aboutsummaryrefslogtreecommitdiff
path: root/src/soc/intel/common/block/include
diff options
context:
space:
mode:
Diffstat (limited to 'src/soc/intel/common/block/include')
-rw-r--r--src/soc/intel/common/block/include/intelblocks/meminit.h159
1 files changed, 159 insertions, 0 deletions
diff --git a/src/soc/intel/common/block/include/intelblocks/meminit.h b/src/soc/intel/common/block/include/intelblocks/meminit.h
new file mode 100644
index 0000000000..cbec04ddb2
--- /dev/null
+++ b/src/soc/intel/common/block/include/intelblocks/meminit.h
@@ -0,0 +1,159 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+
+#ifndef __SOC_INTEL_COMMON_BLOCK_MEMINIT_H__
+#define __SOC_INTEL_COMMON_BLOCK_MEMINIT_H__
+
+#include <stddef.h>
+#include <stdint.h>
+#include <types.h>
+
+/*
+ * Calculates the number of channels depending upon the data bus width of the
+ * platform and the channel width.
+ */
+#define CHANNEL_COUNT(ch_width) (CONFIG_DATA_BUS_WIDTH / (ch_width))
+
+/*
+ * UPDs for FSP-M are organized depending upon the MRC's view of channel. Thus,
+ * the number of channels as seen by the MRC are dependent on the channel width
+ * assumption in the UPDs. These channels might not necessarily be the same as
+ * the physical channels supported by the platform.
+ */
+#define MRC_CHANNELS CHANNEL_COUNT(CONFIG_MRC_CHANNEL_WIDTH)
+
+/* Different memory topologies supported by the platform. */
+enum mem_topology {
+ MEM_TOPO_MEMORY_DOWN = BIT(0),
+ MEM_TOPO_DIMM_MODULE = BIT(1),
+ MEM_TOPO_MIXED = MEM_TOPO_MEMORY_DOWN | MEM_TOPO_DIMM_MODULE,
+};
+
+/*
+ * SPD provides information about the memory module. Depending upon the memory
+ * topology, the SPD data can be obtained from different sources. Example: for
+ * memory down topology, SPD is read from CBFS using cbfs_index. For DIMM
+ * modules, SPD is read from EEPROM using the DIMM addresses provided by the
+ * mainboard.
+ */
+struct mem_spd {
+ enum mem_topology topo;
+ /*
+ * SPD data is read from CBFS spd.bin file using cbfs_index to locate
+ * the entry. This is used in case of MEM_TOPO_MEMORY_DOWN and
+ * MEM_TOPO_MIXED topologies.
+ */
+ size_t cbfs_index;
+
+ /*
+ * SPD data is read from on-module EEPROM using the DIMM addresses
+ * provided by the mainboard. This is used in case of
+ * MEM_TOPO_DIMM_MODULE and MEM_TOPO_MIXED topologies.
+ *
+ * Up to a maximum of MRC_CHANNELS * CONFIG_DIMMS_PER_CHANNEL addresses
+ * can be provided by mainboard. However, depending upon the memory
+ * technology being used and the number of physical channels supported
+ * by that technology, the actual channels might be less than
+ * MRC_CHANNELS.
+ */
+ struct {
+ uint8_t addr_dimm[CONFIG_DIMMS_PER_CHANNEL];
+ } smbus[MRC_CHANNELS];
+};
+
+/* Information about memory technology supported by SoC */
+struct soc_mem_cfg {
+ /*
+ * Number of physical channels that are supported by the memory
+ * technology.
+ */
+ size_t num_phys_channels;
+
+ /*
+ * Map of physical channel numbers to MRC channel numbers. This is
+ * helpful in identifying what SPD entries need to be filled for a
+ * physical channel.
+ *
+ * Example: MRC supports 8 channels 0 - 7, but a memory technology
+ * supports only 2 physical channels 0 - 1. In this case, the map could
+ * be:
+ * [0] = 0,
+ * [1] = 4,
+ * indicating that physical channel 0 is mapped to MRC channel 0 and
+ * physical channel 1 is mapped to MRC channel 4.
+ */
+ size_t phys_to_mrc_map[MRC_CHANNELS];
+
+ /*
+ * Masks to be applied in case of memory down topology. For memory down
+ * topology, there is no separate EEPROM. Thus, the masks need to be
+ * hard-coded by the SoC to indicate what combinations are supported.
+ * This is a mask of physical channels for the memory technology.
+ *
+ * Example: For the memory technology supporting 2 physical channels,
+ * where the population rules restrict use of channel 0 for
+ * half-channel, half_channel mask would be set to 0x1 indicating
+ * channel 0 is always populated.
+ */
+ struct {
+ /*
+ * Mask of physical channels that are populated in case of
+ * half-channel configuration.
+ */
+ uint32_t half_channel;
+ /*
+ * Mask of physical channels that are populated with memory
+ * down parts in case of mixed topology.
+ */
+ uint32_t mixed_topo;
+ } md_phy_masks;
+};
+
+/* Flags indicating how the channels are populated. */
+enum channel_population {
+ NO_CHANNEL_POPULATED = 0,
+ TOP_HALF_POPULATED = BIT(0),
+ BOTTOM_HALF_POPULATED = BIT(1),
+ FULLY_POPULATED = TOP_HALF_POPULATED | BOTTOM_HALF_POPULATED,
+};
+
+/*
+ * Data for the memory channels that can be used by SoC code to populate FSP
+ * UPDs.
+ */
+struct mem_channel_data {
+ /* Pointer to SPD data for each DIMM of each channel */
+ uintptr_t spd[MRC_CHANNELS][CONFIG_DIMMS_PER_CHANNEL];
+ /* Length of SPD data */
+ size_t spd_len;
+ /* Flags indicating how channels are populated */
+ enum channel_population ch_population_flags;
+};
+
+/*
+ * This change populates data regarding memory channels in `struct
+ * mem_channel_data` using the following inputs from SoC code:
+ * soc_mem_cfg : SoC-specific information about the memory technology used by
+ * the mainboard.
+ * spd_info : Information about the memory topology.
+ * half_populated: Hint from mainboard if channels are half populated.
+ */
+void mem_populate_channel_data(const struct soc_mem_cfg *soc_mem_cfg,
+ const struct mem_spd *spd_info,
+ bool half_populated,
+ struct mem_channel_data *data);
+
+/*
+ * Given a channel number and the maximum number of supported channels, this
+ * function returns if a channel is populated. This is useful for populating
+ * DQ/DQS UPDs by the SoC code.
+ */
+static inline bool channel_is_populated(size_t curr_ch, size_t max_ch,
+ enum channel_population flags)
+{
+ if ((curr_ch * 2) < max_ch)
+ return !!(flags & BOTTOM_HALF_POPULATED);
+
+ return !!(flags & TOP_HALF_POPULATED);
+}
+
+#endif /* __SOC_INTEL_COMMON_BLOCK_MEMINIT_H__ */