summaryrefslogtreecommitdiff
path: root/src/device/device.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/device/device.c')
-rw-r--r--src/device/device.c1157
1 files changed, 1157 insertions, 0 deletions
diff --git a/src/device/device.c b/src/device/device.c
new file mode 100644
index 0000000000..07bbc7a72a
--- /dev/null
+++ b/src/device/device.c
@@ -0,0 +1,1157 @@
+/*
+ * This file is part of the coreboot project.
+ *
+ * It was originally based on the Linux kernel (arch/i386/kernel/pci-pc.c).
+ *
+ * Modifications are:
+ * Copyright (C) 2003 Eric Biederman <ebiederm@xmission.com>
+ * Copyright (C) 2003-2004 Linux Networx
+ * (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
+ * Copyright (C) 2003 Ronald G. Minnich <rminnich@gmail.com>
+ * Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
+ * Copyright (C) 2005-2006 Tyan
+ * (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
+ * Copyright (C) 2005-2006 Stefan Reinauer <stepan@openbios.org>
+ * Copyright (C) 2009 Myles Watson <mylesgw@gmail.com>
+ */
+
+/*
+ * (c) 1999--2000 Martin Mares <mj@suse.cz>
+ */
+
+/*
+ * Lots of mods by Ron Minnich <rminnich@lanl.gov>, with
+ * the final architecture guidance from Tom Merritt <tjm@codegen.com>.
+ *
+ * In particular, we changed from the one-pass original version to
+ * Tom's recommended multiple-pass version. I wasn't sure about doing
+ * it with multiple passes, until I actually started doing it and saw
+ * the wisdom of Tom's recommendations...
+ *
+ * Lots of cleanups by Eric Biederman to handle bridges, and to
+ * handle resource allocation for non-PCI devices.
+ */
+
+#include <console/console.h>
+#include <arch/io.h>
+#include <device/device.h>
+#include <device/pci.h>
+#include <device/pci_ids.h>
+#include <stdlib.h>
+#include <string.h>
+#include <smp/spinlock.h>
+#if CONFIG_ARCH_X86
+#include <arch/ebda.h>
+#endif
+
+/** Linked list of ALL devices */
+struct device *all_devices = &dev_root;
+/** Pointer to the last device */
+extern struct device *last_dev;
+/** Linked list of free resources */
+struct resource *free_resources = NULL;
+
+/**
+ * Initialize all chips of statically known devices.
+ *
+ * Will be called before bus enumeration to initialize chips stated in the
+ * device tree.
+ */
+void dev_initialize_chips(void)
+{
+ struct device *dev;
+
+ for (dev = all_devices; dev; dev = dev->next) {
+ /* Initialize chip if we haven't yet. */
+ if (dev->chip_ops && dev->chip_ops->init &&
+ !dev->chip_ops->initialized) {
+ dev->chip_ops->init(dev->chip_info);
+ dev->chip_ops->initialized = 1;
+ }
+ }
+}
+
+DECLARE_SPIN_LOCK(dev_lock)
+
+#if CONFIG_GFXUMA
+/* IGD UMA memory */
+uint64_t uma_memory_base = 0;
+uint64_t uma_memory_size = 0;
+#endif
+
+/**
+ * Allocate a new device structure.
+ *
+ * Allocte a new device structure and attach it to the device tree as a
+ * child of the parent bus.
+ *
+ * @param parent Parent bus the newly created device should be attached to.
+ * @param path Path to the device to be created.
+ * @return Pointer to the newly created device structure.
+ *
+ * @see device_path
+ */
+static device_t __alloc_dev(struct bus *parent, struct device_path *path)
+{
+ device_t dev, child;
+
+ /* Find the last child of our parent. */
+ for (child = parent->children; child && child->sibling; /* */ )
+ child = child->sibling;
+
+ dev = malloc(sizeof(*dev));
+ if (dev == 0)
+ die("alloc_dev(): out of memory.\n");
+
+ memset(dev, 0, sizeof(*dev));
+ memcpy(&dev->path, path, sizeof(*path));
+
+ /* By default devices are enabled. */
+ dev->enabled = 1;
+
+ /* Add the new device to the list of children of the bus. */
+ dev->bus = parent;
+ if (child)
+ child->sibling = dev;
+ else
+ parent->children = dev;
+
+ /* Append a new device to the global device list.
+ * The list is used to find devices once everything is set up.
+ */
+ last_dev->next = dev;
+ last_dev = dev;
+
+ return dev;
+}
+
+device_t alloc_dev(struct bus *parent, struct device_path *path)
+{
+ device_t dev;
+ spin_lock(&dev_lock);
+ dev = __alloc_dev(parent, path);
+ spin_unlock(&dev_lock);
+ return dev;
+}
+
+/**
+ * See if a device structure already exists and if not allocate it.
+ *
+ * @param parent The bus to find the device on.
+ * @param path The relative path from the bus to the appropriate device.
+ * @return Pointer to a device structure for the device on bus at path.
+ */
+device_t alloc_find_dev(struct bus *parent, struct device_path *path)
+{
+ device_t child;
+ spin_lock(&dev_lock);
+ child = find_dev_path(parent, path);
+ if (!child)
+ child = __alloc_dev(parent, path);
+ spin_unlock(&dev_lock);
+ return child;
+}
+
+/**
+ * Round a number up to an alignment.
+ *
+ * @param val The starting value.
+ * @param roundup Alignment as a power of two.
+ * @return Rounded up number.
+ */
+static resource_t round(resource_t val, unsigned long pow)
+{
+ resource_t mask;
+ mask = (1ULL << pow) - 1ULL;
+ val += mask;
+ val &= ~mask;
+ return val;
+}
+
+/**
+ * Read the resources on all devices of a given bus.
+ *
+ * @param bus Bus to read the resources on.
+ */
+static void read_resources(struct bus *bus)
+{
+ struct device *curdev;
+
+ printk(BIOS_SPEW, "%s %s bus %x link: %d\n", dev_path(bus->dev),
+ __func__, bus->secondary, bus->link_num);
+
+ /* Walk through all devices and find which resources they need. */
+ for (curdev = bus->children; curdev; curdev = curdev->sibling) {
+ struct bus *link;
+
+ if (!curdev->enabled)
+ continue;
+
+ if (!curdev->ops || !curdev->ops->read_resources) {
+ printk(BIOS_ERR, "%s missing read_resources\n",
+ dev_path(curdev));
+ continue;
+ }
+ curdev->ops->read_resources(curdev);
+
+ /* Read in the resources behind the current device's links. */
+ for (link = curdev->link_list; link; link = link->next)
+ read_resources(link);
+ }
+ printk(BIOS_SPEW, "%s read_resources bus %d link: %d done\n",
+ dev_path(bus->dev), bus->secondary, bus->link_num);
+}
+
+struct pick_largest_state {
+ struct resource *last;
+ struct device *result_dev;
+ struct resource *result;
+ int seen_last;
+};
+
+static void pick_largest_resource(void *gp, struct device *dev,
+ struct resource *resource)
+{
+ struct pick_largest_state *state = gp;
+ struct resource *last;
+
+ last = state->last;
+
+ /* Be certain to pick the successor to last. */
+ if (resource == last) {
+ state->seen_last = 1;
+ return;
+ }
+ if (resource->flags & IORESOURCE_FIXED)
+ return; /* Skip it. */
+ if (last && ((last->align < resource->align) ||
+ ((last->align == resource->align) &&
+ (last->size < resource->size)) ||
+ ((last->align == resource->align) &&
+ (last->size == resource->size) && (!state->seen_last)))) {
+ return;
+ }
+ if (!state->result ||
+ (state->result->align < resource->align) ||
+ ((state->result->align == resource->align) &&
+ (state->result->size < resource->size))) {
+ state->result_dev = dev;
+ state->result = resource;
+ }
+}
+
+static struct device *largest_resource(struct bus *bus,
+ struct resource **result_res,
+ unsigned long type_mask,
+ unsigned long type)
+{
+ struct pick_largest_state state;
+
+ state.last = *result_res;
+ state.result_dev = NULL;
+ state.result = NULL;
+ state.seen_last = 0;
+
+ search_bus_resources(bus, type_mask, type, pick_largest_resource,
+ &state);
+
+ *result_res = state.result;
+ return state.result_dev;
+}
+
+/**
+ * This function is the guts of the resource allocator.
+ *
+ * The problem.
+ * - Allocate resource locations for every device.
+ * - Don't overlap, and follow the rules of bridges.
+ * - Don't overlap with resources in fixed locations.
+ * - Be efficient so we don't have ugly strategies.
+ *
+ * The strategy.
+ * - Devices that have fixed addresses are the minority so don't
+ * worry about them too much. Instead only use part of the address
+ * space for devices with programmable addresses. This easily handles
+ * everything except bridges.
+ *
+ * - PCI devices are required to have their sizes and their alignments
+ * equal. In this case an optimal solution to the packing problem
+ * exists. Allocate all devices from highest alignment to least
+ * alignment or vice versa. Use this.
+ *
+ * - So we can handle more than PCI run two allocation passes on bridges. The
+ * first to see how large the resources are behind the bridge, and what
+ * their alignment requirements are. The second to assign a safe address to
+ * the devices behind the bridge. This allows us to treat a bridge as just
+ * a device with a couple of resources, and not need to special case it in
+ * the allocator. Also this allows handling of other types of bridges.
+ *
+ * @param bus The bus we are traversing.
+ * @param bridge The bridge resource which must contain the bus' resources.
+ * @param type_mask This value gets ANDed with the resource type.
+ * @param type This value must match the result of the AND.
+ * @return TODO
+ */
+static void compute_resources(struct bus *bus, struct resource *bridge,
+ unsigned long type_mask, unsigned long type)
+{
+ struct device *dev;
+ struct resource *resource;
+ resource_t base;
+ base = round(bridge->base, bridge->align);
+
+ printk(BIOS_SPEW, "%s %s_%s: base: %llx size: %llx align: %d gran: %d"
+ " limit: %llx\n", dev_path(bus->dev), __func__,
+ (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
+ "prefmem" : "mem", base, bridge->size, bridge->align,
+ bridge->gran, bridge->limit);
+
+ /* For each child which is a bridge, compute the resource needs. */
+ for (dev = bus->children; dev; dev = dev->sibling) {
+ struct resource *child_bridge;
+
+ if (!dev->link_list)
+ continue;
+
+ /* Find the resources with matching type flags. */
+ for (child_bridge = dev->resource_list; child_bridge;
+ child_bridge = child_bridge->next) {
+ struct bus* link;
+
+ if (!(child_bridge->flags & IORESOURCE_BRIDGE)
+ || (child_bridge->flags & type_mask) != type)
+ continue;
+
+ /*
+ * Split prefetchable memory if combined. Many domains
+ * use the same address space for prefetchable memory
+ * and non-prefetchable memory. Bridges below them need
+ * it separated. Add the PREFETCH flag to the type_mask
+ * and type.
+ */
+ link = dev->link_list;
+ while (link && link->link_num !=
+ IOINDEX_LINK(child_bridge->index))
+ link = link->next;
+
+ if (link == NULL) {
+ printk(BIOS_ERR, "link %ld not found on %s\n",
+ IOINDEX_LINK(child_bridge->index),
+ dev_path(dev));
+ }
+
+ compute_resources(link, child_bridge,
+ type_mask | IORESOURCE_PREFETCH,
+ type | (child_bridge->flags &
+ IORESOURCE_PREFETCH));
+ }
+ }
+
+ /* Remember we haven't found anything yet. */
+ resource = NULL;
+
+ /*
+ * Walk through all the resources on the current bus and compute the
+ * amount of address space taken by them. Take granularity and
+ * alignment into account.
+ */
+ while ((dev = largest_resource(bus, &resource, type_mask, type))) {
+
+ /* Size 0 resources can be skipped. */
+ if (!resource->size)
+ continue;
+
+ /* Propagate the resource alignment to the bridge resource. */
+ if (resource->align > bridge->align)
+ bridge->align = resource->align;
+
+ /* Propagate the resource limit to the bridge register. */
+ if (bridge->limit > resource->limit)
+ bridge->limit = resource->limit;
+
+ /* Warn if it looks like APICs aren't declared. */
+ if ((resource->limit == 0xffffffff) &&
+ (resource->flags & IORESOURCE_ASSIGNED)) {
+ printk(BIOS_ERR,
+ "Resource limit looks wrong! (no APIC?)\n");
+ printk(BIOS_ERR, "%s %02lx limit %08llx\n",
+ dev_path(dev), resource->index, resource->limit);
+ }
+
+ if (resource->flags & IORESOURCE_IO) {
+ /*
+ * Don't allow potential aliases over the legacy PCI
+ * expansion card addresses. The legacy PCI decodes
+ * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
+ * 0x00 - 0xff can be used out of each 0x400 block of
+ * I/O space.
+ */
+ if ((base & 0x300) != 0) {
+ base = (base & ~0x3ff) + 0x400;
+ }
+ /*
+ * Don't allow allocations in the VGA I/O range.
+ * PCI has special cases for that.
+ */
+ else if ((base >= 0x3b0) && (base <= 0x3df)) {
+ base = 0x3e0;
+ }
+ }
+ /* Base must be aligned. */
+ base = round(base, resource->align);
+ resource->base = base;
+ base += resource->size;
+
+ printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
+ dev_path(dev), resource->index, resource->base,
+ resource->base + resource->size - 1,
+ (resource->flags & IORESOURCE_IO) ? "io" :
+ (resource->flags & IORESOURCE_PREFETCH) ?
+ "prefmem" : "mem");
+ }
+
+ /*
+ * A PCI bridge resource does not need to be a power of two size, but
+ * it does have a minimum granularity. Round the size up to that
+ * minimum granularity so we know not to place something else at an
+ * address postitively decoded by the bridge.
+ */
+ bridge->size = round(base, bridge->gran) -
+ round(bridge->base, bridge->align);
+
+ printk(BIOS_SPEW, "%s %s_%s: base: %llx size: %llx align: %d gran: %d"
+ " limit: %llx done\n", dev_path(bus->dev), __func__,
+ (bridge->flags & IORESOURCE_IO) ? "io" :
+ (bridge->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem",
+ base, bridge->size, bridge->align, bridge->gran, bridge->limit);
+}
+
+/**
+ * This function is the second part of the resource allocator.
+ *
+ * See the compute_resources function for a more detailed explanation.
+ *
+ * This function assigns the resources a value.
+ *
+ * @param bus The bus we are traversing.
+ * @param bridge The bridge resource which must contain the bus' resources.
+ * @param type_mask This value gets ANDed with the resource type.
+ * @param type This value must match the result of the AND.
+ *
+ * @see compute_resources
+ */
+static void allocate_resources(struct bus *bus, struct resource *bridge,
+ unsigned long type_mask, unsigned long type)
+{
+ struct device *dev;
+ struct resource *resource;
+ resource_t base;
+ base = bridge->base;
+
+ printk(BIOS_SPEW, "%s %s_%s: base:%llx size:%llx align:%d gran:%d "
+ "limit:%llx\n", dev_path(bus->dev), __func__,
+ (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
+ "prefmem" : "mem",
+ base, bridge->size, bridge->align, bridge->gran, bridge->limit);
+
+ /* Remember we haven't found anything yet. */
+ resource = NULL;
+
+ /*
+ * Walk through all the resources on the current bus and allocate them
+ * address space.
+ */
+ while ((dev = largest_resource(bus, &resource, type_mask, type))) {
+
+ /* Propagate the bridge limit to the resource register. */
+ if (resource->limit > bridge->limit)
+ resource->limit = bridge->limit;
+
+ /* Size 0 resources can be skipped. */
+ if (!resource->size) {
+ /* Set the base to limit so it doesn't confuse tolm. */
+ resource->base = resource->limit;
+ resource->flags |= IORESOURCE_ASSIGNED;
+ continue;
+ }
+
+ if (resource->flags & IORESOURCE_IO) {
+ /*
+ * Don't allow potential aliases over the legacy PCI
+ * expansion card addresses. The legacy PCI decodes
+ * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
+ * 0x00 - 0xff can be used out of each 0x400 block of
+ * I/O space.
+ */
+ if ((base & 0x300) != 0) {
+ base = (base & ~0x3ff) + 0x400;
+ }
+ /*
+ * Don't allow allocations in the VGA I/O range.
+ * PCI has special cases for that.
+ */
+ else if ((base >= 0x3b0) && (base <= 0x3df)) {
+ base = 0x3e0;
+ }
+ }
+
+ if ((round(base, resource->align) + resource->size - 1) <=
+ resource->limit) {
+ /* Base must be aligned. */
+ base = round(base, resource->align);
+ resource->base = base;
+ resource->flags |= IORESOURCE_ASSIGNED;
+ resource->flags &= ~IORESOURCE_STORED;
+ base += resource->size;
+ } else {
+ printk(BIOS_ERR, "!! Resource didn't fit !!\n");
+ printk(BIOS_ERR, " aligned base %llx size %llx "
+ "limit %llx\n", round(base, resource->align),
+ resource->size, resource->limit);
+ printk(BIOS_ERR, " %llx needs to be <= %llx "
+ "(limit)\n", (round(base, resource->align) +
+ resource->size) - 1, resource->limit);
+ printk(BIOS_ERR, " %s%s %02lx * [0x%llx - 0x%llx]"
+ " %s\n", (resource->flags & IORESOURCE_ASSIGNED)
+ ? "Assigned: " : "", dev_path(dev),
+ resource->index, resource->base,
+ resource->base + resource->size - 1,
+ (resource->flags & IORESOURCE_IO) ? "io"
+ : (resource->flags & IORESOURCE_PREFETCH)
+ ? "prefmem" : "mem");
+ }
+
+ printk(BIOS_SPEW, "%s%s %02lx * [0x%llx - 0x%llx] %s\n",
+ (resource->flags & IORESOURCE_ASSIGNED) ? "Assigned: "
+ : "", dev_path(dev), resource->index, resource->base,
+ resource->size ? resource->base + resource->size - 1 :
+ resource->base, (resource->flags & IORESOURCE_IO)
+ ? "io" : (resource->flags & IORESOURCE_PREFETCH)
+ ? "prefmem" : "mem");
+ }
+
+ /*
+ * A PCI bridge resource does not need to be a power of two size, but
+ * it does have a minimum granularity. Round the size up to that
+ * minimum granularity so we know not to place something else at an
+ * address positively decoded by the bridge.
+ */
+
+ bridge->flags |= IORESOURCE_ASSIGNED;
+
+ printk(BIOS_SPEW, "%s %s_%s: next_base: %llx size: %llx align: %d "
+ "gran: %d done\n", dev_path(bus->dev), __func__,
+ (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
+ "prefmem" : "mem", base, bridge->size, bridge->align,
+ bridge->gran);
+
+ /* For each child which is a bridge, allocate_resources. */
+ for (dev = bus->children; dev; dev = dev->sibling) {
+ struct resource *child_bridge;
+
+ if (!dev->link_list)
+ continue;
+
+ /* Find the resources with matching type flags. */
+ for (child_bridge = dev->resource_list; child_bridge;
+ child_bridge = child_bridge->next) {
+ struct bus* link;
+
+ if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
+ (child_bridge->flags & type_mask) != type)
+ continue;
+
+ /*
+ * Split prefetchable memory if combined. Many domains
+ * use the same address space for prefetchable memory
+ * and non-prefetchable memory. Bridges below them need
+ * it separated. Add the PREFETCH flag to the type_mask
+ * and type.
+ */
+ link = dev->link_list;
+ while (link && link->link_num !=
+ IOINDEX_LINK(child_bridge->index))
+ link = link->next;
+ if (link == NULL)
+ printk(BIOS_ERR, "link %ld not found on %s\n",
+ IOINDEX_LINK(child_bridge->index),
+ dev_path(dev));
+
+ allocate_resources(link, child_bridge,
+ type_mask | IORESOURCE_PREFETCH,
+ type | (child_bridge->flags &
+ IORESOURCE_PREFETCH));
+ }
+ }
+}
+
+#if CONFIG_PCI_64BIT_PREF_MEM
+#define MEM_MASK (IORESOURCE_PREFETCH | IORESOURCE_MEM)
+#else
+#define MEM_MASK (IORESOURCE_MEM)
+#endif
+
+#define IO_MASK (IORESOURCE_IO)
+#define PREF_TYPE (IORESOURCE_PREFETCH | IORESOURCE_MEM)
+#define MEM_TYPE (IORESOURCE_MEM)
+#define IO_TYPE (IORESOURCE_IO)
+
+struct constraints {
+ struct resource pref, io, mem;
+};
+
+static void constrain_resources(struct device *dev, struct constraints* limits)
+{
+ struct device *child;
+ struct resource *res;
+ struct resource *lim;
+ struct bus *link;
+
+ printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));
+
+ /* Constrain limits based on the fixed resources of this device. */
+ for (res = dev->resource_list; res; res = res->next) {
+ if (!(res->flags & IORESOURCE_FIXED))
+ continue;
+ if (!res->size) {
+ /* It makes no sense to have 0-sized, fixed resources.*/
+ printk(BIOS_ERR, "skipping %s@%lx fixed resource, "
+ "size=0!\n", dev_path(dev), res->index);
+ continue;
+ }
+
+ /* PREFETCH, MEM, or I/O - skip any others. */
+ if ((res->flags & MEM_MASK) == PREF_TYPE)
+ lim = &limits->pref;
+ else if ((res->flags & MEM_MASK) == MEM_TYPE)
+ lim = &limits->mem;
+ else if ((res->flags & IO_MASK) == IO_TYPE)
+ lim = &limits->io;
+ else
+ continue;
+
+ /*
+ * Is it a fixed resource outside the current known region?
+ * If so, we don't have to consider it - it will be handled
+ * correctly and doesn't affect current region's limits.
+ */
+ if (((res->base + res->size -1) < lim->base)
+ || (res->base > lim->limit))
+ continue;
+
+ /*
+ * Choose to be above or below fixed resources. This check is
+ * signed so that "negative" amounts of space are handled
+ * correctly.
+ */
+ if ((signed long long)(lim->limit - (res->base + res->size -1))
+ > (signed long long)(res->base - lim->base))
+ lim->base = res->base + res->size;
+ else
+ lim->limit = res->base -1;
+ }
+
+ /* Descend into every enabled child and look for fixed resources. */
+ for (link = dev->link_list; link; link = link->next) {
+ for (child = link->children; child; child = child->sibling) {
+ if (child->enabled)
+ constrain_resources(child, limits);
+ }
+ }
+}
+
+static void avoid_fixed_resources(struct device *dev)
+{
+ struct constraints limits;
+ struct resource *res;
+
+ printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));
+
+ /* Initialize constraints to maximum size. */
+ limits.pref.base = 0;
+ limits.pref.limit = 0xffffffffffffffffULL;
+ limits.io.base = 0;
+ limits.io.limit = 0xffffffffffffffffULL;
+ limits.mem.base = 0;
+ limits.mem.limit = 0xffffffffffffffffULL;
+
+ /* Constrain the limits to dev's initial resources. */
+ for (res = dev->resource_list; res; res = res->next) {
+ if ((res->flags & IORESOURCE_FIXED))
+ continue;
+ printk(BIOS_SPEW, "%s:@%s %02lx limit %08llx\n", __func__,
+ dev_path(dev), res->index, res->limit);
+ if ((res->flags & MEM_MASK) == PREF_TYPE &&
+ (res->limit < limits.pref.limit))
+ limits.pref.limit = res->limit;
+ if ((res->flags & MEM_MASK) == MEM_TYPE &&
+ (res->limit < limits.mem.limit))
+ limits.mem.limit = res->limit;
+ if ((res->flags & IO_MASK) == IO_TYPE &&
+ (res->limit < limits.io.limit))
+ limits.io.limit = res->limit;
+ }
+
+ /* Look through the tree for fixed resources and update the limits. */
+ constrain_resources(dev, &limits);
+
+ /* Update dev's resources with new limits. */
+ for (res = dev->resource_list; res; res = res->next) {
+ struct resource *lim;
+
+ if ((res->flags & IORESOURCE_FIXED))
+ continue;
+
+ /* PREFETCH, MEM, or I/O - skip any others. */
+ if ((res->flags & MEM_MASK) == PREF_TYPE)
+ lim = &limits.pref;
+ else if ((res->flags & MEM_MASK) == MEM_TYPE)
+ lim = &limits.mem;
+ else if ((res->flags & IO_MASK) == IO_TYPE)
+ lim = &limits.io;
+ else
+ continue;
+
+ printk(BIOS_SPEW, "%s2: %s@%02lx limit %08llx\n", __func__,
+ dev_path(dev), res->index, res->limit);
+ printk(BIOS_SPEW, "\tlim->base %08llx lim->limit %08llx\n",
+ lim->base, lim->limit);
+
+ /* Is the resource outside the limits? */
+ if (lim->base > res->base)
+ res->base = lim->base;
+ if (res->limit > lim->limit)
+ res->limit = lim->limit;
+ }
+}
+
+device_t vga_pri = 0;
+static void set_vga_bridge_bits(void)
+{
+ /*
+ * FIXME: Modify set_vga_bridge() so it is less PCI centric!
+ * This function knows too much about PCI stuff, it should be just
+ * an iterator/visitor.
+ */
+
+ /* FIXME: Handle the VGA palette snooping. */
+ struct device *dev, *vga, *vga_onboard;
+ struct bus *bus;
+
+ bus = 0;
+ vga = 0;
+ vga_onboard = 0;
+
+ dev = NULL;
+ while ((dev = dev_find_class(PCI_CLASS_DISPLAY_VGA << 8, dev))) {
+ if (!dev->enabled)
+ continue;
+
+ printk(BIOS_DEBUG, "found VGA at %s\n", dev_path(dev));
+
+ if (dev->on_mainboard) {
+ vga_onboard = dev;
+ } else {
+ vga = dev;
+ }
+
+ /* It isn't safe to enable all VGA cards. */
+ dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
+ }
+
+ if (!vga)
+ vga = vga_onboard;
+
+ if (CONFIG_ONBOARD_VGA_IS_PRIMARY && vga_onboard)
+ vga = vga_onboard;
+
+ /* If we prefer plugin VGA over chipset VGA, the chipset might
+ want to know. */
+ if (!CONFIG_ONBOARD_VGA_IS_PRIMARY && (vga != vga_onboard) &&
+ vga_onboard && vga_onboard->ops && vga_onboard->ops->disable) {
+ printk(BIOS_DEBUG, "Use plugin graphics over integrated.\n");
+ vga_onboard->ops->disable(vga_onboard);
+ }
+
+ if (vga) {
+ /* VGA is first add-on card or the only onboard VGA. */
+ printk(BIOS_DEBUG, "Setting up VGA for %s\n", dev_path(vga));
+ /* All legacy VGA cards have MEM & I/O space registers. */
+ vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
+ vga_pri = vga;
+ bus = vga->bus;
+ }
+
+ /* Now walk up the bridges setting the VGA enable. */
+ while (bus) {
+ printk(BIOS_DEBUG, "Setting PCI_BRIDGE_CTL_VGA for bridge %s\n",
+ dev_path(bus->dev));
+ bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA;
+ bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus;
+ }
+}
+
+/**
+ * Assign the computed resources to the devices on the bus.
+ *
+ * Use the device specific set_resources() method to store the computed
+ * resources to hardware. For bridge devices, the set_resources() method
+ * has to recurse into every down stream buses.
+ *
+ * Mutual recursion:
+ * assign_resources() -> device_operation::set_resources()
+ * device_operation::set_resources() -> assign_resources()
+ *
+ * @param bus Pointer to the structure for this bus.
+ */
+void assign_resources(struct bus *bus)
+{
+ struct device *curdev;
+
+ printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
+ dev_path(bus->dev), bus->secondary, bus->link_num);
+
+ for (curdev = bus->children; curdev; curdev = curdev->sibling) {
+ if (!curdev->enabled || !curdev->resource_list)
+ continue;
+
+ if (!curdev->ops || !curdev->ops->set_resources) {
+ printk(BIOS_ERR, "%s missing set_resources\n",
+ dev_path(curdev));
+ continue;
+ }
+ curdev->ops->set_resources(curdev);
+ }
+ printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
+ dev_path(bus->dev), bus->secondary, bus->link_num);
+}
+
+/**
+ * Enable the resources for devices on a link.
+ *
+ * Enable resources of the device by calling the device specific
+ * enable_resources() method.
+ *
+ * The parent's resources should be enabled first to avoid having enabling
+ * order problem. This is done by calling the parent's enable_resources()
+ * method before its childrens' enable_resources() methods.
+ *
+ * @param link The link whose devices' resources are to be enabled.
+ */
+static void enable_resources(struct bus *link)
+{
+ struct device *dev;
+ struct bus *c_link;
+
+ for (dev = link->children; dev; dev = dev->sibling) {
+ if (dev->enabled && dev->ops && dev->ops->enable_resources)
+ dev->ops->enable_resources(dev);
+ }
+
+ for (dev = link->children; dev; dev = dev->sibling) {
+ for (c_link = dev->link_list; c_link; c_link = c_link->next)
+ enable_resources(c_link);
+ }
+}
+
+/**
+ * Reset all of the devices on a bus and clear the bus's reset_needed flag.
+ *
+ * @param bus Pointer to the bus structure.
+ * @return 1 if the bus was successfully reset, 0 otherwise.
+ */
+int reset_bus(struct bus *bus)
+{
+ if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) {
+ bus->dev->ops->reset_bus(bus);
+ bus->reset_needed = 0;
+ return 1;
+ }
+ return 0;
+}
+
+/**
+ * Scan for devices on a bus.
+ *
+ * If there are bridges on the bus, recursively scan the buses behind the
+ * bridges. If the setting up and tuning of the bus causes a reset to be
+ * required, reset the bus and scan it again.
+ *
+ * @param busdev Pointer to the bus device.
+ * @param max Current bus number.
+ * @return The maximum bus number found, after scanning all subordinate buses.
+ */
+unsigned int scan_bus(struct device *busdev, unsigned int max)
+{
+ unsigned int new_max;
+ int do_scan_bus;
+
+ if (!busdev || !busdev->enabled || !busdev->ops ||
+ !busdev->ops->scan_bus) {
+ return max;
+ }
+
+ do_scan_bus = 1;
+ while (do_scan_bus) {
+ struct bus *link;
+ new_max = busdev->ops->scan_bus(busdev, max);
+ do_scan_bus = 0;
+ for (link = busdev->link_list; link; link = link->next) {
+ if (link->reset_needed) {
+ if (reset_bus(link))
+ do_scan_bus = 1;
+ else
+ busdev->bus->reset_needed = 1;
+ }
+ }
+ }
+ return new_max;
+}
+
+/**
+ * Determine the existence of devices and extend the device tree.
+ *
+ * Most of the devices in the system are listed in the mainboard devicetree.cb
+ * file. The device structures for these devices are generated at compile
+ * time by the config tool and are organized into the device tree. This
+ * function determines if the devices created at compile time actually exist
+ * in the physical system.
+ *
+ * For devices in the physical system but not listed in devicetree.cb,
+ * the device structures have to be created at run time and attached to the
+ * device tree.
+ *
+ * This function starts from the root device 'dev_root', scans the buses in
+ * the system recursively, and modifies the device tree according to the
+ * result of the probe.
+ *
+ * This function has no idea how to scan and probe buses and devices at all.
+ * It depends on the bus/device specific scan_bus() method to do it. The
+ * scan_bus() method also has to create the device structure and attach
+ * it to the device tree.
+ */
+void dev_enumerate(void)
+{
+ struct device *root;
+
+ printk(BIOS_INFO, "Enumerating buses...\n");
+
+ root = &dev_root;
+
+ show_all_devs(BIOS_SPEW, "Before device enumeration.");
+ printk(BIOS_SPEW, "Compare with tree...\n");
+ show_devs_tree(root, BIOS_SPEW, 0, 0);
+
+ if (root->chip_ops && root->chip_ops->enable_dev)
+ root->chip_ops->enable_dev(root);
+
+ if (!root->ops || !root->ops->scan_bus) {
+ printk(BIOS_ERR, "dev_root missing scan_bus operation");
+ return;
+ }
+ scan_bus(root, 0);
+ printk(BIOS_INFO, "done\n");
+}
+
+/**
+ * Configure devices on the devices tree.
+ *
+ * Starting at the root of the device tree, travel it recursively in two
+ * passes. In the first pass, we compute and allocate resources (ranges)
+ * requried by each device. In the second pass, the resources ranges are
+ * relocated to their final position and stored to the hardware.
+ *
+ * I/O resources grow upward. MEM resources grow downward.
+ *
+ * Since the assignment is hierarchical we set the values into the dev_root
+ * struct.
+ */
+void dev_configure(void)
+{
+ struct resource *res;
+ struct device *root;
+ struct device *child;
+
+ set_vga_bridge_bits();
+
+ printk(BIOS_INFO, "Allocating resources...\n");
+
+ root = &dev_root;
+
+ /*
+ * Each domain should create resources which contain the entire address
+ * space for IO, MEM, and PREFMEM resources in the domain. The
+ * allocation of device resources will be done from this address space.
+ */
+
+ /* Read the resources for the entire tree. */
+
+ printk(BIOS_INFO, "Reading resources...\n");
+ read_resources(root->link_list);
+ printk(BIOS_INFO, "Done reading resources.\n");
+
+ print_resource_tree(root, BIOS_SPEW, "After reading.");
+
+ /* Compute resources for all domains. */
+ for (child = root->link_list->children; child; child = child->sibling) {
+ if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN))
+ continue;
+ for (res = child->resource_list; res; res = res->next) {
+ if (res->flags & IORESOURCE_FIXED)
+ continue;
+ if (res->flags & IORESOURCE_PREFETCH) {
+ compute_resources(child->link_list,
+ res, MEM_MASK, PREF_TYPE);
+ continue;
+ }
+ if (res->flags & IORESOURCE_MEM) {
+ compute_resources(child->link_list,
+ res, MEM_MASK, MEM_TYPE);
+ continue;
+ }
+ if (res->flags & IORESOURCE_IO) {
+ compute_resources(child->link_list,
+ res, IO_MASK, IO_TYPE);
+ continue;
+ }
+ }
+ }
+
+ /* For all domains. */
+ for (child = root->link_list->children; child; child=child->sibling)
+ if (child->path.type == DEVICE_PATH_PCI_DOMAIN)
+ avoid_fixed_resources(child);
+
+ /*
+ * Now we need to adjust the resources. MEM resources need to start at
+ * the highest address managable.
+ */
+ for (child = root->link_list->children; child; child = child->sibling) {
+ if (child->path.type != DEVICE_PATH_PCI_DOMAIN)
+ continue;
+ for (res = child->resource_list; res; res = res->next) {
+ if (!(res->flags & IORESOURCE_MEM) ||
+ res->flags & IORESOURCE_FIXED)
+ continue;
+ res->base = resource_max(res);
+ }
+ }
+
+ /* Store the computed resource allocations into device registers ... */
+ printk(BIOS_INFO, "Setting resources...\n");
+ for (child = root->link_list->children; child; child = child->sibling) {
+ if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN))
+ continue;
+ for (res = child->resource_list; res; res = res->next) {
+ if (res->flags & IORESOURCE_FIXED)
+ continue;
+ if (res->flags & IORESOURCE_PREFETCH) {
+ allocate_resources(child->link_list,
+ res, MEM_MASK, PREF_TYPE);
+ continue;
+ }
+ if (res->flags & IORESOURCE_MEM) {
+ allocate_resources(child->link_list,
+ res, MEM_MASK, MEM_TYPE);
+ continue;
+ }
+ if (res->flags & IORESOURCE_IO) {
+ allocate_resources(child->link_list,
+ res, IO_MASK, IO_TYPE);
+ continue;
+ }
+ }
+ }
+ assign_resources(root->link_list);
+ printk(BIOS_INFO, "Done setting resources.\n");
+ print_resource_tree(root, BIOS_SPEW, "After assigning values.");
+
+ printk(BIOS_INFO, "Done allocating resources.\n");
+}
+
+/**
+ * Enable devices on the device tree.
+ *
+ * Starting at the root, walk the tree and enable all devices/bridges by
+ * calling the device's enable_resources() method.
+ */
+void dev_enable(void)
+{
+ struct bus *link;
+
+ printk(BIOS_INFO, "Enabling resources...\n");
+
+ /* Now enable everything. */
+ for (link = dev_root.link_list; link; link = link->next)
+ enable_resources(link);
+
+ printk(BIOS_INFO, "done.\n");
+}
+
+/**
+ * Initialize a specific device.
+ *
+ * The parent should be initialized first to avoid having an ordering problem.
+ * This is done by calling the parent's init() method before its childrens'
+ * init() methods.
+ *
+ * @param dev The device to be initialized.
+ */
+static void init_dev(struct device *dev)
+{
+ if (!dev->enabled)
+ return;
+
+ if (!dev->initialized && dev->ops && dev->ops->init) {
+ if (dev->path.type == DEVICE_PATH_I2C) {
+ printk(BIOS_DEBUG, "smbus: %s[%d]->",
+ dev_path(dev->bus->dev), dev->bus->link_num);
+ }
+
+ printk(BIOS_DEBUG, "%s init\n", dev_path(dev));
+ dev->initialized = 1;
+ dev->ops->init(dev);
+ }
+}
+
+static void init_link(struct bus *link)
+{
+ struct device *dev;
+ struct bus *c_link;
+
+ for (dev = link->children; dev; dev = dev->sibling)
+ init_dev(dev);
+
+ for (dev = link->children; dev; dev = dev->sibling) {
+ for (c_link = dev->link_list; c_link; c_link = c_link->next)
+ init_link(c_link);
+ }
+}
+
+/**
+ * Initialize all devices in the global device tree.
+ *
+ * Starting at the root device, call the device's init() method to do
+ * device-specific setup, then call each child's init() method.
+ */
+void dev_initialize(void)
+{
+ struct bus *link;
+
+ printk(BIOS_INFO, "Initializing devices...\n");
+
+#if CONFIG_ARCH_X86
+ /* Ensure EBDA is prepared before Option ROMs. */
+ setup_default_ebda();
+#endif
+
+ /* First call the mainboard init. */
+ init_dev(&dev_root);
+
+ /* Now initialize everything. */
+ for (link = dev_root.link_list; link; link = link->next)
+ init_link(link);
+
+ printk(BIOS_INFO, "Devices initialized\n");
+ show_all_devs(BIOS_SPEW, "After init.");
+}