diff options
Diffstat (limited to 'src/mainboard/amd/parmer/BiosCallOuts.c')
-rw-r--r-- | src/mainboard/amd/parmer/BiosCallOuts.c | 735 |
1 files changed, 735 insertions, 0 deletions
diff --git a/src/mainboard/amd/parmer/BiosCallOuts.c b/src/mainboard/amd/parmer/BiosCallOuts.c new file mode 100644 index 0000000000..a50e5322e9 --- /dev/null +++ b/src/mainboard/amd/parmer/BiosCallOuts.c @@ -0,0 +1,735 @@ +/* + * This file is part of the coreboot project. + * + * Copyright (C) 2012 Advanced Micro Devices, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; version 2 of the License. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include "agesawrapper.h" +#include "amdlib.h" +#include "dimmSpd.h" +#include "BiosCallOuts.h" +#include "Ids.h" +#include "OptionsIds.h" +#include "heapManager.h" +#include "FchPlatform.h" + +STATIC CONST BIOS_CALLOUT_STRUCT BiosCallouts[] = +{ + {AGESA_ALLOCATE_BUFFER, + BiosAllocateBuffer + }, + + {AGESA_DEALLOCATE_BUFFER, + BiosDeallocateBuffer + }, + + {AGESA_DO_RESET, + BiosReset + }, + + {AGESA_LOCATE_BUFFER, + BiosLocateBuffer + }, + + {AGESA_READ_SPD, + BiosReadSpd + }, + + {AGESA_READ_SPD_RECOVERY, + BiosDefaultRet + }, + + {AGESA_RUNFUNC_ONAP, + BiosRunFuncOnAp + }, + + {AGESA_GET_IDS_INIT_DATA, + BiosGetIdsInitData + }, + + {AGESA_HOOKBEFORE_DQS_TRAINING, + BiosHookBeforeDQSTraining + }, + + {AGESA_HOOKBEFORE_EXIT_SELF_REF, + BiosHookBeforeExitSelfRefresh + }, + + {AGESA_FCH_OEM_CALLOUT, + Fch_Oem_config + }, +}; + +AGESA_STATUS GetBiosCallout (UINT32 Func, UINT32 Data, VOID *ConfigPtr) +{ + UINTN i; + AGESA_STATUS CalloutStatus; + UINTN CallOutCount = sizeof (BiosCallouts) / sizeof (BiosCallouts [0]); + + for (i = 0; i < CallOutCount; i++) + { + if (BiosCallouts[i].CalloutName == Func) + { + break; + } + } + + if(i >= CallOutCount) + { + return AGESA_UNSUPPORTED; + } + + CalloutStatus = BiosCallouts[i].CalloutPtr (Func, Data, ConfigPtr); + + return CalloutStatus; +} + +CONST IDS_NV_ITEM IdsData[] = +{ + /*{ + AGESA_IDS_NV_MAIN_PLL_CON, + 0x1 + }, + { + AGESA_IDS_NV_MAIN_PLL_FID_EN, + 0x1 + }, + { + AGESA_IDS_NV_MAIN_PLL_FID, + 0x8 + }, + + { + AGESA_IDS_NV_CUSTOM_NB_PSTATE, + }, + { + AGESA_IDS_NV_CUSTOM_NB_P0_DIV_CTRL, + }, + { + AGESA_IDS_NV_CUSTOM_NB_P1_DIV_CTRL, + }, + { + AGESA_IDS_NV_FORCE_NB_PSTATE, + }, + */ + { + 0xFFFF, + 0xFFFF + } +}; + +#define NUM_IDS_ENTRIES (sizeof (IdsData) / sizeof (IDS_NV_ITEM)) + +AGESA_STATUS BiosGetIdsInitData (UINT32 Func, UINT32 Data, VOID *ConfigPtr) +{ + UINTN i; + IDS_NV_ITEM *IdsPtr; + + IdsPtr = ((IDS_CALLOUT_STRUCT *) ConfigPtr)->IdsNvPtr; + + if (Data == IDS_CALLOUT_INIT) { + for (i = 0; i < NUM_IDS_ENTRIES; i++) { + IdsPtr[i].IdsNvValue = IdsData[i].IdsNvValue; + IdsPtr[i].IdsNvId = IdsData[i].IdsNvId; + } + } + return AGESA_SUCCESS; +} + +AGESA_STATUS BiosAllocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr) +{ + UINT32 AvailableHeapSize; + UINT8 *BiosHeapBaseAddr; + UINT32 CurrNodeOffset; + UINT32 PrevNodeOffset; + UINT32 FreedNodeOffset; + UINT32 BestFitNodeOffset; + UINT32 BestFitPrevNodeOffset; + UINT32 NextFreeOffset; + BIOS_BUFFER_NODE *CurrNodePtr; + BIOS_BUFFER_NODE *FreedNodePtr; + BIOS_BUFFER_NODE *BestFitNodePtr; + BIOS_BUFFER_NODE *BestFitPrevNodePtr; + BIOS_BUFFER_NODE *NextFreePtr; + BIOS_HEAP_MANAGER *BiosHeapBasePtr; + AGESA_BUFFER_PARAMS *AllocParams; + + AllocParams = ((AGESA_BUFFER_PARAMS *) ConfigPtr); + AllocParams->BufferPointer = NULL; + + AvailableHeapSize = BIOS_HEAP_SIZE - sizeof (BIOS_HEAP_MANAGER); + BiosHeapBaseAddr = (UINT8 *) GetHeapBase(&(AllocParams->StdHeader)); + BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BiosHeapBaseAddr; + + if (BiosHeapBasePtr->StartOfAllocatedNodes == 0) { + /* First allocation */ + CurrNodeOffset = sizeof (BIOS_HEAP_MANAGER); + CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset); + CurrNodePtr->BufferHandle = AllocParams->BufferHandle; + CurrNodePtr->BufferSize = AllocParams->BufferLength; + CurrNodePtr->NextNodeOffset = 0; + AllocParams->BufferPointer = (UINT8 *) CurrNodePtr + sizeof (BIOS_BUFFER_NODE); + + /* Update the remaining free space */ + FreedNodeOffset = CurrNodeOffset + CurrNodePtr->BufferSize + sizeof (BIOS_BUFFER_NODE); + FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset); + FreedNodePtr->BufferSize = AvailableHeapSize - sizeof (BIOS_BUFFER_NODE) - CurrNodePtr->BufferSize; + FreedNodePtr->NextNodeOffset = 0; + + /* Update the offsets for Allocated and Freed nodes */ + BiosHeapBasePtr->StartOfAllocatedNodes = CurrNodeOffset; + BiosHeapBasePtr->StartOfFreedNodes = FreedNodeOffset; + } else { + /* Find out whether BufferHandle has been allocated on the heap. */ + /* If it has, return AGESA_BOUNDS_CHK */ + CurrNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes; + CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset); + + while (CurrNodeOffset != 0) { + CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset); + if (CurrNodePtr->BufferHandle == AllocParams->BufferHandle) { + return AGESA_BOUNDS_CHK; + } + CurrNodeOffset = CurrNodePtr->NextNodeOffset; + /* If BufferHandle has not been allocated on the heap, CurrNodePtr here points + to the end of the allocated nodes list. + */ + + } + /* Find the node that best fits the requested buffer size */ + FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes; + PrevNodeOffset = FreedNodeOffset; + BestFitNodeOffset = 0; + BestFitPrevNodeOffset = 0; + while (FreedNodeOffset != 0) { + FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset); + if (FreedNodePtr->BufferSize >= (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) { + if (BestFitNodeOffset == 0) { + /* First node that fits the requested buffer size */ + BestFitNodeOffset = FreedNodeOffset; + BestFitPrevNodeOffset = PrevNodeOffset; + } else { + /* Find out whether current node is a better fit than the previous nodes */ + BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset); + if (BestFitNodePtr->BufferSize > FreedNodePtr->BufferSize) { + BestFitNodeOffset = FreedNodeOffset; + BestFitPrevNodeOffset = PrevNodeOffset; + } + } + } + PrevNodeOffset = FreedNodeOffset; + FreedNodeOffset = FreedNodePtr->NextNodeOffset; + } /* end of while loop */ + + if (BestFitNodeOffset == 0) { + /* If we could not find a node that fits the requested buffer */ + /* size, return AGESA_BOUNDS_CHK */ + return AGESA_BOUNDS_CHK; + } else { + BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset); + BestFitPrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitPrevNodeOffset); + + /* If BestFitNode is larger than the requested buffer, fragment the node further */ + if (BestFitNodePtr->BufferSize > (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) { + NextFreeOffset = BestFitNodeOffset + AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE); + + NextFreePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextFreeOffset); + NextFreePtr->BufferSize = BestFitNodePtr->BufferSize - (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE)); + NextFreePtr->NextNodeOffset = BestFitNodePtr->NextNodeOffset; + } else { + /* Otherwise, next free node is NextNodeOffset of BestFitNode */ + NextFreeOffset = BestFitNodePtr->NextNodeOffset; + } + + /* If BestFitNode is the first buffer in the list, then update + StartOfFreedNodes to reflect the new free node + */ + if (BestFitNodeOffset == BiosHeapBasePtr->StartOfFreedNodes) { + BiosHeapBasePtr->StartOfFreedNodes = NextFreeOffset; + } else { + BestFitPrevNodePtr->NextNodeOffset = NextFreeOffset; + } + + /* Add BestFitNode to the list of Allocated nodes */ + CurrNodePtr->NextNodeOffset = BestFitNodeOffset; + BestFitNodePtr->BufferSize = AllocParams->BufferLength; + BestFitNodePtr->BufferHandle = AllocParams->BufferHandle; + BestFitNodePtr->NextNodeOffset = 0; + + /* Remove BestFitNode from list of Freed nodes */ + AllocParams->BufferPointer = (UINT8 *) BestFitNodePtr + sizeof (BIOS_BUFFER_NODE); + } + } + + return AGESA_SUCCESS; +} + +AGESA_STATUS BiosDeallocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr) +{ + + UINT8 *BiosHeapBaseAddr; + UINT32 AllocNodeOffset; + UINT32 PrevNodeOffset; + UINT32 NextNodeOffset; + UINT32 FreedNodeOffset; + UINT32 EndNodeOffset; + BIOS_BUFFER_NODE *AllocNodePtr; + BIOS_BUFFER_NODE *PrevNodePtr; + BIOS_BUFFER_NODE *FreedNodePtr; + BIOS_BUFFER_NODE *NextNodePtr; + BIOS_HEAP_MANAGER *BiosHeapBasePtr; + AGESA_BUFFER_PARAMS *AllocParams; + + BiosHeapBaseAddr = (UINT8 *) GetHeapBase(&(AllocParams->StdHeader)); + BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BiosHeapBaseAddr; + + AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr; + + /* Find target node to deallocate in list of allocated nodes. + Return AGESA_BOUNDS_CHK if the BufferHandle is not found + */ + AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes; + AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); + PrevNodeOffset = AllocNodeOffset; + + while (AllocNodePtr->BufferHandle != AllocParams->BufferHandle) { + if (AllocNodePtr->NextNodeOffset == 0) { + return AGESA_BOUNDS_CHK; + } + PrevNodeOffset = AllocNodeOffset; + AllocNodeOffset = AllocNodePtr->NextNodeOffset; + AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); + } + + /* Remove target node from list of allocated nodes */ + PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset); + PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset; + + /* Zero out the buffer, and clear the BufferHandle */ + LibAmdMemFill ((UINT8 *)AllocNodePtr + sizeof (BIOS_BUFFER_NODE), 0, AllocNodePtr->BufferSize, &(AllocParams->StdHeader)); + AllocNodePtr->BufferHandle = 0; + AllocNodePtr->BufferSize += sizeof (BIOS_BUFFER_NODE); + + /* Add deallocated node in order to the list of freed nodes */ + FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes; + FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset); + + EndNodeOffset = AllocNodeOffset + AllocNodePtr->BufferSize; + + if (AllocNodeOffset < FreedNodeOffset) { + /* Add to the start of the freed list */ + if (EndNodeOffset == FreedNodeOffset) { + /* If the freed node is adjacent to the first node in the list, concatenate both nodes */ + AllocNodePtr->BufferSize += FreedNodePtr->BufferSize; + AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset; + + /* Clear the BufferSize and NextNodeOffset of the previous first node */ + FreedNodePtr->BufferSize = 0; + FreedNodePtr->NextNodeOffset = 0; + + } else { + /* Otherwise, add freed node to the start of the list + Update NextNodeOffset and BufferSize to include the + size of BIOS_BUFFER_NODE + */ + AllocNodePtr->NextNodeOffset = FreedNodeOffset; + } + /* Update StartOfFreedNodes to the new first node */ + BiosHeapBasePtr->StartOfFreedNodes = AllocNodeOffset; + } else { + /* Traverse list of freed nodes to find where the deallocated node + should be place + */ + NextNodeOffset = FreedNodeOffset; + NextNodePtr = FreedNodePtr; + while (AllocNodeOffset > NextNodeOffset) { + PrevNodeOffset = NextNodeOffset; + if (NextNodePtr->NextNodeOffset == 0) { + break; + } + NextNodeOffset = NextNodePtr->NextNodeOffset; + NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset); + } + + /* If deallocated node is adjacent to the next node, + concatenate both nodes + */ + if (NextNodeOffset == EndNodeOffset) { + NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset); + AllocNodePtr->BufferSize += NextNodePtr->BufferSize; + AllocNodePtr->NextNodeOffset = NextNodePtr->NextNodeOffset; + + NextNodePtr->BufferSize = 0; + NextNodePtr->NextNodeOffset = 0; + } else { + /*AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset; */ + AllocNodePtr->NextNodeOffset = NextNodeOffset; + } + /* If deallocated node is adjacent to the previous node, + concatenate both nodes + */ + PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset); + EndNodeOffset = PrevNodeOffset + PrevNodePtr->BufferSize; + if (AllocNodeOffset == EndNodeOffset) { + PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset; + PrevNodePtr->BufferSize += AllocNodePtr->BufferSize; + + AllocNodePtr->BufferSize = 0; + AllocNodePtr->NextNodeOffset = 0; + } else { + PrevNodePtr->NextNodeOffset = AllocNodeOffset; + } + } + return AGESA_SUCCESS; +} + +AGESA_STATUS BiosLocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr) +{ + UINT32 AllocNodeOffset; + UINT8 *BiosHeapBaseAddr; + BIOS_BUFFER_NODE *AllocNodePtr; + BIOS_HEAP_MANAGER *BiosHeapBasePtr; + AGESA_BUFFER_PARAMS *AllocParams; + + AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr; + + BiosHeapBaseAddr = (UINT8 *) GetHeapBase(&(AllocParams->StdHeader)); + BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BiosHeapBaseAddr; + + AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes; + AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); + + while (AllocParams->BufferHandle != AllocNodePtr->BufferHandle) { + if (AllocNodePtr->NextNodeOffset == 0) { + AllocParams->BufferPointer = NULL; + AllocParams->BufferLength = 0; + return AGESA_BOUNDS_CHK; + } else { + AllocNodeOffset = AllocNodePtr->NextNodeOffset; + AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset); + } + } + + AllocParams->BufferPointer = (UINT8 *) ((UINT8 *) AllocNodePtr + sizeof (BIOS_BUFFER_NODE)); + AllocParams->BufferLength = AllocNodePtr->BufferSize; + + return AGESA_SUCCESS; + +} + +AGESA_STATUS BiosRunFuncOnAp (UINT32 Func, UINT32 Data, VOID *ConfigPtr) +{ + AGESA_STATUS Status; + + Status = agesawrapper_amdlaterunaptask (Func, Data, ConfigPtr); + return Status; +} + +AGESA_STATUS BiosReset (UINT32 Func, UINT32 Data, VOID *ConfigPtr) +{ + AGESA_STATUS Status; + UINT8 Value; + UINTN ResetType; + AMD_CONFIG_PARAMS *StdHeader; + + ResetType = Data; + StdHeader = ConfigPtr; + + // + // Perform the RESET based upon the ResetType. In case of + // WARM_RESET_WHENVER and COLD_RESET_WHENEVER, the request will go to + // AmdResetManager. During the critical condition, where reset is required + // immediately, the reset will be invoked directly by writing 0x04 to port + // 0xCF9 (Reset Port). + // + switch (ResetType) { + case WARM_RESET_WHENEVER: + case COLD_RESET_WHENEVER: + break; + + case WARM_RESET_IMMEDIATELY: + case COLD_RESET_IMMEDIATELY: + Value = 0x06; + LibAmdIoWrite (AccessWidth8, 0xCf9, &Value, StdHeader); + break; + + default: + break; + } + + Status = 0; + return Status; +} + +AGESA_STATUS BiosReadSpd (UINT32 Func, UINT32 Data, VOID *ConfigPtr) +{ + AGESA_STATUS Status; + Status = AmdMemoryReadSPD (Func, Data, ConfigPtr); + + return Status; +} + +AGESA_STATUS BiosDefaultRet (UINT32 Func, UINT32 Data, VOID *ConfigPtr) +{ + return AGESA_UNSUPPORTED; +} + +/* Call the host environment interface to provide a user hook opportunity. */ +AGESA_STATUS BiosHookBeforeDQSTraining (UINT32 Func, UINT32 Data, VOID *ConfigPtr) +{ + return AGESA_SUCCESS; +} + +/* Call the host environment interface to provide a user hook opportunity. */ +AGESA_STATUS BiosHookBeforeExitSelfRefresh (UINT32 Func, UINT32 Data, VOID *ConfigPtr) +{ + return AGESA_SUCCESS; +} + +/** + * AMD Parmer Platform ALC272 Verb Table + */ +const CODEC_ENTRY Pumori_Alc272_VerbTbl[] = { + {0x11, 0x411111F0}, + {0x12, 0x411111F0}, + {0x13, 0x411111F0}, + {0x14, 0x411111F0}, + {0x15, 0x411111F0}, + {0x16, 0x411111F0}, + {0x17, 0x411111F0}, + {0x18, 0x01a19830}, + {0x19, 0x411111F0}, + {0x1a, 0x01813020}, + {0x1b, 0x411111F0}, + {0x1d, 0x40151e05}, + {0x1e, 0x411111F0}, + {0x21, 0x01214010}, + {0xff, 0xffffffff} +}; + +const CODEC_TBL_LIST PumoriCodecTableList[] = +{ + {0x10ec0272, (CODEC_ENTRY*)&Pumori_Alc272_VerbTbl[0]}, + {(UINT32)0x0FFFFFFFF, (CODEC_ENTRY*)0x0FFFFFFFFUL} +}; + +#define FAN_INPUT_INTERNAL_DIODE 0 +#define FAN_INPUT_TEMP0 1 +#define FAN_INPUT_TEMP1 2 +#define FAN_INPUT_TEMP2 3 +#define FAN_INPUT_TEMP3 4 +#define FAN_INPUT_TEMP0_FILTER 5 +#define FAN_INPUT_ZERO 6 +#define FAN_INPUT_DISABLED 7 + +#define FAN_AUTOMODE (1 << 0) +#define FAN_LINEARMODE (1 << 1) +#define FAN_STEPMODE ~(1 << 1) +#define FAN_POLARITY_HIGH (1 << 2) +#define FAN_POLARITY_LOW ~(1 << 2) + +/* Normally, 4-wire fan runs at 25KHz and 3-wire fan runs at 100Hz */ +#define FREQ_28KHZ 0x0 +#define FREQ_25KHZ 0x1 +#define FREQ_23KHZ 0x2 +#define FREQ_21KHZ 0x3 +#define FREQ_29KHZ 0x4 +#define FREQ_18KHZ 0x5 +#define FREQ_100HZ 0xF7 +#define FREQ_87HZ 0xF8 +#define FREQ_58HZ 0xF9 +#define FREQ_44HZ 0xFA +#define FREQ_35HZ 0xFB +#define FREQ_29HZ 0xFC +#define FREQ_22HZ 0xFD +#define FREQ_14HZ 0xFE +#define FREQ_11HZ 0xFF + +/* Parmer Hardware Monitor Fan Control + * Hardware limitation: + * HWM failed to read the input temperture vi I2C, + * if other software switch the I2C switch by mistake or intention. + * We recommend to using IMC to control Fans, instead of HWM. + */ +static void oem_fan_control(FCH_DATA_BLOCK *FchParams) +{ + FCH_HWM_FAN_CTR oem_factl[5] = { + /*temperatuer input, fan mode, frequency, low_duty, med_duty, multiplier, lowtemp, medtemp, hightemp, LinearRange, LinearHoldCount */ + /* Parmer FanOUT0 Fan header J32 */ + {FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60, 0, 40, 65, 85, 0, 0}, + /* Parmer FanOUT1 Fan header J31*/ + {FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60, 0, 40, 65, 85, 0, 0}, + {FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60, 0, 40, 65, 85, 0, 0}, + {FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60, 0, 40, 65, 85, 0, 0}, + {FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60, 0, 40, 65, 85, 0, 0}, + }; + LibAmdMemCopy ((VOID *)(FchParams->Hwm.HwmFanControl), &oem_factl, (sizeof (FCH_HWM_FAN_CTR) * 5), FchParams->StdHeader); + + /* Enable IMC fan control. the recommand way */ +#if defined CONFIG_HUDSON_IMC_FWM && (CONFIG_HUDSON_IMC_FWM == 1) + /* HwMonitorEnable = TRUE && HwmFchtsiAutoOpll ==FALSE to call FchECfancontrolservice */ + FchParams->Hwm.HwMonitorEnable = TRUE; + FchParams->Hwm.HwmFchtsiAutoPoll = FALSE;/* 0 disable, 1 enable TSI Auto Polling */ + + FchParams->Imc.ImcEnable = TRUE; + FchParams->Hwm.HwmControl = 1; /* 1 IMC, 0 HWM */ + FchParams->Imc.ImcEnableOverWrite = 1; /* 2 disable IMC , 1 enable IMC, 0 following hw strap setting */ + + LibAmdMemFill(&(FchParams->Imc.EcStruct), 0, sizeof(FCH_EC), FchParams->StdHeader); + + /* Thermal Zone Parameter */ + FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg0 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg1 = 0x00; /* Zone */ + FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg2 = 0x00; //BIT0 | BIT2 | BIT5; + FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg3 = 0x00;//6 | BIT3; + FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg4 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg5 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg6 = 0x98; /* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */ + FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg7 = 2; + FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg8 = 0; /* PWM steping rate in unit of PWM level percentage */ + FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg9 = 0; + + /* IMC Fan Policy temperature thresholds */ + FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg0 = 0x00; + FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg1 = 0x00; /* Zone */ + FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg2 = 0;///80; /*AC0 threshold in Celsius */ + FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg3 = 0; /*AC1 threshold in Celsius */ + FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg4 = 0; /*AC2 threshold in Celsius */ + FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg5 = 0; /*AC3 threshold in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg6 = 0; /*AC4 threshold in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg7 = 0; /*AC5 threshold in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg8 = 0; /*AC6 threshold in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg9 = 0; /*AC7 lowest threshold in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone0MsgRegA = 0; /*critical threshold* in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone0MsgRegB = 0x00; + + /* IMC Fan Policy PWM Settings */ + FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg0 = 0x00; + FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg1 = 0x00; /* Zone */ + FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg2 = 0; /* AL0 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg3 = 0; /* AL1 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg4 = 0; /* AL2 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg5 = 0x00; /* AL3 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg6 = 0x00; /* AL4 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg7 = 0x00; /* AL5 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg8 = 0x00; /* AL6 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg9 = 0x00; /* AL7 percentage */ + + FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg0 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg1 = 0x01; /* Zone */ + FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg2 = 0x55;//BIT0 | BIT2 | BIT5; + FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg3 = 0x17; + FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg4 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg5 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg6 = 0x90; /* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */ + FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg7 = 0; + FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg8 = 0; /* PWM steping rate in unit of PWM level percentage */ + FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg9 = 0; + + FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg0 = 0x00; + FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg1 = 0x01; /* zone */ + FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg2 = 60; /*AC0 threshold in Celsius */ + FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg3 = 40; /*AC1 threshold in Celsius */ + FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg4 = 0; /*AC2 threshold in Celsius */ + FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg5 = 0; /*AC3 threshold in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg6 = 0; /*AC4 threshold in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg7 = 0; /*AC5 threshold in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg8 = 0; /*AC6 threshold in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg9 = 0; /*AC7 lowest threshold in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone1MsgRegA = 0; /*critical threshold* in Celsius, 0xFF is not define */ + FchParams->Imc.EcStruct.MsgFun83Zone1MsgRegB = 0x00; + + FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg0 = 0x00; + FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg1 = 0x01; /*Zone */ + FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg2 = 0; /* AL0 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg3 = 0; /* AL1 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg4 = 0; /* AL2 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg5 = 0x00; /* AL3 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg6 = 0x00; /* AL4 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg7 = 0x00; /* AL5 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg8 = 0x00; /* AL6 percentage */ + FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg9 = 0x00; /* AL7 percentage */ + + FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg0 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg1 = 0x2; /* Zone */ + FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg2 = 0x0;//BIT0 | BIT2 | BIT5; + FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg3 = 0x0; + FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg4 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg5 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg6 = 0x98; /* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */ + FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg7 = 2; + FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg8 = 5; /* PWM steping rate in unit of PWM level percentage */ + FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg9 = 0; + + FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg0 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg1 = 0x3; /* Zone */ + FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg2 = 0x0;//BIT0 | BIT2 | BIT5; + FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg3 = 0x0; + FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg4 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg5 = 0x00; + FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg6 = 0x0; /* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */ + FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg7 = 0; + FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg8 = 0; /* PWM steping rate in unit of PWM level percentage */ + FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg9 = 0; + + /* IMC Function */ + FchParams->Imc.EcStruct.IMCFUNSupportBitMap = 0x333;//BIT0 | BIT4 |BIT8; + + /* NOTE: + * FchInitLateHwm will overwrite the EcStruct with EcDefaultMassege, + * AGESA put EcDefaultMassege as global data in ROM, so we can't overwride it. + * so we remove it from AGESA code. Please Seee FchInitLateHwm. + */ + +#else /* HWM fan control, the way not recommand */ + FchParams->Imc.ImcEnable = FALSE; + FchParams->Hwm.HwMonitorEnable = TRUE; + FchParams->Hwm.HwmFchtsiAutoPoll = TRUE;/* 1 enable, 0 disable TSI Auto Polling */ + +#endif /* CONFIG_HUDSON_IMC_FWM */ +} + +/** + * Fch Oem setting callback + * + * Configure platform specific Hudson device, + * such Azalia, SATA, GEC, IMC etc. + */ +AGESA_STATUS Fch_Oem_config(UINT32 Func, UINT32 FchData, VOID *ConfigPtr) +{ + FCH_RESET_DATA_BLOCK *FchParams = (FCH_RESET_DATA_BLOCK *)FchData; + + if (FchParams->StdHeader->Func == AMD_INIT_RESET) { + //FCH_RESET_DATA_BLOCK *FchParams_reset = (FCH_RESET_DATA_BLOCK *) FchData; + printk(BIOS_DEBUG, "Fch OEM config in INIT RESET "); + //FchParams_reset->EcChannel0 = TRUE; /* logical devicd 3 */ + } else if (FchParams->StdHeader->Func == AMD_INIT_ENV) { + FCH_DATA_BLOCK *FchParams_env = (FCH_DATA_BLOCK *)FchData; + printk(BIOS_DEBUG, "Fch OEM config in INIT ENV "); + + /* Azalia Controller OEM Codec Table Pointer */ + FchParams_env->Azalia.AzaliaOemCodecTablePtr = (CODEC_TBL_LIST *)(&PumoriCodecTableList[0]); + /* Azalia Controller Front Panel OEM Table Pointer */ + + /* Fan Control */ + oem_fan_control(FchParams_env); + + /* sata configuration */ + } + printk(BIOS_DEBUG, "Done\n"); + + return AGESA_SUCCESS; +} |