aboutsummaryrefslogtreecommitdiff
path: root/src/northbridge/intel/e7520/raminit.c
diff options
context:
space:
mode:
authorUwe Hermann <uwe@hermann-uwe.de>2006-10-27 11:40:01 +0000
committerUwe Hermann <uwe@hermann-uwe.de>2006-10-27 11:40:01 +0000
commitcf201870797d542915b2c52fa596b27c1616a821 (patch)
tree91ce83bc599b0cf58c175da717369d003b062fb2 /src/northbridge/intel/e7520/raminit.c
parent586470c646ac1b8753858b013b268f049a28b818 (diff)
svn mv src/northbridge/intel/E7520 src/northbridge/intel/e7520
svn mv src/northbridge/intel/E7525 src/northbridge/intel/e7525 Signed-off-by: Uwe Hermann <uwe@hermann-uwe.de> Acked-by: Stefan Reinauer <stepan@coresystems.de> git-svn-id: svn://svn.coreboot.org/coreboot/trunk@2478 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
Diffstat (limited to 'src/northbridge/intel/e7520/raminit.c')
-rw-r--r--src/northbridge/intel/e7520/raminit.c1333
1 files changed, 1333 insertions, 0 deletions
diff --git a/src/northbridge/intel/e7520/raminit.c b/src/northbridge/intel/e7520/raminit.c
new file mode 100644
index 0000000000..22ac115d6b
--- /dev/null
+++ b/src/northbridge/intel/e7520/raminit.c
@@ -0,0 +1,1333 @@
+#include <cpu/x86/mem.h>
+#include <cpu/x86/mtrr.h>
+#include <cpu/x86/cache.h>
+#include "raminit.h"
+#include "e7520.h"
+
+#define BAR 0x40000000
+
+static void sdram_set_registers(const struct mem_controller *ctrl)
+{
+ static const unsigned int register_values[] = {
+
+ /* CKDIS 0x8c disable clocks */
+ PCI_ADDR(0, 0x00, 0, CKDIS), 0xffff0000, 0x0000ffff,
+
+ /* 0x9c Device present and extended RAM control
+ * DEVPRES is very touchy, hard code the initialization
+ * of PCI-E ports here.
+ */
+ PCI_ADDR(0, 0x00, 0, DEVPRES), 0x00000000, 0x07020801 | DEVPRES_CONFIG,
+
+ /* 0xc8 Remap RAM base and limit off */
+ PCI_ADDR(0, 0x00, 0, REMAPLIMIT), 0x00000000, 0x03df0000,
+
+ /* ??? */
+ PCI_ADDR(0, 0x00, 0, 0xd8), 0x00000000, 0xb5930000,
+ PCI_ADDR(0, 0x00, 0, 0xe8), 0x00000000, 0x00004a2a,
+
+ /* 0x50 scrub */
+ PCI_ADDR(0, 0x00, 0, MCHCFG0), 0xfce0ffff, 0x00006000, /* 6000 */
+
+ /* 0x58 0x5c PAM */
+ PCI_ADDR(0, 0x00, 0, PAM-1), 0xcccccc7f, 0x33333000,
+ PCI_ADDR(0, 0x00, 0, PAM+3), 0xcccccccc, 0x33333333,
+
+ /* 0xf4 */
+ PCI_ADDR(0, 0x00, 0, DEVPRES1), 0xffbffff, (1<<22)|(6<<2) | DEVPRES1_CONFIG,
+
+ /* 0x14 */
+ PCI_ADDR(0, 0x00, 0, IURBASE), 0x00000fff, BAR |0,
+ };
+ int i;
+ int max;
+
+ max = sizeof(register_values)/sizeof(register_values[0]);
+ for(i = 0; i < max; i += 3) {
+ device_t dev;
+ unsigned where;
+ unsigned long reg;
+ dev = (register_values[i] & ~0xff) - PCI_DEV(0, 0x00, 0) + ctrl->f0;
+ where = register_values[i] & 0xff;
+ reg = pci_read_config32(dev, where);
+ reg &= register_values[i+1];
+ reg |= register_values[i+2];
+ pci_write_config32(dev, where, reg);
+ }
+ print_spew("done.\r\n");
+}
+
+
+
+struct dimm_size {
+ unsigned long side1;
+ unsigned long side2;
+};
+
+static struct dimm_size spd_get_dimm_size(unsigned device)
+{
+ /* Calculate the log base 2 size of a DIMM in bits */
+ struct dimm_size sz;
+ int value, low, ddr2;
+ sz.side1 = 0;
+ sz.side2 = 0;
+
+ /* test for ddr2 */
+ ddr2=0;
+ value = spd_read_byte(device, 2); /* type */
+ if (value < 0) goto hw_err;
+ if (value == 8) ddr2 = 1;
+
+ /* Note it might be easier to use byte 31 here, it has the DIMM size as
+ * a multiple of 4MB. The way we do it now we can size both
+ * sides of an assymetric dimm.
+ */
+ value = spd_read_byte(device, 3); /* rows */
+ if (value < 0) goto hw_err;
+ if ((value & 0xf) == 0) goto val_err;
+ sz.side1 += value & 0xf;
+
+ value = spd_read_byte(device, 4); /* columns */
+ if (value < 0) goto hw_err;
+ if ((value & 0xf) == 0) goto val_err;
+ sz.side1 += value & 0xf;
+
+ value = spd_read_byte(device, 17); /* banks */
+ if (value < 0) goto hw_err;
+ if ((value & 0xff) == 0) goto val_err;
+ sz.side1 += log2(value & 0xff);
+
+ /* Get the module data width and convert it to a power of two */
+ value = spd_read_byte(device, 7); /* (high byte) */
+ if (value < 0) goto hw_err;
+ value &= 0xff;
+ value <<= 8;
+
+ low = spd_read_byte(device, 6); /* (low byte) */
+ if (low < 0) goto hw_err;
+ value = value | (low & 0xff);
+ if ((value != 72) && (value != 64)) goto val_err;
+ sz.side1 += log2(value);
+
+ /* side 2 */
+ value = spd_read_byte(device, 5); /* number of physical banks */
+
+ if (value < 0) goto hw_err;
+ value &= 7;
+ if(ddr2) value++;
+ if (value == 1) goto out;
+ if (value != 2) goto val_err;
+
+ /* Start with the symmetrical case */
+ sz.side2 = sz.side1;
+
+ value = spd_read_byte(device, 3); /* rows */
+ if (value < 0) goto hw_err;
+ if ((value & 0xf0) == 0) goto out; /* If symmetrical we are done */
+ sz.side2 -= (value & 0x0f); /* Subtract out rows on side 1 */
+ sz.side2 += ((value >> 4) & 0x0f); /* Add in rows on side 2 */
+
+ value = spd_read_byte(device, 4); /* columns */
+ if (value < 0) goto hw_err;
+ if ((value & 0xff) == 0) goto val_err;
+ sz.side2 -= (value & 0x0f); /* Subtract out columns on side 1 */
+ sz.side2 += ((value >> 4) & 0x0f); /* Add in columsn on side 2 */
+ goto out;
+
+ val_err:
+ die("Bad SPD value\r\n");
+ /* If an hw_error occurs report that I have no memory */
+hw_err:
+ sz.side1 = 0;
+ sz.side2 = 0;
+ out:
+ return sz;
+
+}
+
+static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask)
+{
+ int i;
+ int cum;
+
+ for(i = cum = 0; i < DIMM_SOCKETS; i++) {
+ struct dimm_size sz;
+ if (dimm_mask & (1 << i)) {
+ sz = spd_get_dimm_size(ctrl->channel0[i]);
+ if (sz.side1 < 29) {
+ return -1; /* Report SPD error */
+ }
+ /* convert bits to multiples of 64MB */
+ sz.side1 -= 29;
+ cum += (1 << sz.side1);
+ /* DRB = 0x60 */
+ pci_write_config8(ctrl->f0, DRB + (i*2), cum);
+ if( sz.side2 > 28) {
+ sz.side2 -= 29;
+ cum += (1 << sz.side2);
+ }
+ pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
+ }
+ else {
+ pci_write_config8(ctrl->f0, DRB + (i*2), cum);
+ pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
+ }
+ }
+ /* set TOM top of memory 0xcc */
+ pci_write_config16(ctrl->f0, TOM, cum);
+ /* set TOLM top of low memory */
+ if(cum > 0x18) {
+ cum = 0x18;
+ }
+ cum <<= 11;
+ /* 0xc4 TOLM */
+ pci_write_config16(ctrl->f0, TOLM, cum);
+ return 0;
+}
+
+
+static unsigned int spd_detect_dimms(const struct mem_controller *ctrl)
+{
+ unsigned dimm_mask;
+ int i;
+ dimm_mask = 0;
+ for(i = 0; i < DIMM_SOCKETS; i++) {
+ int byte;
+ unsigned device;
+ device = ctrl->channel0[i];
+ if (device) {
+ byte = spd_read_byte(device, 2); /* Type */
+ if ((byte == 7) || (byte == 8)) {
+ dimm_mask |= (1 << i);
+ }
+ }
+ device = ctrl->channel1[i];
+ if (device) {
+ byte = spd_read_byte(device, 2);
+ if ((byte == 7) || (byte == 8)) {
+ dimm_mask |= (1 << (i + DIMM_SOCKETS));
+ }
+ }
+ }
+ return dimm_mask;
+}
+
+
+static int spd_set_row_attributes(const struct mem_controller *ctrl,
+ long dimm_mask)
+{
+
+ int value;
+ int reg;
+ int dra;
+ int cnt;
+
+ dra = 0;
+ for(cnt=0; cnt < 4; cnt++) {
+ if (!(dimm_mask & (1 << cnt))) {
+ continue;
+ }
+ reg =0;
+ value = spd_read_byte(ctrl->channel0[cnt], 3); /* rows */
+ if (value < 0) goto hw_err;
+ if ((value & 0xf) == 0) goto val_err;
+ reg += value & 0xf;
+
+ value = spd_read_byte(ctrl->channel0[cnt], 4); /* columns */
+ if (value < 0) goto hw_err;
+ if ((value & 0xf) == 0) goto val_err;
+ reg += value & 0xf;
+
+ value = spd_read_byte(ctrl->channel0[cnt], 17); /* banks */
+ if (value < 0) goto hw_err;
+ if ((value & 0xff) == 0) goto val_err;
+ reg += log2(value & 0xff);
+
+ /* Get the device width and convert it to a power of two */
+ value = spd_read_byte(ctrl->channel0[cnt], 13);
+ if (value < 0) goto hw_err;
+ value = log2(value & 0xff);
+ reg += value;
+ if(reg < 27) goto hw_err;
+ reg -= 27;
+ reg += (value << 2);
+
+ dra += reg << (cnt*8);
+ value = spd_read_byte(ctrl->channel0[cnt], 5);
+ if (value & 2)
+ dra += reg << ((cnt*8)+4);
+ }
+
+ /* 0x70 DRA */
+ pci_write_config32(ctrl->f0, DRA, dra);
+ goto out;
+
+ val_err:
+ die("Bad SPD value\r\n");
+ /* If an hw_error occurs report that I have no memory */
+hw_err:
+ dra = 0;
+ out:
+ return dra;
+
+}
+
+
+static int spd_set_drt_attributes(const struct mem_controller *ctrl,
+ long dimm_mask, uint32_t drc)
+{
+ int value;
+ int reg;
+ uint32_t drt;
+ int cnt;
+ int first_dimm;
+ int cas_latency=0;
+ int latency;
+ uint32_t index = 0;
+ uint32_t index2 = 0;
+ static const unsigned char cycle_time[3] = {0x75,0x60,0x50};
+ static const int latency_indicies[] = { 26, 23, 9 };
+
+ /* 0x78 DRT */
+ drt = pci_read_config32(ctrl->f0, DRT);
+ drt &= 3; /* save bits 1:0 */
+
+ for(first_dimm = 0; first_dimm < 4; first_dimm++) {
+ if (dimm_mask & (1 << first_dimm))
+ break;
+ }
+
+ /* get dimm type */
+ value = spd_read_byte(ctrl->channel0[first_dimm], 2);
+ if(value == 8) {
+ drt |= (3<<5); /* back to bark write turn around & cycle add */
+ }
+
+ drt |= (3<<18); /* Trasmax */
+
+ for(cnt=0; cnt < 4; cnt++) {
+ if (!(dimm_mask & (1 << cnt))) {
+ continue;
+ }
+ reg = spd_read_byte(ctrl->channel0[cnt], 18); /* CAS Latency */
+ /* Compute the lowest cas latency supported */
+ latency = log2(reg) -2;
+
+ /* Loop through and find a fast clock with a low latency */
+ for(index = 0; index < 3; index++, latency++) {
+ if ((latency < 2) || (latency > 4) ||
+ (!(reg & (1 << latency)))) {
+ continue;
+ }
+ value = spd_read_byte(ctrl->channel0[cnt],
+ latency_indicies[index]);
+
+ if(value <= cycle_time[drc&3]) {
+ if( latency > cas_latency) {
+ cas_latency = latency;
+ }
+ break;
+ }
+ }
+ }
+ index = (cas_latency-2);
+ if((index)==0) cas_latency = 20;
+ else if((index)==1) cas_latency = 25;
+ else cas_latency = 30;
+
+ for(cnt=0;cnt<4;cnt++) {
+ if (!(dimm_mask & (1 << cnt))) {
+ continue;
+ }
+ reg = spd_read_byte(ctrl->channel0[cnt], 27)&0x0ff;
+ if(((index>>8)&0x0ff)<reg) {
+ index &= ~(0x0ff << 8);
+ index |= (reg << 8);
+ }
+ reg = spd_read_byte(ctrl->channel0[cnt], 28)&0x0ff;
+ if(((index>>16)&0x0ff)<reg) {
+ index &= ~(0x0ff << 16);
+ index |= (reg<<16);
+ }
+ reg = spd_read_byte(ctrl->channel0[cnt], 29)&0x0ff;
+ if(((index2>>0)&0x0ff)<reg) {
+ index2 &= ~(0x0ff << 0);
+ index2 |= (reg<<0);
+ }
+ reg = spd_read_byte(ctrl->channel0[cnt], 41)&0x0ff;
+ if(((index2>>8)&0x0ff)<reg) {
+ index2 &= ~(0x0ff << 8);
+ index2 |= (reg<<8);
+ }
+ reg = spd_read_byte(ctrl->channel0[cnt], 42)&0x0ff;
+ if(((index2>>16)&0x0ff)<reg) {
+ index2 &= ~(0x0ff << 16);
+ index2 |= (reg<<16);
+ }
+ }
+
+ /* get dimm speed */
+ value = cycle_time[drc&3];
+ if(value <= 0x50) { /* 200 MHz */
+ if((index&7) > 2) {
+ drt |= (2<<2); /* CAS latency 4 */
+ cas_latency = 40;
+ } else {
+ drt |= (1<<2); /* CAS latency 3 */
+ cas_latency = 30;
+ }
+ if((index&0x0ff00)<=0x03c00) {
+ drt |= (1<<8); /* Trp RAS Precharg */
+ } else {
+ drt |= (2<<8); /* Trp RAS Precharg */
+ }
+
+ /* Trcd RAS to CAS delay */
+ if((index2&0x0ff)<=0x03c) {
+ drt |= (0<<10);
+ } else {
+ drt |= (1<<10);
+ }
+
+ /* Tdal Write auto precharge recovery delay */
+ drt |= (1<<12);
+
+ /* Trc TRS min */
+ if((index2&0x0ff00)<=0x03700)
+ drt |= (0<<14);
+ else if((index2&0xff00)<=0x03c00)
+ drt |= (1<<14);
+ else
+ drt |= (2<<14); /* spd 41 */
+
+ drt |= (2<<16); /* Twr not defined for DDR docs say use 2 */
+
+ /* Trrd Row Delay */
+ if((index&0x0ff0000)<=0x0140000) {
+ drt |= (0<<20);
+ } else if((index&0x0ff0000)<=0x0280000) {
+ drt |= (1<<20);
+ } else if((index&0x0ff0000)<=0x03c0000) {
+ drt |= (2<<20);
+ } else {
+ drt |= (3<<20);
+ }
+
+ /* Trfc Auto refresh cycle time */
+ if((index2&0x0ff0000)<=0x04b0000) {
+ drt |= (0<<22);
+ } else if((index2&0x0ff0000)<=0x0690000) {
+ drt |= (1<<22);
+ } else {
+ drt |= (2<<22);
+ }
+ /* Docs say use 55 for all 200Mhz */
+ drt |= (0x055<<24);
+ }
+ else if(value <= 0x60) { /* 167 Mhz */
+ /* according to new documentation CAS latency is 00
+ * for bits 3:2 for all 167 Mhz
+ drt |= ((index&3)<<2); */ /* set CAS latency */
+ if((index&0x0ff00)<=0x03000) {
+ drt |= (1<<8); /* Trp RAS Precharg */
+ } else {
+ drt |= (2<<8); /* Trp RAS Precharg */
+ }
+
+ /* Trcd RAS to CAS delay */
+ if((index2&0x0ff)<=0x030) {
+ drt |= (0<<10);
+ } else {
+ drt |= (1<<10);
+ }
+
+ /* Tdal Write auto precharge recovery delay */
+ drt |= (2<<12);
+
+ /* Trc TRS min */
+ drt |= (2<<14); /* spd 41, but only one choice */
+
+ drt |= (2<<16); /* Twr not defined for DDR docs say 2 */
+
+ /* Trrd Row Delay */
+ if((index&0x0ff0000)<=0x0180000) {
+ drt |= (0<<20);
+ } else if((index&0x0ff0000)<=0x0300000) {
+ drt |= (1<<20);
+ } else {
+ drt |= (2<<20);
+ }
+
+ /* Trfc Auto refresh cycle time */
+ if((index2&0x0ff0000)<=0x0480000) {
+ drt |= (0<<22);
+ } else if((index2&0x0ff0000)<=0x0780000) {
+ drt |= (2<<22);
+ } else {
+ drt |= (2<<22);
+ }
+ /* Docs state to use 99 for all 167 Mhz */
+ drt |= (0x099<<24);
+ }
+ else if(value <= 0x75) { /* 133 Mhz */
+ drt |= ((index&3)<<2); /* set CAS latency */
+ if((index&0x0ff00)<=0x03c00) {
+ drt |= (1<<8); /* Trp RAS Precharg */
+ } else {
+ drt |= (2<<8); /* Trp RAS Precharg */
+ }
+
+ /* Trcd RAS to CAS delay */
+ if((index2&0x0ff)<=0x03c) {
+ drt |= (0<<10);
+ } else {
+ drt |= (1<<10);
+ }
+
+ /* Tdal Write auto precharge recovery delay */
+ drt |= (1<<12);
+
+ /* Trc TRS min */
+ drt |= (2<<14); /* spd 41, but only one choice */
+
+ drt |= (1<<16); /* Twr not defined for DDR docs say 1 */
+
+ /* Trrd Row Delay */
+ if((index&0x0ff0000)<=0x01e0000) {
+ drt |= (0<<20);
+ } else if((index&0x0ff0000)<=0x03c0000) {
+ drt |= (1<<20);
+ } else {
+ drt |= (2<<20);
+ }
+
+ /* Trfc Auto refresh cycle time */
+ if((index2&0x0ff0000)<=0x04b0000) {
+ drt |= (0<<22);
+ } else if((index2&0x0ff0000)<=0x0780000) {
+ drt |= (2<<22);
+ } else {
+ drt |= (2<<22);
+ }
+
+ /* Based on CAS latency */
+ if(index&7)
+ drt |= (0x099<<24);
+ else
+ drt |= (0x055<<24);
+
+ }
+ else {
+ die("Invalid SPD 9 bus speed.\r\n");
+ }
+
+ /* 0x78 DRT */
+ pci_write_config32(ctrl->f0, DRT, drt);
+
+ return(cas_latency);
+}
+
+static int spd_set_dram_controller_mode(const struct mem_controller *ctrl,
+ long dimm_mask)
+{
+ int value;
+ int reg;
+ int drc;
+ int cnt;
+ msr_t msr;
+ unsigned char dram_type = 0xff;
+ unsigned char ecc = 0xff;
+ unsigned char rate = 62;
+ static const unsigned char spd_rates[6] = {15,3,7,7,62,62};
+ static const unsigned char drc_rates[5] = {0,15,7,62,3};
+ static const unsigned char fsb_conversion[4] = {3,1,3,2};
+
+ /* 0x7c DRC */
+ drc = pci_read_config32(ctrl->f0, DRC);
+ for(cnt=0; cnt < 4; cnt++) {
+ if (!(dimm_mask & (1 << cnt))) {
+ continue;
+ }
+ value = spd_read_byte(ctrl->channel0[cnt], 11); /* ECC */
+ reg = spd_read_byte(ctrl->channel0[cnt], 2); /* Type */
+ if (value == 2) { /* RAM is ECC capable */
+ if (reg == 8) {
+ if ( ecc == 0xff ) {
+ ecc = 2;
+ }
+ else if (ecc == 1) {
+ die("ERROR - Mixed DDR & DDR2 RAM\r\n");
+ }
+ }
+ else if ( reg == 7 ) {
+ if ( ecc == 0xff) {
+ ecc = 1;
+ }
+ else if ( ecc > 1 ) {
+ die("ERROR - Mixed DDR & DDR2 RAM\r\n");
+ }
+ }
+ else {
+ die("ERROR - RAM not DDR\r\n");
+ }
+ }
+ else {
+ die("ERROR - Non ECC memory dimm\r\n");
+ }
+
+ value = spd_read_byte(ctrl->channel0[cnt], 12); /*refresh rate*/
+ value &= 0x0f; /* clip self refresh bit */
+ if (value > 5) goto hw_err;
+ if (rate > spd_rates[value])
+ rate = spd_rates[value];
+
+ value = spd_read_byte(ctrl->channel0[cnt], 9); /* cycle time */
+ if (value > 0x75) goto hw_err;
+ if (value <= 0x50) {
+ if (dram_type >= 2) {
+ if (reg == 8) { /*speed is good, is this ddr2?*/
+ dram_type = 2;
+ } else { /* not ddr2 so use ddr333 */
+ dram_type = 1;
+ }
+ }
+ }
+ else if (value <= 0x60) {
+ if (dram_type >= 1) dram_type = 1;
+ }
+ else dram_type = 0; /* ddr266 */
+
+ }
+ ecc = 2;
+ if (read_option(CMOS_VSTART_ECC_memory,CMOS_VLEN_ECC_memory,1) == 0) {
+ ecc = 0; /* ECC off in CMOS so disable it */
+ print_debug("ECC off\r\n");
+ }
+ else {
+ print_debug("ECC on\r\n");
+ }
+ drc &= ~(3 << 20); /* clear the ecc bits */
+ drc |= (ecc << 20); /* or in the calculated ecc bits */
+ for ( cnt = 1; cnt < 5; cnt++)
+ if (drc_rates[cnt] == rate)
+ break;
+ if (cnt < 5) {
+ drc &= ~(7 << 8); /* clear the rate bits */
+ drc |= (cnt << 8);
+ }
+
+ if (reg == 8) { /* independant clocks */
+ drc |= (1 << 4);
+ }
+
+ drc |= (1 << 26); /* set the overlap bit - the factory BIOS does */
+ drc |= (1 << 27); /* set DED retry enable - the factory BIOS does */
+ /* front side bus */
+ msr = rdmsr(0x2c);
+ value = msr.lo >> 16;
+ value &= 0x03;
+ drc &= ~(3 << 2); /* set the front side bus */
+ drc |= (fsb_conversion[value] << 2);
+ drc &= ~(3 << 0); /* set the dram type */
+ drc |= (dram_type << 0);
+
+ goto out;
+
+ val_err:
+ die("Bad SPD value\r\n");
+ /* If an hw_error occurs report that I have no memory */
+hw_err:
+ drc = 0;
+ out:
+ return drc;
+}
+
+static void sdram_set_spd_registers(const struct mem_controller *ctrl)
+{
+ long dimm_mask;
+
+ /* Test if we can read the spd and if ram is ddr or ddr2 */
+ dimm_mask = spd_detect_dimms(ctrl);
+ if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
+ print_err("No memory for this cpu\r\n");
+ return;
+ }
+ return;
+}
+
+static void do_delay(void)
+{
+ int i;
+ unsigned char b;
+ for(i=0;i<16;i++)
+ b=inb(0x80);
+}
+
+static void pll_setup(uint32_t drc)
+{
+ unsigned pins;
+ if(drc&3) { /* DDR 333 or DDR 400 */
+ if((drc&0x0c) == 0x0c) { /* FSB 200 */
+ pins = 2 | 1;
+ }
+ else if((drc&0x0c) == 0x08) { /* FSB 167 */
+ pins = 0 | 1;
+ }
+ else if(drc&1){ /* FSB 133 DDR 333 */
+ pins = 2 | 1;
+ }
+ else { /* FSB 133 DDR 400 */
+ pins = 0 | 1;
+ }
+ }
+ else { /* DDR 266 */
+ if((drc&0x08) == 0x08) { /* FSB 200 or 167 */
+ pins = 0 | 0;
+ }
+ else { /* FSB 133 */
+ pins = 0 | 1;
+ }
+ }
+ mainboard_set_e7520_pll(pins);
+ return;
+}
+
+#define TIMEOUT_LOOPS 300000
+
+#define DCALCSR 0x100
+#define DCALADDR 0x104
+#define DCALDATA 0x108
+
+static void set_on_dimm_termination_enable(const struct mem_controller *ctrl)
+{
+ unsigned char c1,c2;
+ unsigned int dimm,i;
+ unsigned int data32;
+ unsigned int t4;
+
+ /* Set up northbridge values */
+ /* ODT enable */
+ pci_write_config32(ctrl->f0, 0x88, 0xf0000180);
+ /* Figure out which slots are Empty, Single, or Double sided */
+ for(i=0,t4=0,c2=0;i<8;i+=2) {
+ c1 = pci_read_config8(ctrl->f0, DRB+i);
+ if(c1 == c2) continue;
+ c2 = pci_read_config8(ctrl->f0, DRB+1+i);
+ if(c1 == c2)
+ t4 |= (1 << (i*4));
+ else
+ t4 |= (2 << (i*4));
+ }
+ for(i=0;i<1;i++) {
+ if((t4&0x0f) == 1) {
+ if( ((t4>>8)&0x0f) == 0 ) {
+ data32 = 0x00000010; /* EEES */
+ break;
+ }
+ if ( ((t4>>16)&0x0f) == 0 ) {
+ data32 = 0x00003132; /* EESS */
+ break;
+ }
+ if ( ((t4>>24)&0x0f) == 0 ) {
+ data32 = 0x00335566; /* ESSS */
+ break;
+ }
+ data32 = 0x77bbddee; /* SSSS */
+ break;
+ }
+ if((t4&0x0f) == 2) {
+ if( ((t4>>8)&0x0f) == 0 ) {
+ data32 = 0x00003132; /* EEED */
+ break;
+ }
+ if ( ((t4>>8)&0x0f) == 2 ) {
+ data32 = 0xb373ecdc; /* EEDD */
+ break;
+ }
+ if ( ((t4>>16)&0x0f) == 0 ) {
+ data32 = 0x00b3a898; /* EESD */
+ break;
+ }
+ data32 = 0x777becdc; /* ESSD */
+ break;
+ }
+ die("Error - First dimm slot empty\r\n");
+ }
+
+ print_debug("ODT Value = ");
+ print_debug_hex32(data32);
+ print_debug("\r\n");
+
+ pci_write_config32(ctrl->f0, 0xb0, data32);
+
+ for(dimm=0;dimm<8;dimm+=1) {
+
+ write32(BAR+DCALADDR, 0x0b840001);
+ write32(BAR+DCALCSR, 0x83000003 | (dimm << 20));
+
+ for(i=0;i<1001;i++) {
+ data32 = read32(BAR+DCALCSR);
+ if(!(data32 & (1<<31)))
+ break;
+ }
+ }
+}
+static void set_receive_enable(const struct mem_controller *ctrl)
+{
+ unsigned int i;
+ unsigned int cnt;
+ uint32_t recena=0;
+ uint32_t recenb=0;
+
+ {
+ unsigned int dimm;
+ unsigned int edge;
+ int32_t data32;
+ uint32_t data32_dram;
+ uint32_t dcal_data32_0;
+ uint32_t dcal_data32_1;
+ uint32_t dcal_data32_2;
+ uint32_t dcal_data32_3;
+ uint32_t work32l;
+ uint32_t work32h;
+ uint32_t data32r;
+ int32_t recen;
+ for(dimm=0;dimm<8;dimm+=1) {
+
+ if(!(dimm&1)) {
+ write32(BAR+DCALDATA+(17*4), 0x04020000);
+ write32(BAR+DCALCSR, 0x83800004 | (dimm << 20));
+
+ for(i=0;i<1001;i++) {
+ data32 = read32(BAR+DCALCSR);
+ if(!(data32 & (1<<31)))
+ break;
+ }
+ if(i>=1000)
+ continue;
+
+ dcal_data32_0 = read32(BAR+DCALDATA + 0);
+ dcal_data32_1 = read32(BAR+DCALDATA + 4);
+ dcal_data32_2 = read32(BAR+DCALDATA + 8);
+ dcal_data32_3 = read32(BAR+DCALDATA + 12);
+ }
+ else {
+ dcal_data32_0 = read32(BAR+DCALDATA + 16);
+ dcal_data32_1 = read32(BAR+DCALDATA + 20);
+ dcal_data32_2 = read32(BAR+DCALDATA + 24);
+ dcal_data32_3 = read32(BAR+DCALDATA + 28);
+ }
+
+ /* check if bank is installed */
+ if((dcal_data32_0 == 0) && (dcal_data32_2 == 0))
+ continue;
+ /* Calculate the timing value */
+ {
+ unsigned int bit;
+ for(i=0,edge=0,bit=63,cnt=31,data32r=0,
+ work32l=dcal_data32_1,work32h=dcal_data32_3;
+ (i<4) && bit; i++) {
+ for(;;bit--,cnt--) {
+ if(work32l & (1<<cnt))
+ break;
+ if(!cnt) {
+ work32l = dcal_data32_0;
+ work32h = dcal_data32_2;
+ cnt = 32;
+ }
+ if(!bit) break;
+ }
+ for(;;bit--,cnt--) {
+ if(!(work32l & (1<<cnt)))
+ break;
+ if(!cnt) {
+ work32l = dcal_data32_0;
+ work32h = dcal_data32_2;
+ cnt = 32;
+ }
+ if(!bit) break;
+ }
+ if(!bit) {
+ break;
+ }
+ data32 = ((bit%8) << 1);
+ if(work32h & (1<<cnt))
+ data32 += 1;
+ if(data32 < 4) {
+ if(!edge) {
+ edge = 1;
+ }
+ else {
+ if(edge != 1) {
+ data32 = 0x0f;
+ }
+ }
+ }
+ if(data32 > 12) {
+ if(!edge) {
+ edge = 2;
+ }
+ else {
+ if(edge != 2) {
+ data32 = 0x00;
+ }
+ }
+ }
+ data32r += data32;
+ }
+ }
+ work32l = dcal_data32_0;
+ work32h = dcal_data32_2;
+ recen = data32r;
+ recen += 3;
+ recen = recen>>2;
+ for(cnt=5;cnt<24;) {
+ for(;;cnt++)
+ if(!(work32l & (1<<cnt)))
+ break;
+ for(;;cnt++) {
+ if(work32l & (1<<cnt))
+ break;
+ }
+ data32 = (((cnt-1)%8)<<1);
+ if(work32h & (1<<(cnt-1))) {
+ data32++;
+ }
+ /* test for frame edge cross overs */
+ if((edge == 1) && (data32 > 12) &&
+ (((recen+16)-data32) < 3)) {
+ data32 = 0;
+ cnt += 2;
+ }
+ if((edge == 2) && (data32 < 4) &&
+ ((recen - data32) > 12)) {
+ data32 = 0x0f;
+ cnt -= 2;
+ }
+ if(((recen+3) >= data32) && ((recen-3) <= data32))
+ break;
+ }
+ cnt--;
+ cnt /= 8;
+ cnt--;
+ if(recen&1)
+ recen+=2;
+ recen >>= 1;
+ recen += (cnt*8);
+ recen+=2; /* this is not in the spec, but matches
+ the factory output, and has less failure */
+ recen <<= (dimm/2) * 8;
+ if(!(dimm&1)) {
+ recena |= recen;
+ }
+ else {
+ recenb |= recen;
+ }
+ }
+ }
+ /* Check for Eratta problem */
+ for(i=cnt=0;i<32;i+=8) {
+ if (((recena>>i)&0x0f)>7) {
+ cnt+= 0x101;
+ }
+ else {
+ if((recena>>i)&0x0f) {
+ cnt++;
+ }
+ }
+ }
+ if(cnt&0x0f00) {
+ cnt = (cnt&0x0f) - (cnt>>16);
+ if(cnt>1) {
+ for(i=0;i<32;i+=8) {
+ if(((recena>>i)&0x0f)>7) {
+ recena &= ~(0x0f<<i);
+ recena |= (7<<i);
+ }
+ }
+ }
+ else {
+ for(i=0;i<32;i+=8) {
+ if(((recena>>i)&0x0f)<8) {
+ recena &= ~(0x0f<<i);
+ recena |= (8<<i);
+ }
+ }
+ }
+ }
+ for(i=cnt=0;i<32;i+=8) {
+ if (((recenb>>i)&0x0f)>7) {
+ cnt+= 0x101;
+ }
+ else {
+ if((recenb>>i)&0x0f) {
+ cnt++;
+ }
+ }
+ }
+ if(cnt & 0x0f00) {
+ cnt = (cnt&0x0f) - (cnt>>16);
+ if(cnt>1) {
+ for(i=0;i<32;i+=8) {
+ if(((recenb>>i)&0x0f)>7) {
+ recenb &= ~(0x0f<<i);
+ recenb |= (7<<i);
+ }
+ }
+ }
+ else {
+ for(i=0;i<32;i+=8) {
+ if(((recenb>>8)&0x0f)<8) {
+ recenb &= ~(0x0f<<i);
+ recenb |= (8<<i);
+ }
+ }
+ }
+ }
+
+ print_debug("Receive enable A = ");
+ print_debug_hex32(recena);
+ print_debug(", Receive enable B = ");
+ print_debug_hex32(recenb);
+ print_debug("\r\n");
+
+ /* clear out the calibration area */
+ write32(BAR+DCALDATA+(16*4), 0x00000000);
+ write32(BAR+DCALDATA+(17*4), 0x00000000);
+ write32(BAR+DCALDATA+(18*4), 0x00000000);
+ write32(BAR+DCALDATA+(19*4), 0x00000000);
+
+ /* No command */
+ write32(BAR+DCALCSR, 0x0000000f);
+
+ write32(BAR+0x150, recena);
+ write32(BAR+0x154, recenb);
+}
+
+
+static void sdram_enable(int controllers, const struct mem_controller *ctrl)
+{
+ int i;
+ int cs;
+ int cnt;
+ int cas_latency;
+ long mask;
+ uint32_t drc;
+ uint32_t data32;
+ uint32_t mode_reg;
+ uint32_t *iptr;
+ volatile unsigned long *iptrv;
+ msr_t msr;
+ uint32_t scratch;
+ uint8_t byte;
+ uint16_t data16;
+ static const struct {
+ uint32_t clkgr[4];
+ } gearing [] = {
+ /* FSB 133 DIMM 266 */
+ {{ 0x00000001, 0x00000000, 0x00000001, 0x00000000}},
+ /* FSB 133 DIMM 333 */
+ {{ 0x00000000, 0x00000000, 0x00000000, 0x00000000}},
+ /* FSB 133 DIMM 400 */
+ {{ 0x00000120, 0x00000000, 0x00000032, 0x00000010}},
+ /* FSB 167 DIMM 266 */
+ {{ 0x00005432, 0x00001000, 0x00004325, 0x00000000}},
+ /* FSB 167 DIMM 333 */
+ {{ 0x00000001, 0x00000000, 0x00000001, 0x00000000}},
+ /* FSB 167 DIMM 400 */
+ {{ 0x00154320, 0x00000000, 0x00065432, 0x00010000}},
+ /* FSB 200 DIMM 266 */
+ {{ 0x00000032, 0x00000010, 0x00000120, 0x00000000}},
+ /* FSB 200 DIMM 333 */
+ {{ 0x00065432, 0x00010000, 0x00154320, 0x00000000}},
+ /* FSB 200 DIMM 400 */
+ {{ 0x00000001, 0x00000000, 0x00000001, 0x00000000}},
+ };
+
+ static const uint32_t dqs_data[] = {
+ 0xffffffff, 0xffffffff, 0x000000ff,
+ 0xffffffff, 0xffffffff, 0x000000ff,
+ 0xffffffff, 0xffffffff, 0x000000ff,
+ 0xffffffff, 0xffffffff, 0x000000ff,
+ 0xffffffff, 0xffffffff, 0x000000ff,
+ 0xffffffff, 0xffffffff, 0x000000ff,
+ 0xffffffff, 0xffffffff, 0x000000ff,
+ 0xffffffff, 0xffffffff, 0x000000ff};
+
+ mask = spd_detect_dimms(ctrl);
+ print_debug("Starting SDRAM Enable\r\n");
+
+ /* 0x80 */
+#ifdef DIMM_MAP_LOGICAL
+ pci_write_config32(ctrl->f0, DRM,
+ 0x00210000 | DIMM_MAP_LOGICAL);
+#else
+ pci_write_config32(ctrl->f0, DRM, 0x00211248);
+#endif
+ /* set dram type and Front Side Bus freq. */
+ drc = spd_set_dram_controller_mode(ctrl, mask);
+ if( drc == 0) {
+ die("Error calculating DRC\r\n");
+ }
+ pll_setup(drc);
+ data32 = drc & ~(3 << 20); /* clear ECC mode */
+ data32 = data32 & ~(7 << 8); /* clear refresh rates */
+ data32 = data32 | (1 << 5); /* temp turn off of ODT */
+ /* Set gearing, then dram controller mode */
+ /* drc bits 1:0 = DIMM speed, bits 3:2 = FSB speed */
+ for(iptr = gearing[(drc&3)+((((drc>>2)&3)-1)*3)].clkgr,cnt=0;
+ cnt<4;cnt++) {
+ pci_write_config32(ctrl->f0, 0xa0+(cnt*4), iptr[cnt]);
+ }
+ /* 0x7c DRC */
+ pci_write_config32(ctrl->f0, DRC, data32);
+
+ /* turn the clocks on */
+ /* 0x8c CKDIS */
+ pci_write_config16(ctrl->f0, CKDIS, 0x0000);
+
+ /* 0x9a DDRCSR Take subsystem out of idle */
+ data16 = pci_read_config16(ctrl->f0, DDRCSR);
+ data16 &= ~(7 << 12);
+ data16 |= (3 << 12); /* use dual channel lock step */
+ pci_write_config16(ctrl->f0, DDRCSR, data16);
+
+ /* program row size DRB */
+ spd_set_ram_size(ctrl, mask);
+
+ /* program page size DRA */
+ spd_set_row_attributes(ctrl, mask);
+
+ /* program DRT timing values */
+ cas_latency = spd_set_drt_attributes(ctrl, mask, drc);
+
+ for(i=0;i<8;i++) { /* loop throught each dimm to test for row */
+ print_debug("DIMM ");
+ print_debug_hex8(i);
+ print_debug("\r\n");
+ /* Apply NOP */
+ do_delay();
+
+ write32(BAR + 0x100, (0x03000000 | (i<<20)));
+
+ write32(BAR+0x100, (0x83000000 | (i<<20)));
+
+ data32 = read32(BAR+DCALCSR);
+ while(data32 & 0x80000000)
+ data32 = read32(BAR+DCALCSR);
+
+ }
+
+ /* Apply NOP */
+ do_delay();
+
+ for(cs=0;cs<8;cs++) {
+ write32(BAR + DCALCSR, (0x83000000 | (cs<<20)));
+ data32 = read32(BAR+DCALCSR);
+ while(data32 & 0x80000000)
+ data32 = read32(BAR+DCALCSR);
+ }
+
+ /* Precharg all banks */
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ if ((drc & 3) == 2) /* DDR2 */
+ write32(BAR+DCALADDR, 0x04000000);
+ else /* DDR1 */
+ write32(BAR+DCALADDR, 0x00000000);
+ write32(BAR+DCALCSR, (0x83000002 | (cs<<20)));
+ data32 = read32(BAR+DCALCSR);
+ while(data32 & 0x80000000)
+ data32 = read32(BAR+DCALCSR);
+ }
+
+ /* EMRS dll's enabled */
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ if ((drc & 3) == 2) /* DDR2 */
+ /* fixme hard code AL additive latency */
+ write32(BAR+DCALADDR, 0x0b940001);
+ else /* DDR1 */
+ write32(BAR+DCALADDR, 0x00000001);
+ write32(BAR+DCALCSR, (0x83000003 | (cs<<20)));
+ data32 = read32(BAR+DCALCSR);
+ while(data32 & 0x80000000)
+ data32 = read32(BAR+DCALCSR);
+ }
+ /* MRS reset dll's */
+ do_delay();
+ if ((drc & 3) == 2) { /* DDR2 */
+ if(cas_latency == 30)
+ mode_reg = 0x053a0000;
+ else
+ mode_reg = 0x054a0000;
+ }
+ else { /* DDR1 */
+ if(cas_latency == 20)
+ mode_reg = 0x012a0000;
+ else /* CAS Latency 2.5 */
+ mode_reg = 0x016a0000;
+ }
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALADDR, mode_reg);
+ write32(BAR+DCALCSR, (0x83000003 | (cs<<20)));
+ data32 = read32(BAR+DCALCSR);
+ while(data32 & 0x80000000)
+ data32 = read32(BAR+DCALCSR);
+ }
+
+ /* Precharg all banks */
+ do_delay();
+ do_delay();
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ if ((drc & 3) == 2) /* DDR2 */
+ write32(BAR+DCALADDR, 0x04000000);
+ else /* DDR1 */
+ write32(BAR+DCALADDR, 0x00000000);
+ write32(BAR+DCALCSR, (0x83000002 | (cs<<20)));
+ data32 = read32(BAR+DCALCSR);
+ while(data32 & 0x80000000)
+ data32 = read32(BAR+DCALCSR);
+ }
+
+ /* Do 2 refreshes */
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
+ data32 = read32(BAR+DCALCSR);
+ while(data32 & 0x80000000)
+ data32 = read32(BAR+DCALCSR);
+ }
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
+ data32 = read32(BAR+DCALCSR);
+ while(data32 & 0x80000000)
+ data32 = read32(BAR+DCALCSR);
+ }
+ do_delay();
+ /* for good luck do 6 more */
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
+ }
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
+ }
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
+ }
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
+ }
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
+ }
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALCSR, (0x83000001 | (cs<<20)));
+ }
+ do_delay();
+ /* MRS reset dll's normal */
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALADDR, (mode_reg & ~(1<<24)));
+ write32(BAR+DCALCSR, (0x83000003 | (cs<<20)));
+ data32 = read32(BAR+DCALCSR);
+ while(data32 & 0x80000000)
+ data32 = read32(BAR+DCALCSR);
+ }
+
+ /* Do only if DDR2 EMRS dll's enabled */
+ if ((drc & 3) == 2) { /* DDR2 */
+ do_delay();
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALADDR, (0x0b940001));
+ write32(BAR+DCALCSR, (0x83000003 | (cs<<20)));
+ data32 = read32(BAR+DCALCSR);
+ while(data32 & 0x80000000)
+ data32 = read32(BAR+DCALCSR);
+ }
+ }
+
+ do_delay();
+ /* No command */
+ write32(BAR+DCALCSR, 0x0000000f);
+
+ /* DDR1 This is test code to copy some codes in the factory setup */
+
+ write32(BAR, 0x00100000);
+
+ if ((drc & 3) == 2) { /* DDR2 */
+ /* enable on dimm termination */
+ set_on_dimm_termination_enable(ctrl);
+ }
+ else { /* ddr */
+ pci_write_config32(ctrl->f0, 0x88, 0xa0000000 );
+ }
+
+ /* receive enable calibration */
+ set_receive_enable(ctrl);
+
+ /* DQS */
+ pci_write_config32(ctrl->f0, 0x94, 0x3904a100 );
+ for(i = 0, cnt = (BAR+0x200); i < 24; i++, cnt+=4) {
+ write32(cnt, dqs_data[i]);
+ }
+ pci_write_config32(ctrl->f0, 0x94, 0x3904a100 );
+
+ /* Enable refresh */
+ /* 0x7c DRC */
+ data32 = drc & ~(3 << 20); /* clear ECC mode */
+ pci_write_config32(ctrl->f0, DRC, data32);
+ write32(BAR+DCALCSR, 0x0008000f);
+
+ /* clear memory and init ECC */
+ print_debug("Clearing memory\r\n");
+ for(i=0;i<64;i+=4) {
+ write32(BAR+DCALDATA+i, 0x00000000);
+ }
+
+ for(cs=0;cs<8;cs++) {
+ write32(BAR+DCALCSR, (0x830831d8 | (cs<<20)));
+ data32 = read32(BAR+DCALCSR);
+ while(data32 & 0x80000000)
+ data32 = read32(BAR+DCALCSR);
+ }
+
+ /* Bring memory subsystem on line */
+ data32 = pci_read_config32(ctrl->f0, 0x98);
+ data32 |= (1 << 31);
+ pci_write_config32(ctrl->f0, 0x98, data32);
+ /* wait for completion */
+ print_debug("Waiting for mem complete\r\n");
+ while(1) {
+ data32 = pci_read_config32(ctrl->f0, 0x98);
+ if( (data32 & (1<<31)) == 0)
+ break;
+ }
+ print_debug("Done\r\n");
+
+ /* Set initialization complete */
+ /* 0x7c DRC */
+ drc |= (1 << 29);
+ data32 = drc & ~(3 << 20); /* clear ECC mode */
+ pci_write_config32(ctrl->f0, DRC, data32);
+
+ /* Set the ecc mode */
+ pci_write_config32(ctrl->f0, DRC, drc);
+
+ /* Enable memory scrubbing */
+ /* 0x52 MCHSCRB */
+ data16 = pci_read_config16(ctrl->f0, MCHSCRB);
+ data16 &= ~0x0f;
+ data16 |= ((2 << 2) | (2 << 0));
+ pci_write_config16(ctrl->f0, MCHSCRB, data16);
+
+ /* The memory is now setup, use it */
+ cache_lbmem(MTRR_TYPE_WRBACK);
+}