summaryrefslogtreecommitdiff
path: root/src/device
diff options
context:
space:
mode:
Diffstat (limited to 'src/device')
-rw-r--r--src/device/device.c1025
1 files changed, 511 insertions, 514 deletions
diff --git a/src/device/device.c b/src/device/device.c
index e4b5f12023..3ed64da34a 100644
--- a/src/device/device.c
+++ b/src/device/device.c
@@ -8,6 +8,7 @@
#include <device/device.h>
#include <device/pci_def.h>
#include <device/pci_ids.h>
+#include <memrange.h>
#include <post.h>
#include <stdlib.h>
#include <string.h>
@@ -154,14 +155,10 @@ struct device *alloc_find_dev(struct bus *parent, struct device_path *path)
*/
static resource_t round(resource_t val, unsigned long pow)
{
- resource_t mask;
- mask = (1ULL << pow) - 1ULL;
- val += mask;
- val &= ~mask;
- return val;
+ return ALIGN_UP(val, POWER_OF_2(pow));
}
-static const char *resource2str(struct resource *res)
+static const char *resource2str(const struct resource *res)
{
if (res->flags & IORESOURCE_IO)
return "io";
@@ -266,466 +263,6 @@ static const struct device *largest_resource(struct bus *bus,
return state.result_dev;
}
-/**
- * This function is the guts of the resource allocator.
- *
- * The problem.
- * - Allocate resource locations for every device.
- * - Don't overlap, and follow the rules of bridges.
- * - Don't overlap with resources in fixed locations.
- * - Be efficient so we don't have ugly strategies.
- *
- * The strategy.
- * - Devices that have fixed addresses are the minority so don't
- * worry about them too much. Instead only use part of the address
- * space for devices with programmable addresses. This easily handles
- * everything except bridges.
- *
- * - PCI devices are required to have their sizes and their alignments
- * equal. In this case an optimal solution to the packing problem
- * exists. Allocate all devices from highest alignment to least
- * alignment or vice versa. Use this.
- *
- * - So we can handle more than PCI run two allocation passes on bridges. The
- * first to see how large the resources are behind the bridge, and what
- * their alignment requirements are. The second to assign a safe address to
- * the devices behind the bridge. This allows us to treat a bridge as just
- * a device with a couple of resources, and not need to special case it in
- * the allocator. Also this allows handling of other types of bridges.
- *
- * @param bus The bus we are traversing.
- * @param bridge The bridge resource which must contain the bus' resources.
- * @param type_mask This value gets ANDed with the resource type.
- * @param type This value must match the result of the AND.
- * @return TODO
- */
-static void compute_resources(struct bus *bus, struct resource *bridge,
- unsigned long type_mask, unsigned long type)
-{
- const struct device *dev;
- struct resource *resource;
- resource_t base;
- base = round(bridge->base, bridge->align);
-
- if (!bus)
- return;
-
- printk(BIOS_SPEW, "%s %s: base: %llx size: %llx align: %d gran: %d"
- " limit: %llx\n", dev_path(bus->dev), resource2str(bridge),
- base, bridge->size, bridge->align,
- bridge->gran, bridge->limit);
-
- /* For each child which is a bridge, compute the resource needs. */
- for (dev = bus->children; dev; dev = dev->sibling) {
- struct resource *child_bridge;
-
- if (!dev->link_list)
- continue;
-
- /* Find the resources with matching type flags. */
- for (child_bridge = dev->resource_list; child_bridge;
- child_bridge = child_bridge->next) {
- struct bus* link;
-
- if (!(child_bridge->flags & IORESOURCE_BRIDGE)
- || (child_bridge->flags & type_mask) != type)
- continue;
-
- /*
- * Split prefetchable memory if combined. Many domains
- * use the same address space for prefetchable memory
- * and non-prefetchable memory. Bridges below them need
- * it separated. Add the PREFETCH flag to the type_mask
- * and type.
- */
- link = dev->link_list;
- while (link && link->link_num !=
- IOINDEX_LINK(child_bridge->index))
- link = link->next;
-
- if (link == NULL) {
- printk(BIOS_ERR, "link %ld not found on %s\n",
- IOINDEX_LINK(child_bridge->index),
- dev_path(dev));
- }
-
- compute_resources(link, child_bridge,
- type_mask | IORESOURCE_PREFETCH,
- type | (child_bridge->flags &
- IORESOURCE_PREFETCH));
- }
- }
-
- /* Remember we haven't found anything yet. */
- resource = NULL;
-
- /*
- * Walk through all the resources on the current bus and compute the
- * amount of address space taken by them. Take granularity and
- * alignment into account.
- */
- while ((dev = largest_resource(bus, &resource, type_mask, type))) {
-
- /* Size 0 resources can be skipped. */
- if (!resource->size)
- continue;
-
- /* Propagate the resource alignment to the bridge resource. */
- if (resource->align > bridge->align)
- bridge->align = resource->align;
-
- /* Propagate the resource limit to the bridge register. */
- if (bridge->limit > resource->limit)
- bridge->limit = resource->limit;
-
- /* Warn if it looks like APICs aren't declared. */
- if ((resource->limit == 0xffffffff) &&
- (resource->flags & IORESOURCE_ASSIGNED)) {
- printk(BIOS_ERR,
- "Resource limit looks wrong! (no APIC?)\n");
- printk(BIOS_ERR, "%s %02lx limit %08llx\n",
- dev_path(dev), resource->index, resource->limit);
- }
-
- if (resource->flags & IORESOURCE_IO) {
- /*
- * Don't allow potential aliases over the legacy PCI
- * expansion card addresses. The legacy PCI decodes
- * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
- * 0x00 - 0xff can be used out of each 0x400 block of
- * I/O space.
- */
- if ((base & 0x300) != 0) {
- base = (base & ~0x3ff) + 0x400;
- }
- /*
- * Don't allow allocations in the VGA I/O range.
- * PCI has special cases for that.
- */
- else if ((base >= 0x3b0) && (base <= 0x3df)) {
- base = 0x3e0;
- }
- }
- /* Base must be aligned. */
- base = round(base, resource->align);
- resource->base = base;
- base += resource->size;
-
- printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
- dev_path(dev), resource->index, resource->base,
- resource->base + resource->size - 1,
- resource2str(resource));
- }
-
- /*
- * A PCI bridge resource does not need to be a power of two size, but
- * it does have a minimum granularity. Round the size up to that
- * minimum granularity so we know not to place something else at an
- * address positively decoded by the bridge.
- */
- bridge->size = round(base, bridge->gran) -
- round(bridge->base, bridge->align);
-
- printk(BIOS_SPEW, "%s %s: base: %llx size: %llx align: %d gran: %d"
- " limit: %llx done\n", dev_path(bus->dev),
- resource2str(bridge),
- base, bridge->size, bridge->align, bridge->gran, bridge->limit);
-}
-
-/**
- * This function is the second part of the resource allocator.
- *
- * See the compute_resources function for a more detailed explanation.
- *
- * This function assigns the resources a value.
- *
- * @param bus The bus we are traversing.
- * @param bridge The bridge resource which must contain the bus' resources.
- * @param type_mask This value gets ANDed with the resource type.
- * @param type This value must match the result of the AND.
- *
- * @see compute_resources
- */
-static void allocate_resources(struct bus *bus, struct resource *bridge,
- unsigned long type_mask, unsigned long type)
-{
- const struct device *dev;
- struct resource *resource;
- resource_t base;
- base = bridge->base;
-
- if (!bus)
- return;
-
- printk(BIOS_SPEW, "%s %s: base:%llx size:%llx align:%d gran:%d "
- "limit:%llx\n", dev_path(bus->dev),
- resource2str(bridge),
- base, bridge->size, bridge->align, bridge->gran, bridge->limit);
-
- /* Remember we haven't found anything yet. */
- resource = NULL;
-
- /*
- * Walk through all the resources on the current bus and allocate them
- * address space.
- */
- while ((dev = largest_resource(bus, &resource, type_mask, type))) {
-
- /* Propagate the bridge limit to the resource register. */
- if (resource->limit > bridge->limit)
- resource->limit = bridge->limit;
-
- /* Size 0 resources can be skipped. */
- if (!resource->size) {
- /* Set the base to limit so it doesn't confuse tolm. */
- resource->base = resource->limit;
- resource->flags |= IORESOURCE_ASSIGNED;
- continue;
- }
-
- if (resource->flags & IORESOURCE_IO) {
- /*
- * Don't allow potential aliases over the legacy PCI
- * expansion card addresses. The legacy PCI decodes
- * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
- * 0x00 - 0xff can be used out of each 0x400 block of
- * I/O space.
- */
- if ((base & 0x300) != 0) {
- base = (base & ~0x3ff) + 0x400;
- }
- /*
- * Don't allow allocations in the VGA I/O range.
- * PCI has special cases for that.
- */
- else if ((base >= 0x3b0) && (base <= 0x3df)) {
- base = 0x3e0;
- }
- }
-
- if ((round(base, resource->align) + resource->size - 1) <=
- resource->limit) {
- /* Base must be aligned. */
- base = round(base, resource->align);
- resource->base = base;
- resource->limit = resource->base + resource->size - 1;
- resource->flags |= IORESOURCE_ASSIGNED;
- resource->flags &= ~IORESOURCE_STORED;
- base += resource->size;
- } else {
- printk(BIOS_ERR, "!! Resource didn't fit !!\n");
- printk(BIOS_ERR, " aligned base %llx size %llx "
- "limit %llx\n", round(base, resource->align),
- resource->size, resource->limit);
- printk(BIOS_ERR, " %llx needs to be <= %llx "
- "(limit)\n", (round(base, resource->align) +
- resource->size) - 1, resource->limit);
- printk(BIOS_ERR, " %s%s %02lx * [0x%llx - 0x%llx]"
- " %s\n", (resource->flags & IORESOURCE_ASSIGNED)
- ? "Assigned: " : "", dev_path(dev),
- resource->index, resource->base,
- resource->base + resource->size - 1,
- resource2str(resource));
- }
-
- printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
- dev_path(dev), resource->index, resource->base,
- resource->size ? resource->base + resource->size - 1 :
- resource->base, resource2str(resource));
- }
-
- /*
- * A PCI bridge resource does not need to be a power of two size, but
- * it does have a minimum granularity. Round the size up to that
- * minimum granularity so we know not to place something else at an
- * address positively decoded by the bridge.
- */
-
- bridge->flags |= IORESOURCE_ASSIGNED;
-
- printk(BIOS_SPEW, "%s %s: next_base: %llx size: %llx align: %d "
- "gran: %d done\n", dev_path(bus->dev),
- resource2str(bridge), base, bridge->size, bridge->align,
- bridge->gran);
-
- /* For each child which is a bridge, allocate_resources. */
- for (dev = bus->children; dev; dev = dev->sibling) {
- struct resource *child_bridge;
-
- if (!dev->link_list)
- continue;
-
- /* Find the resources with matching type flags. */
- for (child_bridge = dev->resource_list; child_bridge;
- child_bridge = child_bridge->next) {
- struct bus* link;
-
- if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
- (child_bridge->flags & type_mask) != type)
- continue;
-
- /*
- * Split prefetchable memory if combined. Many domains
- * use the same address space for prefetchable memory
- * and non-prefetchable memory. Bridges below them need
- * it separated. Add the PREFETCH flag to the type_mask
- * and type.
- */
- link = dev->link_list;
- while (link && link->link_num !=
- IOINDEX_LINK(child_bridge->index))
- link = link->next;
- if (link == NULL)
- printk(BIOS_ERR, "link %ld not found on %s\n",
- IOINDEX_LINK(child_bridge->index),
- dev_path(dev));
-
- allocate_resources(link, child_bridge,
- type_mask | IORESOURCE_PREFETCH,
- type | (child_bridge->flags &
- IORESOURCE_PREFETCH));
- }
- }
-}
-
-static int resource_is(struct resource *res, u32 type)
-{
- return (res->flags & IORESOURCE_TYPE_MASK) == type;
-}
-
-struct constraints {
- struct resource io, mem;
-};
-
-static struct resource *resource_limit(struct constraints *limits,
- struct resource *res)
-{
- struct resource *lim = NULL;
-
- /* MEM, or I/O - skip any others. */
- if (resource_is(res, IORESOURCE_MEM))
- lim = &limits->mem;
- else if (resource_is(res, IORESOURCE_IO))
- lim = &limits->io;
-
- return lim;
-}
-
-static void constrain_resources(const struct device *dev,
- struct constraints* limits)
-{
- const struct device *child;
- struct resource *res;
- struct resource *lim;
- struct bus *link;
-
- /* Constrain limits based on the fixed resources of this device. */
- for (res = dev->resource_list; res; res = res->next) {
- if (!(res->flags & IORESOURCE_FIXED))
- continue;
- if (!res->size) {
- /* It makes no sense to have 0-sized, fixed resources.*/
- printk(BIOS_ERR, "skipping %s@%lx fixed resource, "
- "size=0!\n", dev_path(dev), res->index);
- continue;
- }
-
- lim = resource_limit(limits, res);
- if (!lim)
- continue;
-
- /*
- * Is it a fixed resource outside the current known region?
- * If so, we don't have to consider it - it will be handled
- * correctly and doesn't affect current region's limits.
- */
- if (((res->base + res->size -1) < lim->base)
- || (res->base > lim->limit))
- continue;
-
- printk(BIOS_SPEW, "%s: %s %02lx base %08llx limit %08llx %s (fixed)\n",
- __func__, dev_path(dev), res->index, res->base,
- res->base + res->size - 1, resource2str(res));
-
- /*
- * Choose to be above or below fixed resources. This check is
- * signed so that "negative" amounts of space are handled
- * correctly.
- */
- if ((signed long long)(lim->limit - (res->base + res->size -1))
- > (signed long long)(res->base - lim->base))
- lim->base = res->base + res->size;
- else
- lim->limit = res->base -1;
- }
-
- /* Descend into every enabled child and look for fixed resources. */
- for (link = dev->link_list; link; link = link->next) {
- for (child = link->children; child; child = child->sibling) {
- if (child->enabled)
- constrain_resources(child, limits);
- }
- }
-}
-
-static void avoid_fixed_resources(const struct device *dev)
-{
- struct constraints limits;
- struct resource *res;
- struct resource *lim;
-
- printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));
-
- /* Initialize constraints to maximum size. */
- limits.io.base = 0;
- limits.io.limit = 0xffffffffffffffffULL;
- limits.mem.base = 0;
- limits.mem.limit = 0xffffffffffffffffULL;
-
- /* Constrain the limits to dev's initial resources. */
- for (res = dev->resource_list; res; res = res->next) {
- if ((res->flags & IORESOURCE_FIXED))
- continue;
- printk(BIOS_SPEW, "%s:@%s %02lx limit %08llx\n", __func__,
- dev_path(dev), res->index, res->limit);
-
- lim = resource_limit(&limits, res);
- if (!lim)
- continue;
-
- if (res->base > lim->base)
- lim->base = res->base;
- if (res->limit < lim->limit)
- lim->limit = res->limit;
- }
-
- /* Look through the tree for fixed resources and update the limits. */
- constrain_resources(dev, &limits);
-
- /* Update dev's resources with new limits. */
- for (res = dev->resource_list; res; res = res->next) {
- if ((res->flags & IORESOURCE_FIXED))
- continue;
-
- lim = resource_limit(&limits, res);
- if (!lim)
- continue;
-
- /* Is the resource outside the limits? */
- if (lim->base > res->base)
- res->base = lim->base;
- if (res->limit > lim->limit)
- res->limit = lim->limit;
-
- /* MEM resources need to start at the highest address manageable. */
- if (res->flags & IORESOURCE_MEM)
- res->base = resource_max(res);
-
- printk(BIOS_SPEW, "%s:@%s %02lx base %08llx limit %08llx\n",
- __func__, dev_path(dev), res->index, res->base, res->limit);
- }
-}
-
struct device *vga_pri = NULL;
static void set_vga_bridge_bits(void)
{
@@ -981,6 +518,513 @@ void dev_enumerate(void)
printk(BIOS_INFO, "done\n");
}
+static bool dev_has_children(const struct device *dev)
+{
+ const struct bus *bus = dev->link_list;
+ return bus && bus->children;
+}
+
+/*
+ * During pass 1, once all the requirements for downstream devices of a bridge are gathered,
+ * this function calculates the overall resource requirement for the bridge. It starts by
+ * picking the largest resource requirement downstream for the given resource type and works by
+ * adding requirements in descending order.
+ *
+ * Additionally, it takes alignment and limits of the downstream devices into consideration and
+ * ensures that they get propagated to the bridge resource. This is required to guarantee that
+ * the upstream bridge/domain honors the limit and alignment requirements for this bridge based
+ * on the tightest constraints downstream.
+ */
+static void update_bridge_resource(const struct device *bridge, struct resource *bridge_res,
+ unsigned long type_match)
+{
+ const struct device *child;
+ struct resource *child_res;
+ resource_t base;
+ bool first_child_res = true;
+ const unsigned long type_mask = IORESOURCE_TYPE_MASK | IORESOURCE_PREFETCH;
+ struct bus *bus = bridge->link_list;
+
+ child_res = NULL;
+
+ /*
+ * `base` keeps track of where the next allocation for child resource can take place
+ * from within the bridge resource window. Since the bridge resource window allocation
+ * is not performed yet, it can start at 0. Base gets updated every time a resource
+ * requirement is accounted for in the loop below. After scanning all these resources,
+ * base will indicate the total size requirement for the current bridge resource
+ * window.
+ */
+ base = 0;
+
+ printk(BIOS_SPEW, "%s %s: size: %llx align: %d gran: %d limit: %llx\n",
+ dev_path(bridge), resource2str(bridge_res), bridge_res->size,
+ bridge_res->align, bridge_res->gran, bridge_res->limit);
+
+ while ((child = largest_resource(bus, &child_res, type_mask, type_match))) {
+
+ /* Size 0 resources can be skipped. */
+ if (!child_res->size)
+ continue;
+
+ /*
+ * Propagate the resource alignment to the bridge resource if this is the first
+ * child resource with non-zero size being considered. For all other children
+ * resources, alignment is taken care of by updating the base to round up as per
+ * the child resource alignment. It is guaranteed that pass 2 follows the exact
+ * same method of picking the resource for allocation using
+ * largest_resource(). Thus, as long as the alignment for first child resource
+ * is propagated up to the bridge resource, it can be guaranteed that the
+ * alignment for all resources is appropriately met.
+ */
+ if (first_child_res && (child_res->align > bridge_res->align))
+ bridge_res->align = child_res->align;
+
+ first_child_res = false;
+
+ /*
+ * Propagate the resource limit to the bridge resource only if child resource
+ * limit is non-zero. If a downstream device has stricter requirements
+ * w.r.t. limits for any resource, that constraint needs to be propagated back
+ * up to the downstream bridges of the domain. This guarantees that the resource
+ * allocation which starts at the domain level takes into account all these
+ * constraints thus working on a global view.
+ */
+ if (child_res->limit && (child_res->limit < bridge_res->limit))
+ bridge_res->limit = child_res->limit;
+
+ /*
+ * Alignment value of 0 means that the child resource has no alignment
+ * requirements and so the base value remains unchanged here.
+ */
+ base = round(base, child_res->align);
+
+ printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
+ dev_path(child), child_res->index, base, base + child_res->size - 1,
+ resource2str(child_res));
+
+ base += child_res->size;
+ }
+
+ /*
+ * After all downstream device resources are scanned, `base` represents the total size
+ * requirement for the current bridge resource window. This size needs to be rounded up
+ * to the granularity requirement of the bridge to ensure that the upstream
+ * bridge/domain allocates big enough window.
+ */
+ bridge_res->size = round(base, bridge_res->gran);
+
+ printk(BIOS_SPEW, "%s %s: size: %llx align: %d gran: %d limit: %llx done\n",
+ dev_path(bridge), resource2str(bridge_res), bridge_res->size,
+ bridge_res->align, bridge_res->gran, bridge_res->limit);
+}
+
+/*
+ * During pass 1, resource allocator at bridge level gathers requirements from downstream
+ * devices and updates its own resource windows for the provided resource type.
+ */
+static void compute_bridge_resources(const struct device *bridge, unsigned long type_match)
+{
+ const struct device *child;
+ struct resource *res;
+ struct bus *bus = bridge->link_list;
+ const unsigned long type_mask = IORESOURCE_TYPE_MASK | IORESOURCE_PREFETCH;
+
+ for (res = bridge->resource_list; res; res = res->next) {
+ if (!(res->flags & IORESOURCE_BRIDGE))
+ continue;
+
+ if ((res->flags & type_mask) != type_match)
+ continue;
+
+ /*
+ * Ensure that the resource requirements for all downstream bridges are
+ * gathered before updating the window for current bridge resource.
+ */
+ for (child = bus->children; child; child = child->sibling) {
+ if (!dev_has_children(child))
+ continue;
+ compute_bridge_resources(child, type_match);
+ }
+
+ /*
+ * Update the window for current bridge resource now that all downstream
+ * requirements are gathered.
+ */
+ update_bridge_resource(bridge, res, type_match);
+ }
+}
+
+/*
+ * During pass 1, resource allocator walks down the entire sub-tree of a domain. It gathers
+ * resource requirements for every downstream bridge by looking at the resource requests of its
+ * children. Thus, the requirement gathering begins at the leaf devices and is propagated back
+ * up to the downstream bridges of the domain.
+ *
+ * At domain level, it identifies every downstream bridge and walks down that bridge to gather
+ * requirements for each resource type i.e. i/o, mem and prefmem. Since bridges have separate
+ * windows for mem and prefmem, requirements for each need to be collected separately.
+ *
+ * Domain resource windows are fixed ranges and hence requirement gathering does not result in
+ * any changes to these fixed ranges.
+ */
+static void compute_domain_resources(const struct device *domain)
+{
+ const struct device *child;
+
+ if (domain->link_list == NULL)
+ return;
+
+ for (child = domain->link_list->children; child; child = child->sibling) {
+
+ /* Skip if this is not a bridge or has no children under it. */
+ if (!dev_has_children(child))
+ continue;
+
+ compute_bridge_resources(child, IORESOURCE_IO);
+ compute_bridge_resources(child, IORESOURCE_MEM);
+ compute_bridge_resources(child, IORESOURCE_MEM | IORESOURCE_PREFETCH);
+ }
+}
+
+static void initialize_memranges(struct memranges *ranges, const struct resource *res,
+ unsigned long memrange_type)
+{
+ resource_t res_base;
+ resource_t res_limit;
+
+ memranges_init_empty(ranges, NULL, 0);
+
+ if (res == NULL)
+ return;
+
+ res_base = res->base;
+ res_limit = res->limit;
+
+ if (res_base == res_limit)
+ return;
+
+ memranges_insert(ranges, res_base, res_limit - res_base + 1, memrange_type);
+}
+
+static void print_resource_ranges(const struct memranges *ranges)
+{
+ const struct range_entry *r;
+
+ printk(BIOS_INFO, "Resource ranges:\n");
+
+ if (memranges_is_empty(ranges))
+ printk(BIOS_INFO, "EMPTY!!\n");
+
+ memranges_each_entry(r, ranges) {
+ printk(BIOS_INFO, "Base: %llx, Size: %llx, Tag: %lx\n",
+ range_entry_base(r), range_entry_size(r), range_entry_tag(r));
+ }
+}
+
+static void mark_resource_invalid(struct resource *res)
+{
+ res->base = res->limit;
+ res->flags |= IORESOURCE_ASSIGNED;
+}
+
+/*
+ * This is where the actual allocation of resources happens during pass 2. Given the list of
+ * memory ranges corresponding to the resource of given type, it finds the biggest unallocated
+ * resource using the type mask on the downstream bus. This continues in a descending
+ * order until all resources of given type are allocated address space within the current
+ * resource window.
+ *
+ * If a downstream resource cannot be allocated space for any reason, then its base is set to
+ * its limit and flags are updated to indicate that the resource assignment is complete. This is
+ * done to ensure that it does not confuse find_pci_tolm().
+ */
+static void allocate_child_resources(struct bus *bus, struct memranges *ranges,
+ unsigned long type_mask, unsigned long type_match)
+{
+ struct resource *resource = NULL;
+ const struct device *dev;
+
+ while ((dev = largest_resource(bus, &resource, type_mask, type_match))) {
+
+ if (!resource->size) {
+ mark_resource_invalid(resource);
+ continue;
+ }
+
+ if (memranges_steal(ranges, resource->limit, resource->size, resource->align,
+ type_match, &resource->base) == false) {
+ printk(BIOS_ERR, "ERROR: Resource didn't fit!!! ");
+ printk(BIOS_SPEW, "%s %02lx * size: 0x%llx limit: %llx %s\n",
+ dev_path(dev), resource->index,
+ resource->size, resource->limit, resource2str(resource));
+ mark_resource_invalid(resource);
+ continue;
+ }
+
+ resource->limit = resource->base + resource->size - 1;
+ resource->flags |= IORESOURCE_ASSIGNED;
+
+ printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] limit: %llx %s\n",
+ dev_path(dev), resource->index, resource->base,
+ resource->size ? resource->base + resource->size - 1 :
+ resource->base, resource->limit, resource2str(resource));
+ }
+}
+
+static void update_constraints(void *gp, struct device *dev, struct resource *res)
+{
+ struct memranges *ranges = gp;
+
+ if (!res->size)
+ return;
+
+ printk(BIOS_SPEW, "%s: %s %02lx base %08llx limit %08llx %s (fixed)\n",
+ __func__, dev_path(dev), res->index, res->base,
+ res->base + res->size - 1, resource2str(res));
+
+ memranges_create_hole(ranges, res->base, res->size);
+}
+
+static void constrain_domain_resources(struct bus *bus, struct memranges *ranges,
+ unsigned long type)
+{
+ /*
+ * Scan the entire tree to identify any fixed resources allocated by any device to
+ * ensure that the address map for domain resources are appropriately updated.
+ *
+ * Domains can typically provide memrange for entire address space. So, this function
+ * punches holes in the address space for all fixed resources that are already
+ * defined. Both IO and normal memory resources are added as fixed. Both need to be
+ * removed from address space where dynamic resource allocations are sourced.
+ */
+ search_bus_resources(bus, type | IORESOURCE_FIXED, type | IORESOURCE_FIXED,
+ update_constraints, ranges);
+
+ if (type == IORESOURCE_IO) {
+ /*
+ * Don't allow allocations in the VGA I/O range. PCI has special cases for
+ * that.
+ */
+ memranges_create_hole(ranges, 0x3b0, 0x3df);
+
+ /*
+ * Resource allocator no longer supports the legacy behavior where I/O resource
+ * allocation is guaranteed to avoid aliases over legacy PCI expansion card
+ * addresses.
+ */
+ }
+}
+
+/*
+ * This function creates a list of memranges of given type using the resource that is
+ * provided. If the given resource is NULL or if the resource window size is 0, then it creates
+ * an empty list. This results in resource allocation for that resource type failing for all
+ * downstream devices since there is nothing to allocate from.
+ *
+ * In case of domain, it applies additional constraints to ensure that the memranges do not
+ * overlap any of the fixed resources under that domain. Domain typically seems to provide
+ * memrange for entire address space. Thus, it is up to the chipset to add DRAM and all other
+ * windows which cannot be used for resource allocation as fixed resources.
+ */
+static void setup_resource_ranges(const struct device *dev, const struct resource *res,
+ unsigned long type, struct memranges *ranges)
+{
+ printk(BIOS_SPEW, "%s %s: base: %llx size: %llx align: %d gran: %d limit: %llx\n",
+ dev_path(dev), resource2str(res), res->base, res->size, res->align,
+ res->gran, res->limit);
+
+ initialize_memranges(ranges, res, type);
+
+ if (dev->path.type == DEVICE_PATH_DOMAIN)
+ constrain_domain_resources(dev->link_list, ranges, type);
+
+ print_resource_ranges(ranges);
+}
+
+static void cleanup_resource_ranges(const struct device *dev, struct memranges *ranges,
+ const struct resource *res)
+{
+ memranges_teardown(ranges);
+ printk(BIOS_SPEW, "%s %s: base: %llx size: %llx align: %d gran: %d limit: %llx done\n",
+ dev_path(dev), resource2str(res), res->base, res->size, res->align,
+ res->gran, res->limit);
+}
+
+/*
+ * Pass 2 of resource allocator at the bridge level loops through all the resources for the
+ * bridge and generates a list of memory ranges similar to that at the domain level. However,
+ * there is no need to apply any additional constraints since the window allocated to the bridge
+ * is guaranteed to be non-overlapping by the allocator at domain level.
+ *
+ * Allocation at the bridge level works the same as at domain level (starts with the biggest
+ * resource requirement from downstream devices and continues in descending order). One major
+ * difference at the bridge level is that it considers prefmem resources separately from mem
+ * resources.
+ *
+ * Once allocation at the current bridge is complete, resource allocator continues walking down
+ * the downstream bridges until it hits the leaf devices.
+ */
+static void allocate_bridge_resources(const struct device *bridge)
+{
+ struct memranges ranges;
+ const struct resource *res;
+ struct bus *bus = bridge->link_list;
+ unsigned long type_match;
+ struct device *child;
+ const unsigned long type_mask = IORESOURCE_TYPE_MASK | IORESOURCE_PREFETCH;
+
+ for (res = bridge->resource_list; res; res = res->next) {
+ if (!res->size)
+ continue;
+
+ if (!(res->flags & IORESOURCE_BRIDGE))
+ continue;
+
+ type_match = res->flags & type_mask;
+
+ setup_resource_ranges(bridge, res, type_match, &ranges);
+ allocate_child_resources(bus, &ranges, type_mask, type_match);
+ cleanup_resource_ranges(bridge, &ranges, res);
+ }
+
+ for (child = bus->children; child; child = child->sibling) {
+ if (!dev_has_children(child))
+ continue;
+
+ allocate_bridge_resources(child);
+ }
+}
+
+static const struct resource *find_domain_resource(const struct device *domain,
+ unsigned long type)
+{
+ const struct resource *res;
+
+ for (res = domain->resource_list; res; res = res->next) {
+ if (res->flags & IORESOURCE_FIXED)
+ continue;
+
+ if ((res->flags & IORESOURCE_TYPE_MASK) == type)
+ return res;
+ }
+
+ return NULL;
+}
+
+/*
+ * Pass 2 of resource allocator begins at the domain level. Every domain has two types of
+ * resources - io and mem. For each of these resources, this function creates a list of memory
+ * ranges that can be used for downstream resource allocation. This list is constrained to
+ * remove any fixed resources in the domain sub-tree of the given resource type. It then uses
+ * the memory ranges to apply best fit on the resource requirements of the downstream devices.
+ *
+ * Once resources are allocated to all downstream devices of the domain, it walks down each
+ * downstream bridge to continue the same process until resources are allocated to all devices
+ * under the domain.
+ */
+static void allocate_domain_resources(const struct device *domain)
+{
+ struct memranges ranges;
+ struct device *child;
+ const struct resource *res;
+
+ /* Resource type I/O */
+ res = find_domain_resource(domain, IORESOURCE_IO);
+ if (res) {
+ setup_resource_ranges(domain, res, IORESOURCE_IO, &ranges);
+ allocate_child_resources(domain->link_list, &ranges, IORESOURCE_TYPE_MASK,
+ IORESOURCE_IO);
+ cleanup_resource_ranges(domain, &ranges, res);
+ }
+
+ /*
+ * Resource type Mem:
+ * Domain does not distinguish between mem and prefmem resources. Thus, the resource
+ * allocation at domain level considers mem and prefmem together when finding the best
+ * fit based on the biggest resource requirement.
+ */
+ res = find_domain_resource(domain, IORESOURCE_MEM);
+ if (res) {
+ setup_resource_ranges(domain, res, IORESOURCE_MEM, &ranges);
+ allocate_child_resources(domain->link_list, &ranges, IORESOURCE_TYPE_MASK,
+ IORESOURCE_MEM);
+ cleanup_resource_ranges(domain, &ranges, res);
+ }
+
+ for (child = domain->link_list->children; child; child = child->sibling) {
+ if (!dev_has_children(child))
+ continue;
+
+ /* Continue allocation for all downstream bridges. */
+ allocate_bridge_resources(child);
+ }
+}
+
+/*
+ * This function forms the guts of the resource allocator. It walks through the entire device
+ * tree for each domain two times.
+ *
+ * Every domain has a fixed set of ranges. These ranges cannot be relaxed based on the
+ * requirements of the downstream devices. They represent the available windows from which
+ * resources can be allocated to the different devices under the domain.
+ *
+ * In order to identify the requirements of downstream devices, resource allocator walks in a
+ * DFS fashion. It gathers the requirements from leaf devices and propagates those back up
+ * to their upstream bridges until the requirements for all the downstream devices of the domain
+ * are gathered. This is referred to as pass 1 of resource allocator.
+ *
+ * Once the requirements for all the devices under the domain are gathered, resource allocator
+ * walks a second time to allocate resources to downstream devices as per the
+ * requirements. It always picks the biggest resource request as per the type (i/o and mem) to
+ * allocate space from its fixed window to the immediate downstream device of the domain. In
+ * order to accomplish best fit for the resources, a list of ranges is maintained by each
+ * resource type (i/o and mem). Domain does not differentiate between mem and prefmem. Since
+ * they are allocated space from the same window, the resource allocator at the domain level
+ * ensures that the biggest requirement is selected indepedent of the prefetch type. Once the
+ * resource allocation for all immediate downstream devices is complete at the domain level,
+ * resource allocator walks down the subtree for each downstream bridge to continue the
+ * allocation process at the bridge level. Since bridges have separate windows for i/o, mem and
+ * prefmem, best fit algorithm at bridge level looks for the biggest requirement considering
+ * prefmem resources separately from non-prefmem resources. This continues until resource
+ * allocation is performed for all downstream bridges in the domain sub-tree. This is referred
+ * to as pass 2 of resource allocator.
+ *
+ * Some rules that are followed by the resource allocator:
+ * - Allocate resource locations for every device as long as the requirements can be satisfied.
+ * - If a resource cannot be allocated any address space, then that resource needs to be
+ * properly updated to ensure that it does not incorrectly overlap some address space reserved
+ * for a different purpose.
+ * - Don't overlap with resources in fixed locations.
+ * - Don't overlap and follow the rules of bridges -- downstream devices of bridges should use
+ * parts of the address space allocated to the bridge.
+ */
+static void allocate_resources(const struct device *root)
+{
+ const struct device *child;
+
+ if ((root == NULL) || (root->link_list == NULL))
+ return;
+
+ for (child = root->link_list->children; child; child = child->sibling) {
+
+ if (child->path.type != DEVICE_PATH_DOMAIN)
+ continue;
+
+ post_log_path(child);
+
+ /* Pass 1 - Gather requirements. */
+ printk(BIOS_INFO, "Resource allocator: %s - Pass 1 (gathering requirements)\n",
+ dev_path(child));
+ compute_domain_resources(child);
+
+ /* Pass 2 - Allocate resources as per gathered requirements. */
+ printk(BIOS_INFO, "Resource allocator: %s - Pass 2 (allocating resources)\n",
+ dev_path(child));
+ allocate_domain_resources(child);
+ }
+}
+
/**
* Configure devices on the devices tree.
*
@@ -996,9 +1040,7 @@ void dev_enumerate(void)
*/
void dev_configure(void)
{
- struct resource *res;
const struct device *root;
- const struct device *child;
set_vga_bridge_bits();
@@ -1020,53 +1062,8 @@ void dev_configure(void)
print_resource_tree(root, BIOS_SPEW, "After reading.");
- /* Compute resources for all domains. */
- for (child = root->link_list->children; child; child = child->sibling) {
- if (!(child->path.type == DEVICE_PATH_DOMAIN))
- continue;
- post_log_path(child);
- for (res = child->resource_list; res; res = res->next) {
- if (res->flags & IORESOURCE_FIXED)
- continue;
- if (res->flags & IORESOURCE_MEM) {
- compute_resources(child->link_list,
- res, IORESOURCE_TYPE_MASK, IORESOURCE_MEM);
- continue;
- }
- if (res->flags & IORESOURCE_IO) {
- compute_resources(child->link_list,
- res, IORESOURCE_TYPE_MASK, IORESOURCE_IO);
- continue;
- }
- }
- }
-
- /* For all domains. */
- for (child = root->link_list->children; child; child=child->sibling)
- if (child->path.type == DEVICE_PATH_DOMAIN)
- avoid_fixed_resources(child);
+ allocate_resources(root);
- /* Store the computed resource allocations into device registers ... */
- printk(BIOS_INFO, "Setting resources...\n");
- for (child = root->link_list->children; child; child = child->sibling) {
- if (!(child->path.type == DEVICE_PATH_DOMAIN))
- continue;
- post_log_path(child);
- for (res = child->resource_list; res; res = res->next) {
- if (res->flags & IORESOURCE_FIXED)
- continue;
- if (res->flags & IORESOURCE_MEM) {
- allocate_resources(child->link_list,
- res, IORESOURCE_TYPE_MASK, IORESOURCE_MEM);
- continue;
- }
- if (res->flags & IORESOURCE_IO) {
- allocate_resources(child->link_list,
- res, IORESOURCE_TYPE_MASK, IORESOURCE_IO);
- continue;
- }
- }
- }
assign_resources(root->link_list);
printk(BIOS_INFO, "Done setting resources.\n");
print_resource_tree(root, BIOS_SPEW, "After assigning values.");