summaryrefslogtreecommitdiff
path: root/util/x86emu/yabel/mem.c
diff options
context:
space:
mode:
authorStefan Reinauer <stepan@coresystems.de>2010-03-16 23:07:29 +0000
committerStefan Reinauer <stepan@openbios.org>2010-03-16 23:07:29 +0000
commit859e94a30420c726a0043a00a73abb946cfb94c3 (patch)
tree37d7924bc8dbf8d28662f1d17c40acea811d9727 /util/x86emu/yabel/mem.c
parent11b1eb994cedef869618bff5368859d9b3c99b1d (diff)
it was reason for workaround rules already, and it's somewhat ugly:
util/x86emu is the only part of coreboot that is linked into coreboot itself that lives in util/. It's not a utility and it does not really belong where it lives. ---> svn mv util/x86emu src/devices/oprom plus necessary Makefile changes to get it building again Signed-off-by: Stefan Reinauer <stepan@coresystems.de> Acked-by: Ronald G. Minnich <rminnich@gmail.com> Acked-by: Peter Stuge <peter@stuge.se> git-svn-id: svn://svn.coreboot.org/coreboot/trunk@5228 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
Diffstat (limited to 'util/x86emu/yabel/mem.c')
-rw-r--r--util/x86emu/yabel/mem.c493
1 files changed, 0 insertions, 493 deletions
diff --git a/util/x86emu/yabel/mem.c b/util/x86emu/yabel/mem.c
deleted file mode 100644
index 8bcc9e12c2..0000000000
--- a/util/x86emu/yabel/mem.c
+++ /dev/null
@@ -1,493 +0,0 @@
-/******************************************************************************
- * Copyright (c) 2004, 2008 IBM Corporation
- * Copyright (c) 2009 Pattrick Hueper <phueper@hueper.net>
- * All rights reserved.
- * This program and the accompanying materials
- * are made available under the terms of the BSD License
- * which accompanies this distribution, and is available at
- * http://www.opensource.org/licenses/bsd-license.php
- *
- * Contributors:
- * IBM Corporation - initial implementation
- *****************************************************************************/
-
-#include <types.h>
-#include "debug.h"
-#include "device.h"
-#include "x86emu/x86emu.h"
-#include "biosemu.h"
-#include "mem.h"
-#include "compat/time.h"
-
-// define a check for access to certain (virtual) memory regions (interrupt handlers, BIOS Data Area, ...)
-#if CONFIG_X86EMU_DEBUG
-static u8 in_check = 0; // to avoid recursion...
-u16 ebda_segment;
-u32 ebda_size;
-
-//TODO: these macros have grown so large, that they should be changed to an inline function,
-//just for the sake of readability...
-
-#define DEBUG_CHECK_VMEM_READ(_addr, _rval) \
- if ((debug_flags & DEBUG_CHECK_VMEM_ACCESS) && (in_check == 0)) { \
- in_check = 1; \
- /* determine ebda_segment and size \
- * since we are using my_rdx calls, make sure, this is after setting in_check! */ \
- /* offset 03 in BDA is EBDA segment */ \
- ebda_segment = my_rdw(0x40e); \
- /* first value in ebda is size in KB */ \
- ebda_size = my_rdb(ebda_segment << 4) * 1024; \
- /* check Interrupt Vector Access (0000:0000h - 0000:0400h) */ \
- if (_addr < 0x400) { \
- DEBUG_PRINTF_CS_IP("%s: read from Interrupt Vector %x --> %x\n", \
- __func__, _addr / 4, _rval); \
- } \
- /* access to BIOS Data Area (0000:0400h - 0000:0500h)*/ \
- else if ((_addr >= 0x400) && (addr < 0x500)) { \
- DEBUG_PRINTF_CS_IP("%s: read from BIOS Data Area: addr: %x --> %x\n", \
- __func__, _addr, _rval); \
- /* dump registers */ \
- /* x86emu_dump_xregs(); */ \
- } \
- /* access to first 64k of memory... */ \
- else if (_addr < 0x10000) { \
- DEBUG_PRINTF_CS_IP("%s: read from segment 0000h: addr: %x --> %x\n", \
- __func__, _addr, _rval); \
- /* dump registers */ \
- /* x86emu_dump_xregs(); */ \
- } \
- /* read from PMM_CONV_SEGMENT */ \
- else if ((_addr <= ((PMM_CONV_SEGMENT << 4) | 0xffff)) && (_addr >= (PMM_CONV_SEGMENT << 4))) { \
- DEBUG_PRINTF_CS_IP("%s: read from PMM Segment %04xh: addr: %x --> %x\n", \
- __func__, PMM_CONV_SEGMENT, _addr, _rval); \
- /* HALT_SYS(); */ \
- /* dump registers */ \
- /* x86emu_dump_xregs(); */ \
- } \
- /* read from PNP_DATA_SEGMENT */ \
- else if ((_addr <= ((PNP_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (PNP_DATA_SEGMENT << 4))) { \
- DEBUG_PRINTF_CS_IP("%s: read from PnP Data Segment %04xh: addr: %x --> %x\n", \
- __func__, PNP_DATA_SEGMENT, _addr, _rval); \
- /* HALT_SYS(); */ \
- /* dump registers */ \
- /* x86emu_dump_xregs(); */ \
- } \
- /* read from EBDA Segment */ \
- else if ((_addr <= ((ebda_segment << 4) | (ebda_size - 1))) && (_addr >= (ebda_segment << 4))) { \
- DEBUG_PRINTF_CS_IP("%s: read from Extended BIOS Data Area %04xh, size: %04x: addr: %x --> %x\n", \
- __func__, ebda_segment, ebda_size, _addr, _rval); \
- } \
- /* read from BIOS_DATA_SEGMENT */ \
- else if ((_addr <= ((BIOS_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (BIOS_DATA_SEGMENT << 4))) { \
- DEBUG_PRINTF_CS_IP("%s: read from BIOS Data Segment %04xh: addr: %x --> %x\n", \
- __func__, BIOS_DATA_SEGMENT, _addr, _rval); \
- /* for PMM debugging */ \
- /*if (_addr == BIOS_DATA_SEGMENT << 4) { \
- X86EMU_trace_on(); \
- M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F; \
- }*/ \
- /* dump registers */ \
- /* x86emu_dump_xregs(); */ \
- } \
- in_check = 0; \
- }
-#define DEBUG_CHECK_VMEM_WRITE(_addr, _val) \
- if ((debug_flags & DEBUG_CHECK_VMEM_ACCESS) && (in_check == 0)) { \
- in_check = 1; \
- /* determine ebda_segment and size \
- * since we are using my_rdx calls, make sure, this is after setting in_check! */ \
- /* offset 03 in BDA is EBDA segment */ \
- ebda_segment = my_rdw(0x40e); \
- /* first value in ebda is size in KB */ \
- ebda_size = my_rdb(ebda_segment << 4) * 1024; \
- /* check Interrupt Vector Access (0000:0000h - 0000:0400h) */ \
- if (_addr < 0x400) { \
- DEBUG_PRINTF_CS_IP("%s: write to Interrupt Vector %x <-- %x\n", \
- __func__, _addr / 4, _val); \
- } \
- /* access to BIOS Data Area (0000:0400h - 0000:0500h)*/ \
- else if ((_addr >= 0x400) && (addr < 0x500)) { \
- DEBUG_PRINTF_CS_IP("%s: write to BIOS Data Area: addr: %x <-- %x\n", \
- __func__, _addr, _val); \
- /* dump registers */ \
- /* x86emu_dump_xregs(); */ \
- } \
- /* access to first 64k of memory...*/ \
- else if (_addr < 0x10000) { \
- DEBUG_PRINTF_CS_IP("%s: write to segment 0000h: addr: %x <-- %x\n", \
- __func__, _addr, _val); \
- /* dump registers */ \
- /* x86emu_dump_xregs(); */ \
- } \
- /* write to PMM_CONV_SEGMENT... */ \
- else if ((_addr <= ((PMM_CONV_SEGMENT << 4) | 0xffff)) && (_addr >= (PMM_CONV_SEGMENT << 4))) { \
- DEBUG_PRINTF_CS_IP("%s: write to PMM Segment %04xh: addr: %x <-- %x\n", \
- __func__, PMM_CONV_SEGMENT, _addr, _val); \
- /* dump registers */ \
- /* x86emu_dump_xregs(); */ \
- } \
- /* write to PNP_DATA_SEGMENT... */ \
- else if ((_addr <= ((PNP_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (PNP_DATA_SEGMENT << 4))) { \
- DEBUG_PRINTF_CS_IP("%s: write to PnP Data Segment %04xh: addr: %x <-- %x\n", \
- __func__, PNP_DATA_SEGMENT, _addr, _val); \
- /* dump registers */ \
- /* x86emu_dump_xregs(); */ \
- } \
- /* write to EBDA Segment... */ \
- else if ((_addr <= ((ebda_segment << 4) | (ebda_size - 1))) && (_addr >= (ebda_segment << 4))) { \
- DEBUG_PRINTF_CS_IP("%s: write to Extended BIOS Data Area %04xh, size: %04x: addr: %x <-- %x\n", \
- __func__, ebda_segment, ebda_size, _addr, _val); \
- } \
- /* write to BIOS_DATA_SEGMENT... */ \
- else if ((_addr <= ((BIOS_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (BIOS_DATA_SEGMENT << 4))) { \
- DEBUG_PRINTF_CS_IP("%s: write to BIOS Data Segment %04xh: addr: %x <-- %x\n", \
- __func__, BIOS_DATA_SEGMENT, _addr, _val); \
- /* dump registers */ \
- /* x86emu_dump_xregs(); */ \
- } \
- /* write to current CS segment... */ \
- else if ((_addr < ((M.x86.R_CS << 4) | 0xffff)) && (_addr > (M.x86.R_CS << 4))) { \
- DEBUG_PRINTF_CS_IP("%s: write to CS segment %04xh: addr: %x <-- %x\n", \
- __func__, M.x86.R_CS, _addr, _val); \
- /* dump registers */ \
- /* x86emu_dump_xregs(); */ \
- } \
- in_check = 0; \
- }
-#else
-#define DEBUG_CHECK_VMEM_READ(_addr, _rval)
-#define DEBUG_CHECK_VMEM_WRITE(_addr, _val)
-#endif
-
-void update_time(u32);
-
-#if !defined(CONFIG_YABEL_DIRECTHW) || (!CONFIG_YABEL_DIRECTHW)
-// read byte from memory
-u8
-my_rdb(u32 addr)
-{
- unsigned long translated_addr = addr;
- u8 translated = biosemu_dev_translate_address(&translated_addr);
- u8 rval;
- if (translated != 0) {
- //translation successfull, access VGA Memory (BAR or Legacy...)
- DEBUG_PRINTF_MEM("%s(%08x): access to VGA Memory\n",
- __func__, addr);
- //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
- set_ci();
- rval = *((u8 *) translated_addr);
- clr_ci();
- DEBUG_PRINTF_MEM("%s(%08x) VGA --> %02x\n", __func__, addr,
- rval);
- return rval;
- } else if (addr > M.mem_size) {
- DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
- __func__, addr);
- //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
- HALT_SYS();
- } else {
- /* read from virtual memory */
- rval = *((u8 *) (M.mem_base + addr));
- DEBUG_CHECK_VMEM_READ(addr, rval);
- return rval;
- }
- return -1;
-}
-
-//read word from memory
-u16
-my_rdw(u32 addr)
-{
- unsigned long translated_addr = addr;
- u8 translated = biosemu_dev_translate_address(&translated_addr);
- u16 rval;
- if (translated != 0) {
- //translation successfull, access VGA Memory (BAR or Legacy...)
- DEBUG_PRINTF_MEM("%s(%08x): access to VGA Memory\n",
- __func__, addr);
- //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
- // check for legacy memory, because of the remapping to BARs, the reads must
- // be byte reads...
- if ((addr >= 0xa0000) && (addr < 0xc0000)) {
- //read bytes a using my_rdb, because of the remapping to BARs
- //words may not be contiguous in memory, so we need to translate
- //every address...
- rval = ((u8) my_rdb(addr)) |
- (((u8) my_rdb(addr + 1)) << 8);
- } else {
- if ((translated_addr & (u64) 0x1) == 0) {
- // 16 bit aligned access...
- set_ci();
- rval = in16le((void *) translated_addr);
- clr_ci();
- } else {
- // unaligned access, read single bytes
- set_ci();
- rval = (*((u8 *) translated_addr)) |
- (*((u8 *) translated_addr + 1) << 8);
- clr_ci();
- }
- }
- DEBUG_PRINTF_MEM("%s(%08x) VGA --> %04x\n", __func__, addr,
- rval);
- return rval;
- } else if (addr > M.mem_size) {
- DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
- __func__, addr);
- //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
- HALT_SYS();
- } else {
- /* read from virtual memory */
- rval = in16le((void *) (M.mem_base + addr));
- DEBUG_CHECK_VMEM_READ(addr, rval);
- return rval;
- }
- return -1;
-}
-
-//read long from memory
-u32
-my_rdl(u32 addr)
-{
- unsigned long translated_addr = addr;
- u8 translated = biosemu_dev_translate_address(&translated_addr);
- u32 rval;
- if (translated != 0) {
- //translation successfull, access VGA Memory (BAR or Legacy...)
- DEBUG_PRINTF_MEM("%s(%x): access to VGA Memory\n",
- __func__, addr);
- //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
- // check for legacy memory, because of the remapping to BARs, the reads must
- // be byte reads...
- if ((addr >= 0xa0000) && (addr < 0xc0000)) {
- //read bytes a using my_rdb, because of the remapping to BARs
- //dwords may not be contiguous in memory, so we need to translate
- //every address...
- rval = ((u8) my_rdb(addr)) |
- (((u8) my_rdb(addr + 1)) << 8) |
- (((u8) my_rdb(addr + 2)) << 16) |
- (((u8) my_rdb(addr + 3)) << 24);
- } else {
- if ((translated_addr & (u64) 0x3) == 0) {
- // 32 bit aligned access...
- set_ci();
- rval = in32le((void *) translated_addr);
- clr_ci();
- } else {
- // unaligned access, read single bytes
- set_ci();
- rval = (*((u8 *) translated_addr)) |
- (*((u8 *) translated_addr + 1) << 8) |
- (*((u8 *) translated_addr + 2) << 16) |
- (*((u8 *) translated_addr + 3) << 24);
- clr_ci();
- }
- }
- DEBUG_PRINTF_MEM("%s(%08x) VGA --> %08x\n", __func__, addr,
- rval);
- //HALT_SYS();
- return rval;
- } else if (addr > M.mem_size) {
- DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
- __func__, addr);
- //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
- HALT_SYS();
- } else {
- /* read from virtual memory */
- rval = in32le((void *) (M.mem_base + addr));
- switch (addr) {
- case 0x46c:
- //BDA Time Data, update it, before reading
- update_time(rval);
- rval = in32le((void *) (M.mem_base + addr));
- break;
- }
- DEBUG_CHECK_VMEM_READ(addr, rval);
- return rval;
- }
- return -1;
-}
-
-//write byte to memory
-void
-my_wrb(u32 addr, u8 val)
-{
- unsigned long translated_addr = addr;
- u8 translated = biosemu_dev_translate_address(&translated_addr);
- if (translated != 0) {
- //translation successfull, access VGA Memory (BAR or Legacy...)
- DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
- __func__, addr, val);
- //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
- set_ci();
- *((u8 *) translated_addr) = val;
- clr_ci();
- } else if (addr > M.mem_size) {
- DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
- __func__, addr);
- //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
- HALT_SYS();
- } else {
- /* write to virtual memory */
- DEBUG_CHECK_VMEM_WRITE(addr, val);
- *((u8 *) (M.mem_base + addr)) = val;
- }
-}
-
-void
-my_wrw(u32 addr, u16 val)
-{
- unsigned long translated_addr = addr;
- u8 translated = biosemu_dev_translate_address(&translated_addr);
- if (translated != 0) {
- //translation successfull, access VGA Memory (BAR or Legacy...)
- DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
- __func__, addr, val);
- //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
- // check for legacy memory, because of the remapping to BARs, the reads must
- // be byte reads...
- if ((addr >= 0xa0000) && (addr < 0xc0000)) {
- //read bytes a using my_rdb, because of the remapping to BARs
- //words may not be contiguous in memory, so we need to translate
- //every address...
- my_wrb(addr, (u8) (val & 0x00FF));
- my_wrb(addr + 1, (u8) ((val & 0xFF00) >> 8));
- } else {
- if ((translated_addr & (u64) 0x1) == 0) {
- // 16 bit aligned access...
- set_ci();
- out16le((void *) translated_addr, val);
- clr_ci();
- } else {
- // unaligned access, write single bytes
- set_ci();
- *((u8 *) translated_addr) =
- (u8) (val & 0x00FF);
- *((u8 *) translated_addr + 1) =
- (u8) ((val & 0xFF00) >> 8);
- clr_ci();
- }
- }
- } else if (addr > M.mem_size) {
- DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
- __func__, addr);
- //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
- HALT_SYS();
- } else {
- /* write to virtual memory */
- DEBUG_CHECK_VMEM_WRITE(addr, val);
- out16le((void *) (M.mem_base + addr), val);
- }
-}
-void
-my_wrl(u32 addr, u32 val)
-{
- unsigned long translated_addr = addr;
- u8 translated = biosemu_dev_translate_address(&translated_addr);
- if (translated != 0) {
- //translation successfull, access VGA Memory (BAR or Legacy...)
- DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
- __func__, addr, val);
- //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
- // check for legacy memory, because of the remapping to BARs, the reads must
- // be byte reads...
- if ((addr >= 0xa0000) && (addr < 0xc0000)) {
- //read bytes a using my_rdb, because of the remapping to BARs
- //words may not be contiguous in memory, so we need to translate
- //every address...
- my_wrb(addr, (u8) (val & 0x000000FF));
- my_wrb(addr + 1, (u8) ((val & 0x0000FF00) >> 8));
- my_wrb(addr + 2, (u8) ((val & 0x00FF0000) >> 16));
- my_wrb(addr + 3, (u8) ((val & 0xFF000000) >> 24));
- } else {
- if ((translated_addr & (u64) 0x3) == 0) {
- // 32 bit aligned access...
- set_ci();
- out32le((void *) translated_addr, val);
- clr_ci();
- } else {
- // unaligned access, write single bytes
- set_ci();
- *((u8 *) translated_addr) =
- (u8) (val & 0x000000FF);
- *((u8 *) translated_addr + 1) =
- (u8) ((val & 0x0000FF00) >> 8);
- *((u8 *) translated_addr + 2) =
- (u8) ((val & 0x00FF0000) >> 16);
- *((u8 *) translated_addr + 3) =
- (u8) ((val & 0xFF000000) >> 24);
- clr_ci();
- }
- }
- } else if (addr > M.mem_size) {
- DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
- __func__, addr);
- //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
- HALT_SYS();
- } else {
- /* write to virtual memory */
- DEBUG_CHECK_VMEM_WRITE(addr, val);
- out32le((void *) (M.mem_base + addr), val);
- }
-}
-#else
-u8
-my_rdb(u32 addr)
-{
- return rdb(addr);
-}
-
-u16
-my_rdw(u32 addr)
-{
- return rdw(addr);
-}
-
-u32
-my_rdl(u32 addr)
-{
- return rdl(addr);
-}
-
-void
-my_wrb(u32 addr, u8 val)
-{
- wrb(addr, val);
-}
-
-void
-my_wrw(u32 addr, u16 val)
-{
- wrw(addr, val);
-}
-
-void
-my_wrl(u32 addr, u32 val)
-{
- wrl(addr, val);
-}
-#endif
-
-//update time in BIOS Data Area
-//DWord at offset 0x6c is the timer ticks since midnight, timer is running at 18Hz
-//byte at 0x70 is timer overflow (set if midnight passed since last call to interrupt 1a function 00
-//cur_val is the current value, of offset 6c...
-void
-update_time(u32 cur_val)
-{
- //for convenience, we let the start of timebase be at midnight, we currently dont support
- //real daytime anyway...
- u64 ticks_per_day = tb_freq * 60 * 24;
- // at 18Hz a period is ~55ms, converted to ticks (tb_freq is ticks/second)
- u32 period_ticks = (55 * tb_freq) / 1000;
- u64 curr_time = get_time();
- u64 ticks_since_midnight = curr_time % ticks_per_day;
- u32 periods_since_midnight = ticks_since_midnight / period_ticks;
- // if periods since midnight is smaller than last value, set overflow
- // at BDA Offset 0x70
- if (periods_since_midnight < cur_val) {
- my_wrb(0x470, 1);
- }
- // store periods since midnight at BDA offset 0x6c
- my_wrl(0x46c, periods_since_midnight);
-}