTPtr);
+ } else {
+ NBPtr->Ganged = TRUE;
+ MCTPtr->GangedMode = TRUE;
+ MCTPtr->Status[Sb128bitmode] = TRUE;
+ NBPtr->SetBitField (NBPtr, BFDctGangEn, 1);
+ }
+ }
+
+ return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
+}
+
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * Initialize DCT Timing registers as per DIMM SPD.
+ * For primary timing (T, CL) use best case T value.
+ * For secondary timing params., use most aggressive settings
+ * of slowest DIMM.
+ *
+ * Note:
+ * There are three components to determining "maximum frequency": SPD component,
+ * Bus load component, and "Preset" max frequency component.
+ * The SPD component is a function of the min cycle time specified by each DIMM,
+ * and the interaction of cycle times from all DIMMs in conjunction with CAS
+ * latency. The SPD component only applies when user timing mode is 'Auto'.
+ *
+ * The Bus load component is a limiting factor determined by electrical
+ * characteristics on the bus as a result of varying number of device loads. The
+ * Bus load component is specific to each platform but may also be a function of
+ * other factors. The bus load component only applies when user timing mode is
+ * ' Auto'.
+ *
+ * The Preset component is subdivided into three items and is the minimum of
+ * the set: Silicon revision, user limit setting when user timing mode is 'Auto' and
+ * memclock mode is 'Limit', OEM build specification of the maximum frequency.
+ * The Preset component only applies when user timing mode is 'Auto'.
+ *
+ * @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
+ *
+ * @return TRUE - indicates that a FATAL error has not occurred
+ * @return FALSE - indicates that a FATAL error has occurred
+ */
+
+BOOLEAN
+MemTAutoCycTiming3 (
+ IN OUT MEM_TECH_BLOCK *TechPtr
+ )
+{
+ CONST UINT8 SpdIndexes[] = {
+ SPD_TRCD,
+ SPD_TRP,
+ SPD_TRTP,
+ SPD_TRAS,
+ SPD_TRC,
+ SPD_TWR,
+ SPD_TRRD,
+ SPD_TWTR,
+ SPD_TFAW
+ };
+
+ CONST UINT8 SpdFTBIndexes[] = {
+ SPD_TRCD_FTB,
+ SPD_TRP_FTB,
+ 0,
+ 0,
+ SPD_TRC_FTB,
+ 0,
+ 0,
+ 0,
+ 0
+ };
+
+ UINT8 *SpdBufferPtr;
+ INT32 MiniMaxTmg[GET_SIZE_OF (SpdIndexes)];
+ UINT8 MiniMaxTrfc[4];
+
+ DIE_STRUCT *MCTPtr;
+ DCT_STRUCT *DCTPtr;
+ MEM_NB_BLOCK *NBPtr;
+ UINT16 DimmMask;
+ INT32 Value32;
+ INT32 MTB_ps;
+ INT32 FTB_ps;
+ INT32 TCK_ps;
+ UINT8 i;
+ UINT8 j;
+ UINT8 Value8;
+ UINT8 *StatTmgPtr;
+ UINT16 *StatDimmTmgPtr;
+
+ NBPtr = TechPtr->NBPtr;
+ MCTPtr = NBPtr->MCTPtr;
+ DCTPtr = NBPtr->DCTPtr;
+ // initialize mini-max arrays
+ for (j = 0; j < GET_SIZE_OF (MiniMaxTmg); j++) {
+ MiniMaxTmg[j] = 0;
+ }
+ for (j = 0; j < GET_SIZE_OF (MiniMaxTrfc); j++) {
+ MiniMaxTrfc[j] = 0;
+ }
+
+ // ======================================================================
+ // Get primary timing (CAS Latency and Cycle Time)
+ // ======================================================================
+ // Get OEM specific load variant max
+ //
+
+ //======================================================================
+ // Gather all DIMM mini-max values for cycle timing data
+ //======================================================================
+ //
+ DimmMask = 1;
+ for (i = 0; i < (MAX_CS_PER_CHANNEL / 2); i++) {
+ if ((DCTPtr->Timings.DctDimmValid & DimmMask) != 0) {
+ MemTGetDimmSpdBuffer3 (TechPtr, &SpdBufferPtr, i);
+ MTB_ps = ((INT32) SpdBufferPtr[SPD_DIVIDENT] * 1000) / SpdBufferPtr[SPD_DIVISOR];
+ FTB_ps = (SpdBufferPtr[SPD_FTB] >> 4) / (SpdBufferPtr[SPD_FTB] & 0xF);
+
+ for (j = 0; j < GET_SIZE_OF (SpdIndexes); j++) {
+ Value32 = (UINT16)SpdBufferPtr[SpdIndexes[j]];
+ if (SpdIndexes[j] == SPD_TRC) {
+ Value32 |= ((UINT16)SpdBufferPtr[SPD_UPPER_TRC] & 0xF0) << 4;
+ } else if (SpdIndexes[j] == SPD_TRAS) {
+ Value32 |= ((UINT16)SpdBufferPtr[SPD_UPPER_TRAS] & 0x0F) << 8;
+ } else if (SpdIndexes[j] == SPD_TFAW) {
+ Value32 |= ((UINT16)SpdBufferPtr[SPD_UPPER_TFAW] & 0x0F) << 8;
+ }
+
+ Value32 *= MTB_ps;
+ if (SpdFTBIndexes[j] != 0) {
+ Value32 += (FTB_ps * (INT8) SpdBufferPtr[SpdFTBIndexes[j]]) ;
+ }
+ if (MiniMaxTmg[j] < Value32) {
+ MiniMaxTmg[j] = Value32;
+ }
+ }
+
+ // get Trfc0 - Trfc3 values
+ Value8 = SpdBufferPtr[SPD_DENSITY] & 0x0F;
+ if (MiniMaxTrfc[i] < Value8) {
+ MiniMaxTrfc[i] = Value8;
+ }
+ }
+ DimmMask <<= 1;
+ }
+
+ // ======================================================================
+ // Convert DRAM CycleTiming values and store into DCT structure
+ // ======================================================================
+ //
+ TCK_ps = 1000500 / DCTPtr->Timings.Speed;
+
+ StatDimmTmgPtr = &DCTPtr->Timings.DIMMTrcd;
+ StatTmgPtr = &DCTPtr->Timings.Trcd;
+ for (j = 0; j < GET_SIZE_OF (SpdIndexes); j++) {
+ Value32 = MiniMaxTmg[j];
+
+ MiniMaxTmg[j] = (MiniMaxTmg[j] + TCK_ps - 1) / TCK_ps;
+
+ StatDimmTmgPtr[j] = (UINT16) (Value32 / (1000 / 40));
+ StatTmgPtr[j] = (UINT8) MiniMaxTmg[j];
+ }
+ DCTPtr->Timings.Trfc0 = MiniMaxTrfc[0];
+ DCTPtr->Timings.Trfc1 = MiniMaxTrfc[1];
+ DCTPtr->Timings.Trfc2 = MiniMaxTrfc[2];
+ DCTPtr->Timings.Trfc3 = MiniMaxTrfc[3];
+
+ DCTPtr->Timings.CasL = MemTSPDGetTCL3 (TechPtr);
+
+ //======================================================================
+ // Program DRAM Timing values
+ //======================================================================
+ //
+ NBPtr->ProgramCycTimings (NBPtr);
+
+ MemFInitTableDrive (NBPtr, MTAfterAutoCycTiming);
+
+ return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function sets the bank addressing, program Mask values and build a chip-select population map.
+ * This routine programs PCI 0:24N:2x80 config register.
+ * This routine programs PCI 0:24N:2x60,64,68,6C config registers (CS Mask 0-3)
+ *
+ * @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
+ *
+ * @return TRUE - indicates that a FATAL error has not occurred
+ * @return FALSE - indicates that a FATAL error has occurred
+ */
+
+BOOLEAN
+MemTSPDSetBanks3 (
+ IN OUT MEM_TECH_BLOCK *TechPtr
+ )
+{
+ UINT8 *SpdBufferPtr;
+ UINT8 i;
+ UINT8 ChipSel;
+ UINT8 DimmID;
+ UINT8 Value8;
+ UINT8 Rows;
+ UINT8 Cols;
+ UINT8 Ranks;
+ UINT8 Banks;
+ UINT32 BankAddrReg;
+ UINT32 CsMask;
+ UINT16 CSSpdCSE;
+ UINT16 CSExclude;
+ UINT16 DimmQRDR;
+ DIE_STRUCT *MCTPtr;
+ DCT_STRUCT *DCTPtr;
+ MEM_NB_BLOCK *NBPtr;
+
+ NBPtr = TechPtr->NBPtr;
+ MCTPtr = NBPtr->MCTPtr;
+ DCTPtr = NBPtr->DCTPtr;
+ BankAddrReg = 0;
+ CSSpdCSE = 0;
+ CSExclude = 0;
+
+ for (ChipSel = 0; ChipSel < MAX_CS_PER_CHANNEL; ChipSel += 2) {
+ DimmID = ChipSel >> 1;
+
+ DimmQRDR = (DCTPtr->Timings.DimmQrPresent) | (DCTPtr->Timings.DimmDrPresent);
+ if ((DCTPtr->Timings.DimmSpdCse & ((UINT16) 1 << DimmID)) != 0) {
+ CSSpdCSE |= (UINT16) ((DimmQRDR & (UINT16) 1 << DimmID) ? 3 : 1) << ChipSel;
+ }
+ if ((DCTPtr->Timings.DimmExclude & ((UINT16) 1 << DimmID)) != 0) {
+ CSExclude |= (UINT16) ((DimmQRDR & (UINT16) 1 << DimmID) ? 3: 1) << ChipSel;
+ }
+
+ if ((DCTPtr->Timings.DctDimmValid & ((UINT16)1 << DimmID)) != 0) {
+ MemTGetDimmSpdBuffer3 (TechPtr, &SpdBufferPtr, DimmID);
+
+ // Get the basic data
+ Rows = (SpdBufferPtr[SPD_ROW_SZ] >> 3) & 0x7;
+ Cols = SpdBufferPtr[SPD_COL_SZ] & 0x7;
+ Banks = (SpdBufferPtr[SPD_L_BANKS] >> 4) & 0x7;
+ Ranks = ((SpdBufferPtr[SPD_RANKS] >> 3) & 0x07) + 1;
+ if (Ranks == 5) {
+ Ranks = 8;
+ }
+
+ //
+ // Configure the bank encoding
+ // Use a 6-bit key into a lookup table.
+ // Key (index) = RRRBCC, where CC is the number of Columns minus 9,
+ // RRR is the number of Rows minus 12, and B is the number of banks
+ // minus 3.
+ //
+ Value8 = Cols;
+ Value8 |= (Banks == 1) ? 4 : 0;
+ Value8 |= Rows << 3;
+
+ if (MemTCheckBankAddr3 (Value8, &i)) {
+ BankAddrReg |= ((UINT32)i << (ChipSel << 1));
+
+ // Mask value=(2pow(rows+cols+banks+3)-1)>>8,
+ // or 2pow(rows+cols+banks-5)-1
+ //
+ Value8 = (Rows + 12) + (Cols + 9) + (Banks + 3) + 3 - 8;
+ if (MCTPtr->Status[Sb128bitmode]) {
+ Value8++;
+ }
+
+ DCTPtr->Timings.CsPresent |= (UINT16)1 << ChipSel;
+
+ if (Ranks >= 2) {
+ DCTPtr->Timings.CsPresent |= (UINT16)1 << (ChipSel + 1);
+ }
+ //
+ // Determine LRDIMM Rank Multiplication
+ //
+ if (TechPtr->TechnologySpecificHook[LrdimmRankMultiplication] (TechPtr, &DimmID)) {
+ //
+ // Increase the CS Size by the rank multiplication factor
+ //
+ Value8 += ((NBPtr->ChannelPtr->LrDimmRankMult[DimmID]) >> 1);
+ }
+
+ CsMask = ((UINT32)1 << Value8) - 1;
+ // Update the DRAM CS Mask for this chipselect
+ NBPtr->SetBitField (NBPtr, BFCSMask0Reg + (ChipSel >> 1), (CsMask & 0x1FF83FE0));
+ } else {
+ // Dimm is not supported, as no address mapping is found.
+ DCTPtr->Timings.CsPresent |= (UINT16)1 << ChipSel;
+ DCTPtr->Timings.CsTestFail |= (UINT16)1 << ChipSel;
+ if (Ranks >= 2) {
+ DCTPtr->Timings.CsPresent |= (UINT16)1 << (ChipSel + 1);
+ DCTPtr->Timings.CsTestFail |= (UINT16)1 << (ChipSel + 1);
+ }
+ PutEventLog (AGESA_ERROR, MEM_ERROR_NO_ADDRESS_MAPPING, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, DimmID, &NBPtr->MemPtr->StdHeader);
+ SetMemError (AGESA_ERROR, MCTPtr);
+ }
+ }
+ }
+ // For ranks that need to be excluded, the loading of this rank should be considered
+ // in timing, so need to set CsPresent before setting CsTestFail
+ if ((CSSpdCSE != 0) || (CSExclude != 0)) {
+ NBPtr->MemPtr->ErrorHandling (MCTPtr, NBPtr->Dct, (CSSpdCSE | CSExclude), &NBPtr->MemPtr->StdHeader);
+ }
+
+ // If there are no chip selects, we have an error situation.
+ if (DCTPtr->Timings.CsPresent == 0) {
+ PutEventLog (AGESA_ERROR, MEM_ERROR_NO_CHIPSELECT, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader);
+ SetMemError (AGESA_ERROR, MCTPtr);
+ }
+
+ NBPtr->SetBitField (NBPtr, BFDramBankAddrReg, BankAddrReg);
+
+ return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function returns the low bit that will be swapped to enable CS interleaving
+ *
+ * @param[in] BankEnc - AddrMap Bank encoding from F2x80
+ * @param[in] *LowBit - pointer to low bit
+ * @param[in] *HiBit - pointer hight bit
+ *
+ */
+
+VOID
+MemTGetCSIntLvAddr3 (
+ IN UINT8 BankEnc,
+ OUT UINT8 *LowBit,
+ OUT UINT8 *HiBit
+ )
+{
+ CONST UINT8 ArrCodesLo[] = {0, 8, 8, 0, 0, 8, 9, 8, 9, 9, 8, 9};
+ CONST UINT8 ArrCodesHi[] = {0, 20, 21, 0, 0, 22, 22, 23, 23, 24, 24, 25};
+ ASSERT (BankEnc < GET_SIZE_OF (ArrCodesLo));
+ ASSERT (BankEnc < GET_SIZE_OF (ArrCodesHi));
+ // return ArrCodes[BankEnc];
+ *LowBit = ArrCodesLo[BankEnc];
+ *HiBit = ArrCodesHi[BankEnc];
+}
+
+/*----------------------------------------------------------------------------
+ * LOCAL FUNCTIONS
+ *
+ *----------------------------------------------------------------------------
+ */
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function determines if the checksum is correct
+ *
+ * @param[in] *SPDPtr - Pointer to SPD data
+ *
+ * @return TRUE - CRC check passes
+ * @return FALSE - CRC check fails
+ */
+
+BOOLEAN
+STATIC
+MemTCRCCheck3 (
+ IN OUT UINT8 *SPDPtr
+ )
+{
+ UINT16 Crc;
+ INT16 i;
+ INT16 j;
+ INT16 Count;
+
+ if (SPDPtr[SPD_TYPE] == JED_DDR3SDRAM) {
+ Count = (SPDPtr[SPD_BYTE_USED] & 0x80) ? 117 : 126;
+ Crc = 0;
+ for (j = 0; j < Count; j++) {
+ Crc = Crc ^ ((UINT16)SPDPtr[j] << 8);
+ for (i = 0; i < 8; i++) {
+ if (Crc & 0x8000) {
+ Crc = (Crc << 1) ^ 0x1021;
+ } else {
+ Crc = (Crc << 1);
+ }
+ }
+ }
+ if (*(UINT16 *) (SPDPtr + 126) == Crc) {
+ return TRUE;
+ }
+ }
+
+ return FALSE;
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function returns the CAS latency of the current frequency (DCTPtr->Timings.Speed).
+ *
+ * @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
+ *
+ * @return CAS Latency
+ */
+
+UINT8
+STATIC
+MemTSPDGetTCL3 (
+ IN OUT MEM_TECH_BLOCK *TechPtr
+ )
+{
+ UINT8 *SpdBufferPtr;
+ UINT8 CLdesired;
+ UINT8 CLactual;
+ UINT8 Dimm;
+ UINT8 Channel;
+ UINT16 CASLat;
+ UINT16 Mask16;
+ INT32 MTB_ps;
+ INT32 FTB_ps;
+ INT32 TAAmin_ps;
+ INT32 TCKproposed_ps;
+ INT32 Value32;
+ BOOLEAN CltFail;
+ MEM_NB_BLOCK *NBPtr;
+ DCT_STRUCT *DCTPtr;
+ CH_DEF_STRUCT *ChannelPtr;
+
+ NBPtr = TechPtr->NBPtr;
+ DCTPtr = NBPtr->DCTPtr;
+
+ CASLat = 0xFFFF;
+ TAAmin_ps = 0;
+ CltFail = FALSE;
+
+ for (Channel = 0; Channel < NBPtr->ChannelCount; Channel++) {
+ NBPtr->SwitchChannel (NBPtr, Channel);
+ ChannelPtr = NBPtr->ChannelPtr;
+ for (Dimm = 0; Dimm < MAX_DIMMS_PER_CHANNEL; Dimm++) {
+ if ((ChannelPtr->ChDimmValid & ((UINT8)1 << Dimm)) != 0) {
+ MemTGetDimmSpdBuffer3 (TechPtr, &SpdBufferPtr, Dimm);
+
+ // Step 1: Determine the common set of supported CAS Latency
+ // values for all modules on the memory Channel using the CAS
+ // Latencies Supported in SPD bytes 14 and 15.
+ //
+ CASLat &= ((UINT16)SpdBufferPtr[SPD_CASHI] << 8) | SpdBufferPtr[SPD_CASLO];
+
+ // Step 2: Determine tAAmin(all) which is the largest tAAmin
+ // value for all modules on the memory Channel (SPD byte 16).
+ //
+ MTB_ps = ((INT32) SpdBufferPtr[SPD_DIVIDENT] * 1000) / SpdBufferPtr[SPD_DIVISOR];
+ FTB_ps = (SpdBufferPtr[SPD_FTB] >> 4) / (SpdBufferPtr[SPD_FTB] & 0xF);
+ Value32 = (MTB_ps * SpdBufferPtr[SPD_TAA]) + (FTB_ps * (INT8) SpdBufferPtr[SPD_TAA_FTB]) ;
+ if (TAAmin_ps < Value32) {
+ TAAmin_ps = Value32;
+ }
+
+ // Step 3: Determine tCKmin(all) which is the largest tCKmin
+ // value for all modules on the memory Channel (SPD byte 12).
+ // * This step has been done in SPDGetTargetSpeed
+ }
+ }
+ }
+
+ TCKproposed_ps = 1000500 / DCTPtr->Timings.Speed;
+
+ // Step 4: For a proposed tCK value (tCKproposed) between tCKmin(all) and tCKmax,
+ // determine the desired CAS Latency. If tCKproposed is not a standard JEDEC
+ // value (2.5, 1.875, 1.5, or 1.25 ns) then tCKproposed must be adjusted to the
+ // next lower standard tCK value for calculating CLdesired.
+ // CLdesired = ceiling ( tAAmin(all) / tCKproposed )
+ // where tAAmin is defined in Byte 16. The ceiling function requires that the
+ // quotient be rounded up always.
+ //
+ CLdesired = (UINT8) ((TAAmin_ps + TCKproposed_ps - 1) / TCKproposed_ps);
+
+ // Step 5: Choose an actual CAS Latency (CLactual) that is greater than or equal
+ // to CLdesired and is supported by all modules on the memory Channel as
+ // determined in step 1. If no such value exists, choose a higher tCKproposed
+ // value and repeat steps 4 and 5 until a solution is found.
+ //
+ CLactual = 4;
+ for (Mask16 = 1; Mask16 < 0x8000; Mask16 <<= 1) {
+ if (CASLat & Mask16) {
+ if (CLdesired <= CLactual) {
+ break;
+ }
+ }
+ CLactual++;
+ }
+ if (Mask16 == 0x8000) {
+ CltFail = TRUE;
+ }
+
+ // Step 6: Once the calculation of CLactual is completed, the BIOS must also
+ // verify that this CAS Latency value does not exceed tAAmax, which is 20 ns
+ // for all DDR3 speed grades, by multiplying CLactual times tCKproposed. If
+ // not, choose a lower CL value and repeat steps 5 and 6 until a solution is found.
+ //
+ if ((TCKproposed_ps * CLactual) > 20000) {
+ CltFail = TRUE;
+ }
+
+ if (!CltFail) {
+ DCTPtr->Timings.CasL = CLactual;
+ } else {
+ // Fail to find supported Tcl, use 6 clocks since it is required for all DDR3 speed bin.
+ DCTPtr->Timings.CasL = 6;
+ }
+
+ return DCTPtr->Timings.CasL;
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function returns the encoded value of bank address.
+ *
+ * @param[in] Encode - RRRBCC, where CC is the number of Columns minus 9,
+ * RRR is the number of Rows minus 12, and B is the number of banks
+ * minus 3.
+ * @param[out] *Index - index in bank address table
+ * @return TRUE - encoded value is found.
+ * FALSE - encoded value is not found.
+ */
+
+BOOLEAN
+STATIC
+MemTCheckBankAddr3 (
+ IN UINT8 Encode,
+ OUT UINT8 *Index
+ )
+{
+ UINT8 i;
+ CONST UINT8 TabBankAddr[] = {
+ 0x3F, 0x01, 0x09, 0x3F, 0x3F, 0x11,
+ 0x0A, 0x19, 0x12, 0x1A, 0x21, 0x22
+ };
+
+ for (i = 0; i < GET_SIZE_OF (TabBankAddr); i++) {
+ if (Encode == TabBankAddr[i]) {
+ *Index = i;
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+/* -----------------------------------------------------------------------------*/
+/**
+ *
+ * This function returns a pointer to the SPD Buffer of a specific dimm on
+ * the current channel.
+ *
+ * @param[in,out] *TechPtr - Pointer to the MEM_TECH_BLOCK
+ * @param[in,out] **SpdBuffer - Pointer to a pointer to a UINT8 Buffer
+ * @param[in] Dimm - Dimm number
+ *
+ *
+ * @return BOOLEAN - Value of DimmPresent
+ * TRUE = Dimm is present, pointer is valid
+ * FALSE = Dimm is not present, pointer has not been modified.
+ */
+
+BOOLEAN
+MemTGetDimmSpdBuffer3 (
+ IN OUT MEM_TECH_BLOCK *TechPtr,
+ IN OUT UINT8 **SpdBuffer,
+ IN UINT8 Dimm
+ )
+{
+ CH_DEF_STRUCT *ChannelPtr;
+ SPD_DEF_STRUCT *SPDPtr;
+ BOOLEAN DimmPresent;
+
+ DimmPresent = FALSE;
+ ChannelPtr = TechPtr->NBPtr->ChannelPtr;
+ ASSERT (Dimm < (sizeof (ChannelPtr->DimmSpdPtr) / sizeof (ChannelPtr->DimmSpdPtr[0])))
+ SPDPtr = ChannelPtr->DimmSpdPtr[Dimm];
+
+
+ if (SPDPtr != NULL) {
+ DimmPresent = SPDPtr->DimmPresent;
+ if (DimmPresent) {
+ *SpdBuffer = SPDPtr->Data;
+ }
+ }
+ return DimmPresent;
+}
+