summaryrefslogtreecommitdiff
path: root/Documentation/security
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/security')
-rw-r--r--Documentation/security/index.md1
-rw-r--r--Documentation/security/vboot/index.md324
2 files changed, 325 insertions, 0 deletions
diff --git a/Documentation/security/index.md b/Documentation/security/index.md
index 89db42ecee..9ad54866c2 100644
--- a/Documentation/security/index.md
+++ b/Documentation/security/index.md
@@ -4,4 +4,5 @@ This section describes documentation about the security architecture of coreboot
## Vendor
+- [Verified Boot](vboot/index.md)
- [Measured Boot](vboot/measured_boot.md)
diff --git a/Documentation/security/vboot/index.md b/Documentation/security/vboot/index.md
new file mode 100644
index 0000000000..97420893e5
--- /dev/null
+++ b/Documentation/security/vboot/index.md
@@ -0,0 +1,324 @@
+# vboot - Verified Boot Support
+
+Google's verified boot support consists of:
+
+* A root of trust
+* Special firmware layout
+* Firmware verification
+* Firmware measurements
+* A firmware update mechanism
+* Specific build flags
+* Signing the coreboot image
+
+Google's vboot verifies the firmware and places measurements within the TPM.
+
+***
+
+## Root of Trust
+
+When using vboot, the root-of-trust is basically the read-only portion of the
+SPI flash. The following items factor into the trust equation:
+
+* The GCC compiler must reliably translate the code into machine code
+ without inserting any additional code (virus, backdoor, etc.)
+* The CPU must reliably execute the reset sequence and instructions as
+ documented by the CPU manufacturer.
+* The SPI flash must provide only the code programmed into it to the CPU
+ without providing any alternative reset vector or code sequence.
+* The SPI flash must honor the write-protect input and protect the specified
+ portion of the SPI flash from all erase and write accesses.
+
+The firmware is typically protected using the write-protect pin on the SPI
+flash part and setting some of the write-protect bits in the status register
+during manufacturing. The protected area is platform specific and for x86
+platforms is typically 1/4th of the SPI flash part size.
+Because this portion of the SPI flash is hardware write protected, it is not
+possible to update this portion of the SPI flash in the field, without altering
+the system to eliminate the ground connection to the SPI flash write-protect pin.
+Without hardware modifications, this portion of the SPI flash maintains the
+manufactured state during the system's lifetime.
+
+***
+
+## Firmware Layout
+
+Several sections are added to the firmware layout to support vboot:
+
+* Read-only section
+* Google Binary Blob (GBB) area
+* Read/write section A
+* Read/write section B
+
+The following sections describe the various portions of the flash layout.
+
+### Read-Only Section
+
+The read-only section contains a coreboot file system (CBFS) that contains all
+of the boot firmware necessary to perform recovery for the system. This firmware
+is typically protected using the write-protect pin on the SPI flash part and
+setting some of the write-protect bits in the status register during
+manufacturing.
+The protected area is typically 1/4th of the SPI flash part size and must cover
+the entire read-only section which consists of:
+
+* Vital Product Data (VPD) area
+* Firmware ID area
+* Google Binary Blob (GBB) area
+* coreboot file system containing read-only recovery firmware
+
+### Google Binary Blob (GBB) Area
+
+The GBB area is part of the read-only section. This area contains a 4096 or 8192
+bit public root RSA key that is used to verify the *VBLOCK* area to obtain the
+firmware signing key.
+
+### Recovery Firmware
+
+The recovery firmware is contained within a coreboot file system and consists of:
+
+* reset vector
+* bootblock
+* verstage
+* romstage
+* postcar
+* ramstage
+* payload
+* flash map file
+* config file
+* processor specific files:
+ * Microcode
+ * fspm.bin
+ * fsps.bin
+
+The recovery firmware is written during manufacturing and typically contains
+code to write the storage device (eMMC device or hard disk). The recovery image
+is usually contained on a socketed device such as a USB flash drive or an
+SD card. Depending upon the payload firmware doing the recovery, it may be
+possible for the user to interact with the system to specify the recovery
+image path. Part of the recovery is also to write the A and B areas of the SPI
+flash device to boot the system.
+
+### Read/Write Section
+
+The read/write sections contain an area which contains the firmware signing
+key and signature and an area containing a coreboot file system with a subset
+of the firmware. The firmware files in *FW_MAIN_A* and *FW_MAIN_B* are:
+
+* romstage
+* postcar
+* ramstage
+* payload
+* config file
+* processor specific files:
+ * Microcode
+ * fspm.bin
+ * fsps.bin
+
+The firmware subset enables most issues to be fixed in the field with firmware
+updates. The firmware files handle memory and most of silicon initialization.
+These files also produce the tables which get passed to the operating system.
+
+***
+
+## Firmware Updates
+
+The read/write sections exist in one of three states:
+
+* Invalid
+* Ready to boot
+* Successfully booted
+
+
+Firmware updates are handled by the operating system by writing any read/write
+section that is not in the "successfully booted" state. Upon the next reboot,
+vboot determines the section to boot. If it finds one in the "ready to boot"
+state then it attempts to boot using that section. If the boot fails then
+vboot marks the section as invalid and attempts to fall back to a read/write
+section in the "successfully booted" state. If vboot is not able to find a
+section in the "successfully booted" state then vboot enters recovery mode.
+
+Only the operating system is able to transition a section from the
+"ready to boot" state to the "successfully booted" state.
+The transition is typically done after the operating system has been running
+for a while indicating that successful boot was possible and the operating
+system is stable.
+
+Note that as long as the SPI write protection is in place then the system
+is always recoverable. If the flash update fails then the system will continue
+to boot using the previous read/write area. The same is true if coreboot passes
+control to the payload or the operating system and then the boot fails. In the
+worst case, the SPI flash gets totally corrupted in which case vboot fails the
+signature checks and enters recovery mode. There are no times where the SPI
+flash is exposed and the reset vector or part of the recovery firmware gets
+corrupted.
+
+***
+
+## Build Flags
+
+The following *Kconfig* values need to be selected to enable vboot:
+
+* COLLECT_TIMESTAMPS
+* VBOOT
+
+The starting stage needs to be specified by selecting either
+VBOOT_STARTS_IN_BOOTBLOCK or VBOOT_STARTS_IN_ROMSTAGE.
+
+If vboot starts in bootblock then vboot may be built as a separate stage by
+selecting `VBOOT_SEPARATE_VERSTAGE`. Additionally, if static RAM is too small
+to fit both verstage and romstage then selecting `VBOOT_RETURN_FROM_VERSTAGE`
+enables bootblock to reuse the RAM occupied by verstage for romstage.
+
+Non-volatile flash is needed for vboot operation. This flash area may be in
+CMOS, the EC, or in a read/write area of the SPI flash device.
+Select one of the following:
+
+* `VBOOT_VBNV_CMOS`
+* `VBOOT_VBNV_EC`
+* `VBOOT_VBNV_FLASH`
+
+More non-volatile storage features may be found in `security/vboot/Kconfig`.
+
+A TPM is also required for vboot operation.
+TPMs are available in `drivers/i2c/tpm` and `drivers/pc80/tpm`.
+
+In addition to adding the coreboot files into the read-only region,
+enabling vboot causes the build script to add the read/write files into
+coreboot file systems in *FW_MAIN_A* and *FW_MAIN_B*.
+
+***
+
+## Signing the coreboot Image
+
+The following command script is an example of how to sign the coreboot image
+file. This script is used on the Intel Galileo board and creates the *GBB* area
+and inserts it into the coreboot image. It also updates the *VBLOCK* areas with
+the firmware signing key and the signature for the *FW_MAIN* firmware.
+More details are available in `3rdparty/vboot/README`.
+
+```bash
+#!/bin/sh
+#
+# The necessary tools were built and installed using the following commands:
+#
+# pushd 3rdparty/vboot
+# make
+# sudo make install
+# popd
+#
+# The keys were made using the following command
+#
+# 3rdparty/vboot/scripts/keygeneration/create_new_keys.sh \
+# --4k --4k-root --output $PWD/keys
+#
+#
+# The "magic" numbers below are derived from the GBB section in
+# src/mainboard/intel/galileo/vboot.fmd.
+#
+# GBB Header Size: 0x80
+# GBB Offset: 0x611000, 4KiB block number: 1553 (0x611)
+# GBB Length: 0x7f000, 4KiB blocks: 127 (0x7f)
+# COREBOOT Offset: 0x690000, 4KiB block number: 1680 (0x690)
+# COREBOOT Length: 0x170000, 4KiB blocks: 368 (0x170)
+#
+# 0x7f000 (GBB Length) = 0x80 + 0x100 + 0x1000 + 0x7ce80 + 0x1000
+#
+# Create the GBB area blob
+# Parameters: hwid_size,rootkey_size,bmpfv_size,recoverykey_size
+#
+gbb_utility -c 0x100,0x1000,0x7ce80,0x1000 gbb.blob
+
+#
+# Copy from the start of the flash to the GBB region into the signed flash
+# image.
+#
+# 1553 * 4096 = 0x611 * 0x1000 = 0x611000, size of area before GBB
+#
+dd conv=fdatasync ibs=4096 obs=4096 count=1553 \
+if=build/coreboot.rom of=build/coreboot.signed.rom
+
+#
+# Append the empty GBB area to the coreboot.rom image.
+#
+# 1553 * 4096 = 0x611 * 0x1000 = 0x611000, offset to GBB
+#
+dd conv=fdatasync obs=4096 obs=4096 seek=1553 if=gbb.blob \
+of=build/coreboot.signed.rom
+
+#
+# Append the rest of the read-only region into the signed flash image.
+#
+# 1680 * 4096 = 0x690 * 0x1000 = 0x690000, offset to COREBOOT area
+# 368 * 4096 = 0x170 * 0x1000 = 0x170000, length of COREBOOT area
+#
+dd conv=fdatasync ibs=4096 obs=4096 skip=1680 seek=1680 count=368 \
+if=build/coreboot.rom of=build/coreboot.signed.rom
+
+#
+# Insert the HWID and public root and recovery RSA keys into the GBB area.
+#
+gbb_utility \
+--set --hwid='Galileo' \
+-r $PWD/keys/recovery_key.vbpubk \
+-k $PWD/keys/root_key.vbpubk \
+build/coreboot.signed.rom
+
+#
+# Sign the read/write firmware areas with the private signing key and update
+# the VBLOCK_A and VBLOCK_B regions.
+#
+3rdparty/vboot/scripts/image_signing/sign_firmware.sh \
+build/coreboot.signed.rom \
+$PWD/keys \
+ build/coreboot.signed.rom
+```
+
+***
+
+## Boot Flow
+
+The reset vector exist in the read-only area and points to the bootblock
+entry point. The only copy of the bootblock exists in the read-only area
+of the SPI flash. Verstage may be part of the bootblock or a separate stage.
+If separate then the bootblock loads verstage from the read-only area and
+transfers control to it.
+
+Upon first boot, verstage attempts to verify the read/write section A.
+It gets the public root key from the GBB area and uses that to verify the
+*VBLOCK* area in read-write section A. If the *VBLOCK* area is valid then it
+extracts the firmware signing key (1024-8192 bits) and uses that to verify
+the *FW_MAIN_A* area of read/write section A. If the verification is successful
+then verstage instructs coreboot to use the coreboot file system in read/write
+section A for the contents of the remaining boot firmware (romstage, postcar,
+ramstage and the payload).
+
+If verification fails for the read/write area and the other read/write area is
+not valid vboot falls back to the read-only area to boot into system recovery.
+
+***
+
+## Chromebook Special Features
+
+Google's Chromebooks have some special features:
+
+* Developer mode
+* Write-protect screw
+
+### Developer Mode
+
+Developer mode allows the user to use coreboot to boot another operating system.
+This may be a another (beta) version of Chrome OS, or another flavor of
+GNU/Linux. Use of developer mode does not void the system warranty. Upon entry
+into developer mode, all locally saved data on the system is lost.
+This prevents someone from entering developer mode to subvert the system
+security to access files on the local system or cloud.
+
+### Write Protect Screw
+
+Chromebooks have a write-protect screw which provides the ground to the
+write-protect pin of the SPI flash.
+Google specifically did this to allow the manufacturing line and advanced
+developers to re-write the entire SPI flash part. Once the screw is removed,
+any firmware may be placed on the device.
+However, accessing this screw requires opening the case and voids the
+system warranty!