aboutsummaryrefslogtreecommitdiff
path: root/src/northbridge/intel/e7505/raminit.c
diff options
context:
space:
mode:
authorStefan Reinauer <reinauer@chromium.org>2011-10-21 12:57:59 -0700
committerStefan Reinauer <stefan.reinauer@coreboot.org>2011-10-28 22:01:03 +0200
commitb15975bf5a4a1b9ed4d83e2c8caf622d71a7e4d5 (patch)
tree91e645b98fdfc145236b1d1f027b61e6895aff6b /src/northbridge/intel/e7505/raminit.c
parent94a458626a9f12aa670926d633f445bebc1fb63c (diff)
copy e7501 component to e7505
Change-Id: Ie69a6b6a040a8b0e7693083b3a2d13c327a165b3 Signed-off-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/310 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Diffstat (limited to 'src/northbridge/intel/e7505/raminit.c')
-rw-r--r--src/northbridge/intel/e7505/raminit.c2007
1 files changed, 2007 insertions, 0 deletions
diff --git a/src/northbridge/intel/e7505/raminit.c b/src/northbridge/intel/e7505/raminit.c
new file mode 100644
index 0000000000..f42bef2db0
--- /dev/null
+++ b/src/northbridge/intel/e7505/raminit.c
@@ -0,0 +1,2007 @@
+/* This was originally for the e7500, modified for e7501
+ * The primary differences are that 7501 apparently can
+ * support single channel RAM (i haven't tested),
+ * CAS1.5 is no longer supported, The ECC scrubber
+ * now supports a mode to zero RAM and init ECC in one step
+ * and the undocumented registers at 0x80 require new
+ * (undocumented) values determined by guesswork and
+ * comparison w/ OEM BIOS values.
+ * Steven James 02/06/2003
+ */
+
+/* converted to C 6/2004 yhlu */
+
+#include <assert.h>
+#include <spd.h>
+#include <sdram_mode.h>
+#include <stdlib.h>
+#include "e7501.h"
+
+/*-----------------------------------------------------------------------------
+Definitions:
+-----------------------------------------------------------------------------*/
+
+// Uncomment this to enable run-time checking of DIMM parameters
+// for dual-channel operation
+// Unfortunately the code seems to chew up several K of space.
+//#define VALIDATE_DIMM_COMPATIBILITY
+
+#if CONFIG_DEBUG_RAM_SETUP
+#define RAM_DEBUG_MESSAGE(x) print_debug(x)
+#define RAM_DEBUG_HEX32(x) print_debug_hex32(x)
+#define RAM_DEBUG_HEX8(x) print_debug_hex8(x)
+#define DUMPNORTH() dump_pci_device(PCI_DEV(0, 0, 0))
+#else
+#define RAM_DEBUG_MESSAGE(x)
+#define RAM_DEBUG_HEX32(x)
+#define RAM_DEBUG_HEX8(x)
+#define DUMPNORTH()
+#endif
+
+#define E7501_SDRAM_MODE (SDRAM_BURST_INTERLEAVED | SDRAM_BURST_4)
+#define SPD_ERROR "Error reading SPD info\n"
+
+// NOTE: This used to be 0x100000.
+// That doesn't work on systems where A20M# is asserted, because
+// attempts to access 0x1000NN end up accessing 0x0000NN.
+#define RCOMP_MMIO 0x200000
+
+struct dimm_size {
+ unsigned long side1;
+ unsigned long side2;
+};
+
+static const uint32_t refresh_frequency[] = {
+ /* Relative frequency (array value) of each E7501 Refresh Mode Select
+ * (RMS) value (array index)
+ * 0 == least frequent refresh (longest interval between refreshes)
+ * [0] disabled -> 0
+ * [1] 15.6 usec -> 2
+ * [2] 7.8 usec -> 3
+ * [3] 64 usec -> 1
+ * [4] reserved -> 0
+ * [5] reserved -> 0
+ * [6] reserved -> 0
+ * [7] 64 clocks -> 4
+ */
+ 0, 2, 3, 1, 0, 0, 0, 4
+};
+
+static const uint32_t refresh_rate_map[] = {
+ /* Map the JEDEC spd refresh rates (array index) to E7501 Refresh Mode
+ * Select values (array value)
+ * These are all the rates defined by JESD21-C Appendix D, Rev. 1.0
+ * The E7501 supports only 15.6 us (1), 7.8 us (2), 64 us (3), and
+ * 64 clock (481 ns) (7) refresh.
+ * [0] == 15.625 us -> 15.6 us
+ * [1] == 3.9 us -> 481 ns
+ * [2] == 7.8 us -> 7.8 us
+ * [3] == 31.3 us -> 15.6 us
+ * [4] == 62.5 us -> 15.6 us
+ * [5] == 125 us -> 64 us
+ */
+ 1, 7, 2, 1, 1, 3
+};
+
+#define MAX_SPD_REFRESH_RATE ((sizeof(refresh_rate_map) / sizeof(uint32_t)) - 1)
+
+// SPD parameters that must match for dual-channel operation
+static const uint8_t dual_channel_parameters[] = {
+ SPD_MEMORY_TYPE,
+ SPD_MODULE_VOLTAGE,
+ SPD_NUM_COLUMNS,
+ SPD_NUM_ROWS,
+ SPD_NUM_DIMM_BANKS,
+ SPD_PRIMARY_SDRAM_WIDTH,
+ SPD_NUM_BANKS_PER_SDRAM
+};
+
+ /*
+ * Table: constant_register_values
+ */
+static const long constant_register_values[] = {
+ /* SVID - Subsystem Vendor Identification Register
+ * 0x2c - 0x2d
+ * [15:00] Subsytem Vendor ID (Indicates system board vendor)
+ */
+ /* SID - Subsystem Identification Register
+ * 0x2e - 0x2f
+ * [15:00] Subsystem ID
+ */
+ // Not everyone wants to be Super Micro Computer, Inc.
+ // The mainboard should set this if desired.
+ // 0x2c, 0, (0x15d9 << 0) | (0x3580 << 16),
+
+ /* Undocumented
+ * (DRAM Read Timing Control, if similar to 855PM?)
+ * 0x80 - 0x81
+ * This register has something to do with CAS latencies,
+ * possibily this is the real chipset control.
+ * At 0x00 CAS latency 1.5 works.
+ * At 0x06 CAS latency 2.5 works.
+ * At 0x01 CAS latency 2.0 works.
+ */
+ /* This is still undocumented in e7501, but with different values
+ * CAS 2.0 values taken from Intel BIOS settings, others are a guess
+ * and may be terribly wrong. Old values preserved as comments until I
+ * figure this out for sure.
+ * e7501 docs claim that CAS1.5 is unsupported, so it may or may not
+ * work at all.
+ * Steven James 02/06/2003
+ */
+ /* NOTE: values now configured in configure_e7501_cas_latency() based
+ * on SPD info and total number of DIMMs (per Intel)
+ */
+
+ /* FDHC - Fixed DRAM Hole Control
+ * 0x58
+ * [7:7] Hole_Enable
+ * 0 == No memory Hole
+ * 1 == Memory Hole from 15MB to 16MB
+ * [6:0] Reserved
+ *
+ * PAM - Programmable Attribute Map
+ * 0x59 [1:0] Reserved
+ * 0x59 [5:4] 0xF0000 - 0xFFFFF
+ * 0x5A [1:0] 0xC0000 - 0xC3FFF
+ * 0x5A [5:4] 0xC4000 - 0xC7FFF
+ * 0x5B [1:0] 0xC8000 - 0xCBFFF
+ * 0x5B [5:4] 0xCC000 - 0xCFFFF
+ * 0x5C [1:0] 0xD0000 - 0xD3FFF
+ * 0x5C [5:4] 0xD4000 - 0xD7FFF
+ * 0x5D [1:0] 0xD8000 - 0xDBFFF
+ * 0x5D [5:4] 0xDC000 - 0xDFFFF
+ * 0x5E [1:0] 0xE0000 - 0xE3FFF
+ * 0x5E [5:4] 0xE4000 - 0xE7FFF
+ * 0x5F [1:0] 0xE8000 - 0xEBFFF
+ * 0x5F [5:4] 0xEC000 - 0xEFFFF
+ * 00 == DRAM Disabled (All Access go to memory mapped I/O space)
+ * 01 == Read Only (Reads to DRAM, Writes to memory mapped I/O space)
+ * 10 == Write Only (Writes to DRAM, Reads to memory mapped I/O space)
+ * 11 == Normal (All Access go to DRAM)
+ */
+
+ // Map all legacy ranges to DRAM
+ 0x58, 0xcccccf7f, (0x00 << 0) | (0x30 << 8) | (0x33 << 16) | (0x33 << 24),
+ 0x5C, 0xcccccccc, (0x33 << 0) | (0x33 << 8) | (0x33 << 16) | (0x33 << 24),
+
+ /* DRB - DRAM Row Boundary Registers
+ * 0x60 - 0x6F
+ * An array of 8 byte registers, which hold the ending
+ * memory address assigned to each pair of DIMMS, in 64MB
+ * granularity.
+ */
+ // Conservatively say each row has 64MB of ram, we will fix this up later
+ // NOTE: These defaults allow us to prime all of the DIMMs on the board
+ // without jumping through 36-bit adddressing hoops, even if the
+ // total memory is > 4 GB. Changing these values may break do_ram_command()!
+ 0x60, 0x00000000, (0x01 << 0) | (0x02 << 8) | (0x03 << 16) | (0x04 << 24),
+ 0x64, 0x00000000, (0x05 << 0) | (0x06 << 8) | (0x07 << 16) | (0x08 << 24),
+
+ /* DRA - DRAM Row Attribute Register
+ * 0x70 Row 0,1
+ * 0x71 Row 2,3
+ * 0x72 Row 4,5
+ * 0x73 Row 6,7
+ * [7:7] Device width for Odd numbered rows
+ * 0 == 8 bits wide x8
+ * 1 == 4 bits wide x4
+ * [6:4] Row Attributes for Odd numbered rows
+ * 010 == 8KB (for dual-channel)
+ * 011 == 16KB (for dual-channel)
+ * 100 == 32KB (for dual-channel)
+ * 101 == 64KB (for dual-channel)
+ * Others == Reserved
+ * [3:3] Device width for Even numbered rows
+ * 0 == 8 bits wide x8
+ * 1 == 4 bits wide x4
+ * [2:0] Row Attributes for Even numbered rows
+ * 010 == 8KB (for dual-channel)
+ * 011 == 16KB (for dual-channel)
+ * 100 == 32KB (for dual-channel)
+ * 101 == 64KB (This page size appears broken)
+ * Others == Reserved
+ */
+ // NOTE: overridden by configure_e7501_row_attributes(), later
+ 0x70, 0x00000000, 0,
+
+ /* DRT - DRAM Timing Register
+ * 0x78
+ * [31:30] Reserved
+ * [29:29] Back to Back Write-Read Turn Around
+ * 0 == 3 clocks between WR-RD commands
+ * 1 == 2 clocks between WR-RD commands
+ * [28:28] Back to Back Read-Write Turn Around
+ * 0 == 5 clocks between RD-WR commands
+ * 1 == 4 clocks between RD-WR commands
+ * [27:27] Back to Back Read Turn Around
+ * 0 == 4 clocks between RD commands
+ * 1 == 3 clocks between RD commands
+ * [26:24] Read Delay (tRD)
+ * 000 == 7 clocks
+ * 001 == 6 clocks
+ * 010 == 5 clocks
+ * Others == Reserved
+ * [23:19] Reserved
+ * [18:16] DRAM idle timer
+ * 000 == infinite
+ * 011 == 16 dram clocks
+ * 001 == 0 clocks
+ * [15:11] Reserved
+ * [10:09] Active to Precharge (tRAS)
+ * 00 == 7 clocks
+ * 01 == 6 clocks
+ * 10 == 5 clocks
+ * 11 == Reserved
+ * [08:06] Reserved
+ * [05:04] Cas Latency (tCL)
+ * 00 == 2.5 Clocks
+ * 01 == 2.0 Clocks
+ * 10 == Reserved (was 1.5 Clocks for E7500)
+ * 11 == Reserved
+ * [03:03] Write Ras# to Cas# Delay (tRCD)
+ * 0 == 3 DRAM Clocks
+ * 1 == 2 DRAM Clocks
+ * [02:01] Read RAS# to CAS# Delay (tRCD)
+ * 00 == reserved
+ * 01 == reserved
+ * 10 == 3 DRAM Clocks
+ * 11 == 2 DRAM Clocks
+ * [00:00] DRAM RAS# to Precharge (tRP)
+ * 0 == 3 DRAM Clocks
+ * 1 == 2 DRAM Clocks
+ */
+
+ // Some earlier settings:
+ /* Most aggressive settings possible */
+// 0x78, 0xc0fff8c4, (1<<29)|(1<<28)|(1<<27)|(2<<24)|(2<<9)|CAS_LATENCY|(1<<3)|(1<<1)|(1<<0),
+// 0x78, 0xc0f8f8c0, (1<<29)|(1<<28)|(1<<27)|(1<<24)|(1<<16)|(2<<9)|CAS_LATENCY|(1<<3)|(3<<1)|(1<<0),
+// 0x78, 0xc0f8f9c0, (1<<29)|(1<<28)|(1<<27)|(1<<24)|(1<<16)|(2<<9)|CAS_LATENCY|(1<<3)|(3<<1)|(1<<0),
+
+ // The only things we need to set here are DRAM idle timer, Back-to-Back Read Turnaround, and
+ // Back-to-Back Write-Read Turnaround. All others are configured based on SPD.
+ 0x78, 0xD7F8FFFF, (1 << 29) | (1 << 27) | (1 << 16),
+
+ /* FIXME why was I attempting to set a reserved bit? */
+ /* 0x0100040f */
+
+ /* DRC - DRAM Contoller Mode Register
+ * 0x7c
+ * [31:30] Reserved
+ * [29:29] Initialization Complete
+ * 0 == Not Complete
+ * 1 == Complete
+ * [28:23] Reserved
+ * [22:22] Channels
+ * 0 == Single channel
+ * 1 == Dual Channel
+ * [21:20] DRAM Data Integrity Mode
+ * 00 == Disabled, no ECC
+ * 01 == Reserved
+ * 10 == Error checking, using chip-kill, with correction
+ * 11 == Reserved
+ * [19:18] DRB Granularity (Read-Only)
+ * 00 == 32 MB quantities (single channel mode)
+ * 01 == 64 MB quantities (dual-channel mode)
+ * 10 == Reserved
+ * 11 == Reserved
+ * [17:17] (Intel Undocumented) should always be set to 1 (SJM: comment inconsistent with current setting, below)
+ * [16:16] Command Per Clock - Address/Control Assertion Rule (CPC)
+ * 0 == 2n Rule
+ * 1 == 1n rule
+ * [15:11] Reserved
+ * [10:08] Refresh mode select
+ * 000 == Refresh disabled
+ * 001 == Refresh interval 15.6 usec
+ * 010 == Refresh interval 7.8 usec
+ * 011 == Refresh interval 64 usec
+ * 111 == Refresh every 64 clocks (fast refresh)
+ * [07:07] Reserved
+ * [06:04] Mode Select (SMS)
+ * 000 == Reserved (was Self Refresh Mode in E7500)
+ * 001 == NOP Command
+ * 010 == All Banks Precharge
+ * 011 == Mode Register Set
+ * 100 == Extended Mode Register Set
+ * 101 == Reserved
+ * 110 == CBR Refresh
+ * 111 == Normal Operation
+ * [03:00] Reserved
+ */
+// .long 0x7c, 0xffcefcff, (1<<22)|(2 << 20)|(1 << 16)| (0 << 8),
+// .long 0x7c, 0xff8cfcff, (1<<22)|(2 << 20)|(1 << 17)|(1 << 16)| (0 << 8),
+// .long 0x7c, 0xff80fcff, (1<<22)|(2 << 20)|(1 << 18)|(1 << 17)|(1 << 16)| (0 << 8),
+
+ // Default to dual-channel mode, ECC, 1-clock address/cmd hold
+ // NOTE: configure_e7501_dram_controller_mode() configures further
+ 0x7c, 0xff8ef8ff, (1 << 22) | (2 << 20) | (1 << 16) | (0 << 8),
+
+ /* Another Intel undocumented register
+ * 0x88 - 0x8B
+ * [31:31] Purpose unknown
+ * [26:26] Master DLL Reset?
+ * 0 == Normal operation?
+ * 1 == Reset?
+ * [07:07] Periodic memory recalibration?
+ * 0 == Disabled?
+ * 1 == Enabled?
+ * [04:04] Receive FIFO RE-Sync?
+ * 0 == Normal operation?
+ * 1 == Reset?
+ */
+ // NOTE: Some factory BIOSs don't do this.
+ // Doesn't seem to matter either way.
+ 0x88, 0xffffff00, 0x80,
+
+ /* CLOCK_DIS - CK/CK# Disable Register
+ * 0x8C
+ * [7:7] DDR Frequency
+ * 0 == 100 MHz (200 MHz data rate)
+ * 1 == 133 MHz (266 MHz data rate)
+ * [6:4] Reserved
+ * [3:3] CK3
+ * 0 == Enable
+ * 1 == Disable
+ * [2:2] CK2
+ * 0 == Enable
+ * 1 == Disable
+ * [1:1] CK1
+ * 0 == Enable
+ * 1 == Disable
+ * [0:0] CK0
+ * 0 == Enable
+ * 1 == Disable
+ */
+ // NOTE: Disable all clocks initially; turn ones we need back on
+ // in enable_e7501_clocks()
+ 0x8C, 0xfffffff0, 0xf,
+
+ /* TOLM - Top of Low Memory Register
+ * 0xC4 - 0xC5
+ * [15:11] Top of low memory (TOLM)
+ * The address below 4GB that should be treated as RAM,
+ * on a 128MB granularity.
+ * [10:00] Reserved
+ */
+ /* REMAPBASE - Remap Base Address Regsiter
+ * 0xC6 - 0xC7
+ * [15:10] Reserved
+ * [09:00] Remap Base Address [35:26] 64M aligned
+ * Bits [25:0] are assumed to be 0.
+ */
+
+ // NOTE: TOLM overridden by configure_e7501_ram_addresses()
+ 0xc4, 0xfc0007ff, (0x2000 << 0) | (0x3ff << 16),
+
+ /* REMAPLIMIT - Remap Limit Address Register
+ * 0xC8 - 0xC9
+ * [15:10] Reserved
+ * [09:00] Remap Limit Address [35:26] 64M aligned
+ * When remaplimit < remapbase the remap window is disabled.
+ */
+ 0xc8, 0xfffffc00, 0,
+
+ /* DVNP - Device Not Present Register
+ * 0xE0 - 0xE1
+ * [15:05] Reserved
+ * [04:04] Device 4 Function 1 Present
+ * 0 == Present
+ * 1 == Absent
+ * [03:03] Device 3 Function 1 Present
+ * 0 == Present
+ * 1 == Absent
+ * [02:02] Device 2 Function 1 Present
+ * 0 == Present
+ * 1 == Absent
+ * [01:01] Reserved
+ * [00:00] Device 0 Function 1 Present
+ * 0 == Present
+ * 1 == Absent
+ */
+
+ // Enable D0:D1, disable D2:F1, D3:F1, D4:F1
+ 0xe0, 0xffffffe2, (1 << 4) | (1 << 3) | (1 << 2) | (0 << 0),
+
+ // Undocumented
+ 0xd8, 0xffff9fff, 0x00000000,
+
+ // Undocumented - this is pure conjecture based on similarity to 855PM
+ /* MCHTST - MCH Test Register
+ * 0xF4 - 0xF7
+ * [31:31] Purpose unknown
+ * [30:30] Purpose unknown
+ * [29:23] Unknown - not used?
+ * [22:22] System Memory MMR Enable
+ * 0 == Disable: mem space and BAR at 0x14 are not accessible
+ * 1 == Enable: mem space and BAR at 0x14 are accessible
+ * [21:20] Purpose unknown
+ * [19:02] Unknown - not used?
+ * [01:01] D6EN (Device #6 enable)
+ * 0 == Disable
+ * 1 == Enable
+ * [00:00] Unknown - not used?
+ */
+
+ 0xf4, 0x3f8ffffd, 0x40300002,
+
+#ifdef SUSPICIOUS_LOOKING_CODE
+ // SJM: Undocumented.
+ // This will access D2:F0:0x50, is this correct??
+ 0x1050, 0xffffffcf, 0x00000030,
+#endif
+};
+
+ /* DDR RECOMP tables */
+
+// Slew table for 1x drive?
+static const uint32_t maybe_1x_slew_table[] = {
+ 0x44332211, 0xc9776655, 0xffffffff, 0xffffffff,
+ 0x22111111, 0x55444332, 0xfffca876, 0xffffffff,
+};
+
+// Slew table for 2x drive?
+static const uint32_t maybe_2x_slew_table[] = {
+ 0x00000000, 0x76543210, 0xffffeca8, 0xffffffff,
+ 0x21000000, 0xa8765432, 0xffffffec, 0xffffffff,
+};
+
+// Pull Up / Pull Down offset table, if analogous to IXP2800?
+static const uint32_t maybe_pull_updown_offset_table[] = {
+ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
+ 0x88888888, 0x88888888, 0x88888888, 0x88888888,
+};
+
+/*-----------------------------------------------------------------------------
+Delay functions:
+-----------------------------------------------------------------------------*/
+
+#define SLOW_DOWN_IO inb(0x80)
+//#define SLOW_DOWN_IO udelay(40);
+
+ /* Estimate that SLOW_DOWN_IO takes about 50&76us */
+ /* delay for 200us */
+
+#if 1
+static void do_delay(void)
+{
+ int i;
+ for (i = 0; i < 16; i++) {
+ SLOW_DOWN_IO;
+ }
+}
+
+#define DO_DELAY do_delay()
+#else
+#define DO_DELAY \
+ udelay(200)
+#endif
+
+#define EXTRA_DELAY DO_DELAY
+
+static void die_on_spd_error(int spd_return_value)
+{
+ if (spd_return_value < 0)
+ die("Error reading SPD info\n");
+}
+
+/*-----------------------------------------------------------------------------
+Serial presence detect (SPD) functions:
+-----------------------------------------------------------------------------*/
+
+/**
+ * Calculate the page size for each physical bank of the DIMM:
+ * log2(page size) = (# columns) + log2(data width)
+ *
+ * NOTE: Page size is the total number of data bits in a row.
+ *
+ * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
+ * @return log2(page size) for each side of the DIMM.
+ */
+static struct dimm_size sdram_spd_get_page_size(uint16_t dimm_socket_address)
+{
+ uint16_t module_data_width;
+ int value;
+ struct dimm_size pgsz;
+
+ pgsz.side1 = 0;
+ pgsz.side2 = 0;
+
+ // Side 1
+ value = spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
+ if (value < 0)
+ goto hw_err;
+ pgsz.side1 = value & 0xf; // # columns in bank 1
+
+ /* Get the module data width and convert it to a power of two */
+ value =
+ spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_MSB);
+ if (value < 0)
+ goto hw_err;
+ module_data_width = (value & 0xff) << 8;
+
+ value =
+ spd_read_byte(dimm_socket_address, SPD_MODULE_DATA_WIDTH_LSB);
+ if (value < 0)
+ goto hw_err;
+ module_data_width |= (value & 0xff);
+
+ pgsz.side1 += log2(module_data_width);
+
+ /* side two */
+ value = spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
+ if (value < 0)
+ goto hw_err;
+ if (value > 2)
+ die("Bad SPD value\n");
+ if (value == 2) {
+
+ pgsz.side2 = pgsz.side1; // Assume symmetric banks until we know differently
+ value =
+ spd_read_byte(dimm_socket_address, SPD_NUM_COLUMNS);
+ if (value < 0)
+ goto hw_err;
+ if ((value & 0xf0) != 0) {
+ // Asymmetric banks
+ pgsz.side2 -= value & 0xf; /* Subtract out columns on side 1 */
+ pgsz.side2 += (value >> 4) & 0xf; /* Add in columns on side 2 */
+ }
+ }
+
+ return pgsz;
+
+ hw_err:
+ die(SPD_ERROR);
+ return pgsz; // Never reached
+}
+
+/**
+ * Read the width in bits of each DIMM side's DRAMs via SPD (i.e. 4, 8, 16).
+ *
+ * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
+ * @return Width in bits of each DIMM side's DRAMs.
+ */
+static struct dimm_size sdram_spd_get_width(uint16_t dimm_socket_address)
+{
+ int value;
+ struct dimm_size width;
+
+ width.side1 = 0;
+ width.side2 = 0;
+
+ value =
+ spd_read_byte(dimm_socket_address, SPD_PRIMARY_SDRAM_WIDTH);
+ die_on_spd_error(value);
+
+ width.side1 = value & 0x7f; // Mask off bank 2 flag
+
+ if (value & 0x80) {
+ width.side2 = width.side1 << 1; // Bank 2 exists and is double-width
+ } else {
+ // If bank 2 exists, it's the same width as bank 1
+ value =
+ spd_read_byte(dimm_socket_address, SPD_NUM_DIMM_BANKS);
+ die_on_spd_error(value);
+
+#ifdef ROMCC_IF_BUG_FIXED
+ if (value == 2)
+ width.side2 = width.side1;
+#else
+ switch (value) {
+ case 2:
+ width.side2 = width.side1;
+ break;
+
+ default:
+ break;
+ }
+#endif
+ }
+
+ return width;
+}
+
+/**
+ * Calculate the log base 2 size in bits of both DIMM sides.
+ *
+ * log2(# bits) = (# columns) + log2(data width) +
+ * (# rows) + log2(banks per SDRAM)
+ *
+ * Note that it might be easier to use SPD byte 31 here, it has the DIMM size
+ * as a multiple of 4MB. The way we do it now we can size both sides of an
+ * asymmetric DIMM.
+ *
+ * @param dimm_socket_address SMBus address of DIMM socket to interrogate.
+ * @return log2(number of bits) for each side of the DIMM.
+ */
+static struct dimm_size spd_get_dimm_size(unsigned dimm_socket_address)
+{
+ int value;
+
+ // Start with log2(page size)
+ struct dimm_size sz = sdram_spd_get_page_size(dimm_socket_address);
+
+ if (sz.side1 > 0) {
+
+ value = spd_read_byte(dimm_socket_address, SPD_NUM_ROWS);
+ die_on_spd_error(value);
+
+ sz.side1 += value & 0xf;
+
+ if (sz.side2 > 0) {
+
+ // Double-sided DIMM
+ if (value & 0xF0)
+ sz.side2 += value >> 4; // Asymmetric
+ else
+ sz.side2 += value; // Symmetric
+ }
+
+ value =
+ spd_read_byte(dimm_socket_address,
+ SPD_NUM_BANKS_PER_SDRAM);
+ die_on_spd_error(value);
+
+ value = log2(value);
+ sz.side1 += value;
+ if (sz.side2 > 0)
+ sz.side2 += value;
+ }
+
+ return sz;
+}
+
+#ifdef VALIDATE_DIMM_COMPATIBILITY
+
+/**
+ * Determine whether two DIMMs have the same value for an SPD parameter.
+ *
+ * @param spd_byte_number The SPD byte number to compare in both DIMMs.
+ * @param dimm0_address SMBus address of the 1st DIMM socket to interrogate.
+ * @param dimm1_address SMBus address of the 2nd DIMM socket to interrogate.
+ * @return 1 if both DIMM sockets report the same value for the specified
+ * SPD parameter, 0 if the values differed or an error occurred.
+ */
+static uint8_t are_spd_values_equal(uint8_t spd_byte_number,
+ uint16_t dimm0_address,
+ uint16_t dimm1_address)
+{
+ uint8_t bEqual = 0;
+ int dimm0_value = spd_read_byte(dimm0_address, spd_byte_number);
+ int dimm1_value = spd_read_byte(dimm1_address, spd_byte_number);
+
+ if ((dimm0_value >= 0) && (dimm1_value >= 0)
+ && (dimm0_value == dimm1_value))
+ bEqual = 1;
+
+ return bEqual;
+}
+#endif
+
+/**
+ * Scan for compatible DIMMs.
+ *
+ * The code in this module only supports dual-channel operation, so we test
+ * that compatible DIMMs are paired.
+ *
+ * @param ctrl PCI addresses of memory controller functions, and SMBus
+ * addresses of DIMM slots on the mainboard.
+ * @return A bitmask indicating which of the possible sockets for each channel
+ * was found to contain a compatible DIMM.
+ * Bit 0 corresponds to the closest socket for channel 0
+ * Bit 1 to the next socket for channel 0
+ * ...
+ * Bit MAX_DIMM_SOCKETS_PER_CHANNEL-1 to the last socket for channel 0
+ * Bit MAX_DIMM_SOCKETS_PER_CHANNEL is the closest socket for channel 1
+ * ...
+ * Bit 2*MAX_DIMM_SOCKETS_PER_CHANNEL-1 is the last socket for channel 1
+ */
+static uint8_t spd_get_supported_dimms(const struct mem_controller *ctrl)
+{
+ int i;
+ uint8_t dimm_mask = 0;
+
+ // Have to increase size of dimm_mask if this assertion is violated
+ ASSERT(MAX_DIMM_SOCKETS_PER_CHANNEL <= 4);
+
+ // Find DIMMs we can support on channel 0.
+ // Then see if the corresponding channel 1 DIMM has the same parameters,
+ // since we only support dual-channel.
+
+ for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
+
+ uint16_t channel0_dimm = ctrl->channel0[i];
+ uint16_t channel1_dimm = ctrl->channel1[i];
+ uint8_t bDualChannel = 1;
+#ifdef VALIDATE_DIMM_COMPATIBILITY
+ struct dimm_size page_size;
+ struct dimm_size sdram_width;
+#endif
+ int spd_value;
+
+ if (channel0_dimm == 0)
+ continue; // No such socket on this mainboard
+
+ if (spd_read_byte(channel0_dimm, SPD_MEMORY_TYPE) !=
+ SPD_MEMORY_TYPE_SDRAM_DDR)
+ continue;
+
+#ifdef VALIDATE_DIMM_COMPATIBILITY
+ if (spd_read_byte(channel0_dimm, SPD_MODULE_VOLTAGE) !=
+ SPD_VOLTAGE_SSTL2)
+ continue; // Unsupported voltage
+
+ // E7501 does not support unregistered DIMMs
+ spd_value =
+ spd_read_byte(channel0_dimm, SPD_MODULE_ATTRIBUTES);
+ if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0))
+ continue;
+
+ // Must support burst = 4 for dual-channel operation on E7501
+ // NOTE: for single-channel, burst = 8 is required
+ spd_value =
+ spd_read_byte(channel0_dimm,
+ SPD_SUPPORTED_BURST_LENGTHS);
+ if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0))
+ continue;
+
+ page_size = sdram_spd_get_page_size(channel0_dimm);
+ sdram_width = sdram_spd_get_width(channel0_dimm);
+
+ // Validate DIMM page size
+ // The E7501 only supports page sizes of 4, 8, 16, or 32 KB per channel
+ // NOTE: 4 KB = 32 Kb = 2^15
+ // 32 KB = 262 Kb = 2^18
+
+ if ((page_size.side1 < 15) || (page_size.side1 > 18))
+ continue;
+
+ // If DIMM is double-sided, verify side2 page size
+ if (page_size.side2 != 0) {
+ if ((page_size.side2 < 15)
+ || (page_size.side2 > 18))
+ continue;
+ }
+ // Validate SDRAM width
+ // The E7501 only supports x4 and x8 devices
+
+ if ((sdram_width.side1 != 4) && (sdram_width.side1 != 8))
+ continue;
+
+ // If DIMM is double-sided, verify side2 width
+ if (sdram_width.side2 != 0) {
+ if ((sdram_width.side2 != 4)
+ && (sdram_width.side2 != 8))
+ continue;
+ }
+#endif
+ // Channel 0 DIMM looks compatible.
+ // Now see if it is paired with the proper DIMM on channel 1.
+
+ ASSERT(channel1_dimm != 0); // No such socket on this mainboard??
+
+ // NOTE: unpopulated DIMMs cause read to fail
+ spd_value =
+ spd_read_byte(channel1_dimm, SPD_MODULE_ATTRIBUTES);
+ if (!(spd_value & MODULE_REGISTERED) || (spd_value < 0)) {
+
+ print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
+ continue;
+ }
+#ifdef VALIDATE_DIMM_COMPATIBILITY
+ spd_value =
+ spd_read_byte(channel1_dimm,
+ SPD_SUPPORTED_BURST_LENGTHS);
+ if (!(spd_value & SPD_BURST_LENGTH_4) || (spd_value < 0))
+ continue;
+
+ int j;
+ for (j = 0; j < sizeof(dual_channel_parameters); ++j) {
+ if (!are_spd_values_equal
+ (dual_channel_parameters[j], channel0_dimm,
+ channel1_dimm)) {
+
+ bDualChannel = 0;
+ break;
+ }
+ }
+#endif
+
+ // Code around ROMCC bug in optimization of "if" statements
+#ifdef ROMCC_IF_BUG_FIXED
+ if (bDualChannel) {
+ // Made it through all the checks, this DIMM pair is usable
+ dimm_mask |= ((1 << i) | (1 << (MAX_DIMM_SOCKETS_PER_CHANNEL + i)));
+ } else
+ print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
+#else
+ switch (bDualChannel) {
+ case 0:
+ print_debug("Skipping un-matched DIMMs - only dual-channel operation supported\n");
+ break;
+
+ default:
+ // Made it through all the checks, this DIMM pair is usable
+ dimm_mask |= (1 << i) | (1 << (MAX_DIMM_SOCKETS_PER_CHANNEL + i));
+ break;
+ }
+#endif
+ }
+
+ return dimm_mask;
+}
+
+/*-----------------------------------------------------------------------------
+SDRAM configuration functions:
+-----------------------------------------------------------------------------*/
+
+/**
+ * Send the specified command to all DIMMs.
+ *
+ * @param command Specifies the command to be sent to the DIMMs.
+ * @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the
+ * register value in JEDEC format.
+ */
+static void do_ram_command(uint8_t command, uint16_t jedec_mode_bits)
+{
+ int i;
+ uint32_t dram_controller_mode;
+ uint8_t dimm_start_64M_multiple = 0;
+ uint16_t e7501_mode_bits = jedec_mode_bits;
+
+ // Configure the RAM command
+ dram_controller_mode = pci_read_config32(PCI_DEV(0, 0, 0), DRC);
+ dram_controller_mode &= 0xFFFFFF8F;
+ dram_controller_mode |= command;
+ pci_write_config32(PCI_DEV(0, 0, 0), DRC, dram_controller_mode);
+
+ // RAM_COMMAND_NORMAL is an exception.
+ // It affects only the memory controller and does not need to be "sent" to the DIMMs.
+
+ if (command != RAM_COMMAND_NORMAL) {
+
+ // Send the command to all DIMMs by accessing a memory location within each
+ // NOTE: for mode select commands, some of the location address bits
+ // are part of the command
+
+ // Map JEDEC mode bits to E7501
+ if (command == RAM_COMMAND_MRS) {
+ // Host address lines [15:5] map to DIMM address lines [12:11, 9:1]
+ // The E7501 hard-sets DIMM address lines 10 & 0 to zero
+
+ ASSERT(!(jedec_mode_bits & 0x0401));
+
+ e7501_mode_bits = ((jedec_mode_bits & 0x1800) << (15 - 12)) | // JEDEC bits 11-12 move to bits 14-15
+ ((jedec_mode_bits & 0x03FE) << (13 - 9)); // JEDEC bits 1-9 move to bits 5-13
+
+ } else if (command == RAM_COMMAND_EMRS) {
+ // Host address lines [15:3] map to DIMM address lines [12:0]
+ e7501_mode_bits = jedec_mode_bits <<= 3;
+ } else
+ ASSERT(jedec_mode_bits == 0);
+
+ dimm_start_64M_multiple = 0;
+
+ for (i = 0; i < (MAX_NUM_CHANNELS * MAX_DIMM_SOCKETS_PER_CHANNEL); ++i) {
+
+ uint8_t dimm_end_64M_multiple =
+ pci_read_config8(PCI_DEV(0, 0, 0), DRB_ROW_0 + i);
+ if (dimm_end_64M_multiple > dimm_start_64M_multiple) {
+
+ // This code assumes DRAM row boundaries are all set below 4 GB
+ // NOTE: 0x40 * 64 MB == 4 GB
+ ASSERT(dimm_start_64M_multiple < 0x40);
+
+ // NOTE: 2^26 == 64 MB
+
+ uint32_t dimm_start_address =
+ dimm_start_64M_multiple << 26;
+
+ RAM_DEBUG_MESSAGE(" Sending RAM command to 0x");
+ RAM_DEBUG_HEX32(dimm_start_address + e7501_mode_bits);
+ RAM_DEBUG_MESSAGE("\n");
+
+ read32(dimm_start_address + e7501_mode_bits);
+
+ // Set the start of the next DIMM
+ dimm_start_64M_multiple =
+ dimm_end_64M_multiple;
+ }
+ }
+ }
+}
+
+/**
+ * Set the mode register of all DIMMs.
+ *
+ * The proper CAS# latency setting is added to the mode bits specified
+ * by the caller.
+ *
+ * @param jedec_mode_bits For the MRS & EMRS commands, bits 0-12 contain the
+ * register value in JEDEC format.
+ */
+static void set_ram_mode(uint16_t jedec_mode_bits)
+{
+ ASSERT(!(jedec_mode_bits & SDRAM_CAS_MASK));
+
+ uint32_t dram_cas_latency =
+ pci_read_config32(PCI_DEV(0, 0, 0), DRT) & DRT_CAS_MASK;
+
+ switch (dram_cas_latency) {
+ case DRT_CAS_2_5:
+ jedec_mode_bits |= SDRAM_CAS_2_5;
+ break;
+
+ case DRT_CAS_2_0:
+ jedec_mode_bits |= SDRAM_CAS_2_0;
+ break;
+
+ default:
+ BUG();
+ break;
+ }
+
+ do_ram_command(RAM_COMMAND_MRS, jedec_mode_bits);
+}
+
+/*-----------------------------------------------------------------------------
+DIMM-independant configuration functions:
+-----------------------------------------------------------------------------*/
+
+/**
+ * Configure the E7501's DRAM Row Boundary (DRB) registers for the memory
+ * present in the specified DIMM.
+ *
+ * @param dimm_log2_num_bits Specifies log2(number of bits) for each side of
+ * the DIMM.
+ * @param total_dram_64M_multiple Total DRAM in the system (as a multiple of
+ * 64 MB) for DIMMs < dimm_index.
+ * @param dimm_index Which DIMM pair is being processed
+ * (0..MAX_DIMM_SOCKETS_PER_CHANNEL).
+ * @return New multiple of 64 MB total DRAM in the system.
+ */
+static uint8_t configure_dimm_row_boundaries(struct dimm_size dimm_log2_num_bits, uint8_t total_dram_64M_multiple, unsigned dimm_index)
+{
+ int i;
+
+ ASSERT(dimm_index < MAX_DIMM_SOCKETS_PER_CHANNEL);
+
+ // DIMM sides must be at least 32 MB
+ ASSERT(dimm_log2_num_bits.side1 >= 28);
+ ASSERT((dimm_log2_num_bits.side2 == 0)
+ || (dimm_log2_num_bits.side2 >= 28));
+
+ // In dual-channel mode, we are called only once for each pair of DIMMs.
+ // Each time we process twice the capacity of a single DIMM.
+
+ // Convert single DIMM capacity to paired DIMM capacity
+ // (multiply by two ==> add 1 to log2)
+ dimm_log2_num_bits.side1++;
+ if (dimm_log2_num_bits.side2 > 0)
+ dimm_log2_num_bits.side2++;
+
+ // Add the capacity of side 1 this DIMM pair (as a multiple of 64 MB)
+ // to the total capacity of the system
+ // NOTE: 64 MB == 512 Mb, and log2(512 Mb) == 29
+
+ total_dram_64M_multiple += (1 << (dimm_log2_num_bits.side1 - 29));
+
+ // Configure the boundary address for the row on side 1
+ pci_write_config8(PCI_DEV(0, 0, 0), DRB_ROW_0 + (dimm_index << 1),
+ total_dram_64M_multiple);
+
+ // If the DIMMs are double-sided, add the capacity of side 2 this DIMM pair
+ // (as a multiple of 64 MB) to the total capacity of the system
+ if (dimm_log2_num_bits.side2 >= 29)
+ total_dram_64M_multiple +=
+ (1 << (dimm_log2_num_bits.side2 - 29));
+
+ // Configure the boundary address for the row (if any) on side 2
+ pci_write_config8(PCI_DEV(0, 0, 0), DRB_ROW_1 + (dimm_index << 1),
+ total_dram_64M_multiple);
+
+ // Update boundaries for rows subsequent to these.
+ // These settings will be overridden by a subsequent call if a populated physical slot exists
+
+ for (i = dimm_index + 1; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
+ pci_write_config8(PCI_DEV(0, 0, 0), DRB_ROW_0 + (i << 1),
+ total_dram_64M_multiple);
+ pci_write_config8(PCI_DEV(0, 0, 0), DRB_ROW_1 + (i << 1),
+ total_dram_64M_multiple);
+ }
+
+ return total_dram_64M_multiple;
+}
+
+/**
+ * Set the E7501's DRAM row boundary addresses & its Top Of Low Memory (TOLM).
+ *
+ * If necessary, set up a remap window so we don't waste DRAM that ordinarily
+ * would lie behind addresses reserved for memory-mapped I/O.
+ *
+ * @param ctrl PCI addresses of memory controller functions, and SMBus
+ * addresses of DIMM slots on the mainboard.
+ * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
+ */
+static void configure_e7501_ram_addresses(const struct mem_controller
+ *ctrl, uint8_t dimm_mask)
+{
+ int i;
+ uint8_t total_dram_64M_multiple = 0;
+
+ // Configure the E7501's DRAM row boundaries
+ // Start by zeroing out the temporary initial configuration
+ pci_write_config32(PCI_DEV(0, 0, 0), DRB_ROW_0, 0);
+ pci_write_config32(PCI_DEV(0, 0, 0), DRB_ROW_4, 0);
+
+ for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
+
+ uint16_t dimm_socket_address = ctrl->channel0[i];
+ struct dimm_size sz;
+
+ if (!(dimm_mask & (1 << i)))
+ continue; // This DIMM not present
+
+ sz = spd_get_dimm_size(dimm_socket_address);
+
+ RAM_DEBUG_MESSAGE("dimm size =");
+ RAM_DEBUG_HEX32((u32)sz.side1);
+ RAM_DEBUG_MESSAGE(" ");
+ RAM_DEBUG_HEX32((u32)sz.side2);
+ RAM_DEBUG_MESSAGE("\n");
+
+ if (sz.side1 == 0)
+ die("Bad SPD value\n");
+
+ total_dram_64M_multiple =
+ configure_dimm_row_boundaries(sz, total_dram_64M_multiple, i);
+ }
+
+ // Configure the Top Of Low Memory (TOLM) in the E7501
+ // This address must be a multiple of 128 MB that is less than 4 GB.
+ // NOTE: 16-bit wide TOLM register stores only the highest 5 bits of a 32-bit address
+ // in the highest 5 bits.
+
+ // We set TOLM to the smaller of 0xC0000000 (3 GB) or the total DRAM in the system.
+ // This reserves addresses from 0xC0000000 - 0xFFFFFFFF for non-DRAM purposes
+ // such as flash and memory-mapped I/O.
+
+ // If there is more than 3 GB of DRAM, we define a remap window which
+ // makes the DRAM "behind" the reserved region available above the top of physical
+ // memory.
+
+ // NOTE: 0xC0000000 / (64 MB) == 0x30
+
+ if (total_dram_64M_multiple <= 0x30) {
+
+ // <= 3 GB total RAM
+
+ /* I should really adjust all of this in C after I have resources
+ * to all of the pci devices.
+ */
+
+ // Round up to 128MB granularity
+ // SJM: Is "missing" 64 MB of memory a potential issue? Should this round down?
+
+ uint8_t total_dram_128M_multiple =
+ (total_dram_64M_multiple + 1) >> 1;
+
+ // Convert to high 16 bits of address
+ uint16_t top_of_low_memory =
+ total_dram_128M_multiple << 11;
+
+ pci_write_config16(PCI_DEV(0, 0, 0), TOLM,
+ top_of_low_memory);
+
+ } else {
+
+ // > 3 GB total RAM
+
+ // Set defaults for > 4 GB DRAM, i.e. remap a 1 GB (= 0x10 * 64 MB) range of memory
+ uint16_t remap_base = total_dram_64M_multiple; // A[25:0] == 0
+ uint16_t remap_limit = total_dram_64M_multiple + 0x10 - 1; // A[25:0] == 0xF
+
+ // Put TOLM at 3 GB
+
+ pci_write_config16(PCI_DEV(0, 0, 0), TOLM, 0xc000);
+
+ // Define a remap window to make the RAM that would appear from 3 GB - 4 GB
+ // visible just beyond 4 GB or the end of physical memory, whichever is larger
+ // NOTE: 16-bit wide REMAP registers store only the highest 10 bits of a 36-bit address,
+ // (i.e. a multiple of 64 MB) in the lowest 10 bits.
+ // NOTE: 0x100000000 / (64 MB) == 0x40
+
+ if (total_dram_64M_multiple < 0x40) {
+ remap_base = 0x40; // 0x100000000
+ remap_limit =
+ 0x40 + (total_dram_64M_multiple - 0x30) - 1;
+ }
+
+ pci_write_config16(PCI_DEV(0, 0, 0), REMAPBASE,
+ remap_base);
+ pci_write_config16(PCI_DEV(0, 0, 0), REMAPLIMIT,
+ remap_limit);
+ }
+}
+
+/**
+ * If we're configured to use ECC, initialize the SDRAM and clear the E7501's
+ * ECC error flags.
+ */
+static void initialize_ecc(void)
+{
+ uint32_t dram_controller_mode;
+
+ /* Test to see if ECC support is enabled */
+ dram_controller_mode = pci_read_config32(PCI_DEV(0, 0, 0), DRC);
+ dram_controller_mode >>= 20;
+ dram_controller_mode &= 3;
+ if (dram_controller_mode == 2) {
+
+ uint8_t byte;
+
+ RAM_DEBUG_MESSAGE("Initializing ECC state...\n");
+ /* Initialize ECC bits , use ECC zero mode (new to 7501) */
+ pci_write_config8(PCI_DEV(0, 0, 0), MCHCFGNS, 0x06);
+ pci_write_config8(PCI_DEV(0, 0, 0), MCHCFGNS, 0x07);
+
+ // Wait for scrub cycle to complete
+ do {
+ byte =
+ pci_read_config8(PCI_DEV(0, 0, 0), MCHCFGNS);
+ } while ((byte & 0x08) == 0);
+
+ pci_write_config8(PCI_DEV(0, 0, 0), MCHCFGNS, byte & 0xfc);
+ RAM_DEBUG_MESSAGE("ECC state initialized.\n");
+
+ /* Clear the ECC error bits */
+ pci_write_config8(PCI_DEV(0, 0, 1), DRAM_FERR, 0x03);
+ pci_write_config8(PCI_DEV(0, 0, 1), DRAM_NERR, 0x03);
+
+ // Clear DRAM Interface error bits (write-one-clear)
+ pci_write_config32(PCI_DEV(0, 0, 1), FERR_GLOBAL, 1 << 18);
+ pci_write_config32(PCI_DEV(0, 0, 1), NERR_GLOBAL, 1 << 18);
+
+ // Start normal ECC scrub
+ pci_write_config8(PCI_DEV(0, 0, 0), MCHCFGNS, 5);
+ }
+
+}
+
+/**
+ * Program the DRAM Timing register (DRT) of the E7501 (except for CAS#
+ * latency, which is assumed to have been programmed already), based on the
+ * parameters of the various installed DIMMs.
+ *
+ * @param ctrl PCI addresses of memory controller functions, and SMBus
+ * addresses of DIMM slots on the mainboard.
+ * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
+ */
+static void configure_e7501_dram_timing(const struct mem_controller *ctrl,
+ uint8_t dimm_mask)
+{
+ int i;
+ uint32_t dram_timing;
+ int value;
+ uint8_t slowest_row_precharge = 0;
+ uint8_t slowest_ras_cas_delay = 0;
+ uint8_t slowest_active_to_precharge_delay = 0;
+ uint32_t current_cas_latency =
+ pci_read_config32(PCI_DEV(0, 0, 0), DRT) & DRT_CAS_MASK;
+
+ // CAS# latency must be programmed beforehand
+ ASSERT((current_cas_latency == DRT_CAS_2_0)
+ || (current_cas_latency == DRT_CAS_2_5));
+
+ // Each timing parameter is determined by the slowest DIMM
+
+ for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
+ uint16_t dimm_socket_address;
+
+ if (!(dimm_mask & (1 << i)))
+ continue; // This DIMM not present
+
+ if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
+ dimm_socket_address = ctrl->channel0[i];
+ else
+ dimm_socket_address =
+ ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL];
+
+ value =
+ spd_read_byte(dimm_socket_address,
+ SPD_MIN_ROW_PRECHARGE_TIME);
+ if (value < 0)
+ goto hw_err;
+ if (value > slowest_row_precharge)
+ slowest_row_precharge = value;
+
+ value =
+ spd_read_byte(dimm_socket_address,
+ SPD_MIN_RAS_TO_CAS_DELAY);
+ if (value < 0)
+ goto hw_err;
+ if (value > slowest_ras_cas_delay)
+ slowest_ras_cas_delay = value;
+
+ value =
+ spd_read_byte(dimm_socket_address,
+ SPD_MIN_ACTIVE_TO_PRECHARGE_DELAY);
+ if (value < 0)
+ goto hw_err;
+ if (value > slowest_active_to_precharge_delay)
+ slowest_active_to_precharge_delay = value;
+ }
+
+ // NOTE for timing parameters:
+ // At 133 MHz, 1 clock == 7.52 ns
+
+ /* Read the initial state */
+ dram_timing = pci_read_config32(PCI_DEV(0, 0, 0), DRT);
+
+ /* Trp */
+
+ // E7501 supports only 2 or 3 clocks for tRP
+ if (slowest_row_precharge > ((22 << 2) | (2 << 0)))
+ die("unsupported DIMM tRP"); // > 22.5 ns: 4 or more clocks
+ else if (slowest_row_precharge > (15 << 2))
+ dram_timing &= ~(1 << 0); // > 15.0 ns: 3 clocks
+ else
+ dram_timing |= (1 << 0); // <= 15.0 ns: 2 clocks
+
+ /* Trcd */
+
+ // E7501 supports only 2 or 3 clocks for tRCD
+ // Use the same value for both read & write
+ dram_timing &= ~((1 << 3) | (3 << 1));
+ if (slowest_ras_cas_delay > ((22 << 2) | (2 << 0)))
+ die("unsupported DIMM tRCD"); // > 22.5 ns: 4 or more clocks
+ else if (slowest_ras_cas_delay > (15 << 2))
+ dram_timing |= (2 << 1); // > 15.0 ns: 3 clocks
+ else
+ dram_timing |= ((1 << 3) | (3 << 1)); // <= 15.0 ns: 2 clocks
+
+ /* Tras */
+
+ // E7501 supports only 5, 6, or 7 clocks for tRAS
+ // 5 clocks ~= 37.6 ns, 6 clocks ~= 45.1 ns, 7 clocks ~= 52.6 ns
+ dram_timing &= ~(3 << 9);
+
+ if (slowest_active_to_precharge_delay > 52)
+ die("unsupported DIMM tRAS"); // > 52 ns: 8 or more clocks
+ else if (slowest_active_to_precharge_delay > 45)
+ dram_timing |= (0 << 9); // 46-52 ns: 7 clocks
+ else if (slowest_active_to_precharge_delay > 37)
+ dram_timing |= (1 << 9); // 38-45 ns: 6 clocks
+ else
+ dram_timing |= (2 << 9); // < 38 ns: 5 clocks
+
+ /* Trd */
+
+ /* Set to a 7 clock read delay. This is for 133Mhz
+ * with a CAS latency of 2.5 if 2.0 a 6 clock
+ * delay is good */
+
+ dram_timing &= ~(7 << 24); // 7 clocks
+ if (current_cas_latency == DRT_CAS_2_0)
+ dram_timing |= (1 << 24); // 6 clocks
+
+ /*
+ * Back to Back Read-Write Turn Around
+ */
+ /* Set to a 5 clock back to back read to write turn around.
+ * 4 is a good delay if the CAS latency is 2.0 */
+
+ dram_timing &= ~(1 << 28); // 5 clocks
+ if (current_cas_latency == DRT_CAS_2_0)
+ dram_timing |= (1 << 28); // 4 clocks
+
+ pci_write_config32(PCI_DEV(0, 0, 0), DRT, dram_timing);
+
+ return;
+
+ hw_err:
+ die(SPD_ERROR);
+}
+
+/**
+ * Determine the shortest CAS# latency that the E7501 and all DIMMs have in
+ * common, and program the E7501 to use it.
+ *
+ * @param ctrl PCI addresses of memory controller functions, and SMBus
+ * addresses of DIMM slots on the mainboard.
+ * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
+ */
+static void configure_e7501_cas_latency(const struct mem_controller *ctrl,
+ uint8_t dimm_mask)
+{
+ int i;
+ int value;
+ uint32_t dram_timing;
+ uint16_t maybe_dram_read_timing;
+ uint32_t dword;
+
+ // CAS# latency bitmasks in SPD_ACCEPTABLE_CAS_LATENCIES format
+ // NOTE: E7501 supports only 2.0 and 2.5
+ uint32_t system_compatible_cas_latencies =
+ SPD_CAS_LATENCY_2_0 | SPD_CAS_LATENCY_2_5;
+ uint32_t current_cas_latency;
+ uint32_t dimm_compatible_cas_latencies;
+
+ for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
+
+ uint16_t dimm_socket_address;
+
+ if (!(dimm_mask & (1 << i)))
+ continue; // This DIMM not usable
+
+ if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
+ dimm_socket_address = ctrl->channel0[i];
+ else
+ dimm_socket_address =
+ ctrl->channel1[i - MAX_DIMM_SOCKETS_PER_CHANNEL];
+
+ value =
+ spd_read_byte(dimm_socket_address,
+ SPD_ACCEPTABLE_CAS_LATENCIES);
+ if (value < 0)
+ goto hw_err;
+
+ dimm_compatible_cas_latencies = value & 0x7f; // Start with all supported by DIMM
+ current_cas_latency = 1 << log2(dimm_compatible_cas_latencies); // Max supported by DIMM
+
+ // Can we support the highest CAS# latency?
+
+ value =
+ spd_read_byte(dimm_socket_address,
+ SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
+ if (value < 0)
+ goto hw_err;
+
+ // NOTE: At 133 MHz, 1 clock == 7.52 ns
+ if (value > 0x75) {
+ // Our bus is too fast for this CAS# latency
+ // Remove it from the bitmask of those supported by the DIMM that are compatible
+ dimm_compatible_cas_latencies &= ~current_cas_latency;
+ }
+ // Can we support the next-highest CAS# latency (max - 0.5)?
+
+ current_cas_latency >>= 1;
+ if (current_cas_latency != 0) {
+ value =
+ spd_read_byte(dimm_socket_address,
+ SPD_SDRAM_CYCLE_TIME_2ND);
+ if (value < 0)
+ goto hw_err;
+ if (value > 0x75)
+ dimm_compatible_cas_latencies &=
+ ~current_cas_latency;
+ }
+ // Can we support the next-highest CAS# latency (max - 1.0)?
+ current_cas_latency >>= 1;
+ if (current_cas_latency != 0) {
+ value =
+ spd_read_byte(dimm_socket_address,
+ SPD_SDRAM_CYCLE_TIME_3RD);
+ if (value < 0)
+ goto hw_err;
+ if (value > 0x75)
+ dimm_compatible_cas_latencies &=
+ ~current_cas_latency;
+ }
+ // Restrict the system to CAS# latencies compatible with this DIMM
+ system_compatible_cas_latencies &=
+ dimm_compatible_cas_latencies;
+
+ /* go to the next DIMM */
+ }
+
+ /* After all of the arduous calculation setup with the fastest
+ * cas latency I can use.
+ */
+
+ dram_timing = pci_read_config32(PCI_DEV(0, 0, 0), DRT);
+ dram_timing &= ~(DRT_CAS_MASK);
+
+ maybe_dram_read_timing =
+ pci_read_config16(PCI_DEV(0, 0, 0), MAYBE_DRDCTL);
+ maybe_dram_read_timing &= 0xF00C;
+
+ if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_0) {
+ dram_timing |= DRT_CAS_2_0;
+ maybe_dram_read_timing |= 0xBB1;
+ } else if (system_compatible_cas_latencies & SPD_CAS_LATENCY_2_5) {
+
+ uint32_t dram_row_attributes =
+ pci_read_config32(PCI_DEV(0, 0, 0), DRA);
+
+ dram_timing |= DRT_CAS_2_5;
+
+ // At CAS# 2.5, DRAM Read Timing (if that's what it its) appears to need a slightly
+ // different value if all DIMM slots are populated
+
+ if ((dram_row_attributes & 0xff)
+ && (dram_row_attributes & 0xff00)
+ && (dram_row_attributes & 0xff0000)
+ && (dram_row_attributes & 0xff000000)) {
+
+ // All slots populated
+ maybe_dram_read_timing |= 0x0882;
+ } else {
+ // Some unpopulated slots
+ maybe_dram_read_timing |= 0x0662;
+ }
+ } else
+ die("No CAS# latencies compatible with all DIMMs!!\n");
+
+ pci_write_config32(PCI_DEV(0, 0, 0), DRT, dram_timing);
+
+ /* set master DLL reset */
+ dword = pci_read_config32(PCI_DEV(0, 0, 0), 0x88);
+ dword |= (1 << 26);
+ pci_write_config32(PCI_DEV(0, 0, 0), 0x88, dword);
+
+ dword &= 0x0c0007ff; /* patch try register 88 is undocumented tnz */
+ dword |= 0xd2109800;
+
+ pci_write_config32(PCI_DEV(0, 0, 0), 0x88, dword);
+
+ pci_write_config16(PCI_DEV(0, 0, 0), MAYBE_DRDCTL,
+ maybe_dram_read_timing);
+
+ dword = pci_read_config32(PCI_DEV(0, 0, 0), 0x88); /* reset master DLL reset */
+ dword &= ~(1 << 26);
+ pci_write_config32(PCI_DEV(0, 0, 0), 0x88, dword);
+
+ return;
+
+ hw_err:
+ die(SPD_ERROR);
+}
+
+/**
+ * Configure the refresh interval so that we refresh no more often than
+ * required by the "most needy" DIMM. Also disable ECC if any of the DIMMs
+ * don't support it.
+ *
+ * @param ctrl PCI addresses of memory controller functions, and SMBus
+ * addresses of DIMM slots on the mainboard.
+ * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
+ */
+static void configure_e7501_dram_controller_mode(const struct
+ mem_controller *ctrl,
+ uint8_t dimm_mask)
+{
+ int i;
+
+ // Initial settings
+ uint32_t controller_mode =
+ pci_read_config32(PCI_DEV(0, 0, 0), DRC);
+ uint32_t system_refresh_mode = (controller_mode >> 8) & 7;
+
+ // Code below assumes that most aggressive settings are in
+ // force when we are called, either via E7501 reset defaults
+ // or by sdram_set_registers():
+ // - ECC enabled
+ // - No refresh
+
+ ASSERT((controller_mode & (3 << 20)) == (2 << 20)); // ECC
+ ASSERT(!(controller_mode & (7 << 8))); // Refresh
+
+ /* Walk through _all_ dimms and find the least-common denominator for:
+ * - ECC support
+ * - refresh rates
+ */
+
+ for (i = 0; i < MAX_DIMM_SOCKETS; i++) {
+
+ uint32_t dimm_refresh_mode;
+ int value;
+ uint16_t dimm_socket_address;
+
+ if (!(dimm_mask & (1 << i))) {
+ continue; // This DIMM not usable
+ }
+
+ if (i < MAX_DIMM_SOCKETS_PER_CHANNEL)
+ dimm_socket_address = ctrl->channel0[i];
+ else
+ dimm_socket_address =
+ ctrl->channel1[i -
+ MAX_DIMM_SOCKETS_PER_CHANNEL];
+
+ // Disable ECC mode if any one of the DIMMs does not support ECC
+ // SJM: Should we just die here? E7501 datasheet says non-ECC DIMMs aren't supported.
+
+ value =
+ spd_read_byte(dimm_socket_address,
+ SPD_DIMM_CONFIG_TYPE);
+ die_on_spd_error(value);
+ if (value != ERROR_SCHEME_ECC) {
+ controller_mode &= ~(3 << 20);
+ }
+
+ value = spd_read_byte(dimm_socket_address, SPD_REFRESH);
+ die_on_spd_error(value);
+ value &= 0x7f; // Mask off self-refresh bit
+ if (value > MAX_SPD_REFRESH_RATE) {
+ print_err("unsupported refresh rate\n");
+ continue;
+ }
+ // Get the appropriate E7501 refresh mode for this DIMM
+ dimm_refresh_mode = refresh_rate_map[value];
+ if (dimm_refresh_mode > 7) {
+ print_err("unsupported refresh rate\n");
+ continue;
+ }
+ // If this DIMM requires more frequent refresh than others,
+ // update the system setting
+ if (refresh_frequency[dimm_refresh_mode] >
+ refresh_frequency[system_refresh_mode])
+ system_refresh_mode = dimm_refresh_mode;
+
+#ifdef SUSPICIOUS_LOOKING_CODE
+// SJM NOTE: This code doesn't look right. SPD values are an order of magnitude smaller
+// than the clock period of the memory controller. Also, no other northbridge
+// looks at SPD_CMD_SIGNAL_INPUT_HOLD_TIME.
+
+ // Switch to 2 clocks for address/command if required by any one of the DIMMs
+ // NOTE: At 133 MHz, 1 clock == 7.52 ns
+ value =
+ spd_read_byte(dimm_socket_address,
+ SPD_CMD_SIGNAL_INPUT_HOLD_TIME);
+ die_on_spd_error(value);
+ if (value >= 0xa0) { /* At 133MHz this constant should be 0x75 */
+ controller_mode &= ~(1 << 16); /* Use two clock cyles instead of one */
+ }
+#endif
+
+ /* go to the next DIMM */
+ }
+
+ controller_mode |= (system_refresh_mode << 8);
+
+ // Configure the E7501
+ pci_write_config32(PCI_DEV(0, 0, 0), DRC, controller_mode);
+}
+
+/**
+ * Configure the E7501's DRAM Row Attributes (DRA) registers based on DIMM
+ * parameters read via SPD. This tells the controller the width of the SDRAM
+ * chips on each DIMM side (x4 or x8) and the page size of each DIMM side
+ * (4, 8, 16, or 32 KB).
+ *
+ * @param ctrl PCI addresses of memory controller functions, and SMBus
+ * addresses of DIMM slots on the mainboard.
+ * @param dimm_mask Bitmask of populated DIMMs, spd_get_supported_dimms().
+ */
+static void configure_e7501_row_attributes(const struct mem_controller
+ *ctrl, uint8_t dimm_mask)
+{
+ int i;
+ uint32_t row_attributes = 0;
+
+ for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
+
+ uint16_t dimm_socket_address = ctrl->channel0[i];
+ struct dimm_size page_size;
+ struct dimm_size sdram_width;
+
+ if (!(dimm_mask & (1 << i)))
+ continue; // This DIMM not usable
+
+ // Get the relevant parameters via SPD
+ page_size = sdram_spd_get_page_size(dimm_socket_address);
+ sdram_width = sdram_spd_get_width(dimm_socket_address);
+
+ // Update the DRAM Row Attributes.
+ // Page size is encoded as log2(page size in bits) - log2(8 Kb)
+ // NOTE: 8 Kb = 2^13
+ row_attributes |= (page_size.side1 - 13) << (i << 3); // Side 1 of each DIMM is an EVEN row
+
+ if (sdram_width.side2 > 0)
+ row_attributes |= (page_size.side2 - 13) << ((i << 3) + 4); // Side 2 is ODD
+
+ // Set x4 flags if appropriate
+ if (sdram_width.side1 == 4) {
+ row_attributes |= 0x08 << (i << 3);
+ }
+
+ if (sdram_width.side2 == 4) {
+ row_attributes |= 0x08 << ((i << 3) + 4);
+ }
+
+ /* go to the next DIMM */
+ }
+
+ /* Write the new row attributes register */
+ pci_write_config32(PCI_DEV(0, 0, 0), DRA, row_attributes);
+}
+
+/*
+ * Enable clock signals for populated DIMM sockets and disable them for
+ * unpopulated sockets (to reduce EMI).
+ *
+ * @param dimm_mask Bitmask of populated DIMMs, see spd_get_supported_dimms().
+ */
+static void enable_e7501_clocks(uint8_t dimm_mask)
+{
+ int i;
+ uint8_t clock_disable = pci_read_config8(PCI_DEV(0, 0, 0), CKDIS);
+
+ for (i = 0; i < MAX_DIMM_SOCKETS_PER_CHANNEL; i++) {
+
+ uint8_t socket_mask = 1 << i;
+
+ if (dimm_mask & socket_mask)
+ clock_disable &= ~socket_mask; // DIMM present, enable clock
+ else
+ clock_disable |= socket_mask; // DIMM absent, disable clock
+ }
+
+ pci_write_config8(PCI_DEV(0, 0, 0), CKDIS, clock_disable);
+}
+
+/* DIMM-dedependent configuration functions */
+
+/**
+ * DDR Receive FIFO RE-Sync (?)
+ */
+static void RAM_RESET_DDR_PTR(void)
+{
+ uint8_t byte;
+ byte = pci_read_config8(PCI_DEV(0, 0, 0), 0x88);
+ byte |= (1 << 4);
+ pci_write_config8(PCI_DEV(0, 0, 0), 0x88, byte);
+
+ byte = pci_read_config8(PCI_DEV(0, 0, 0), 0x88);
+ byte &= ~(1 << 4);
+ pci_write_config8(PCI_DEV(0, 0, 0), 0x88, byte);
+}
+
+/**
+ * Set E7501 registers that are either independent of DIMM specifics, or
+ * establish default settings that will be overridden when we learn the
+ * specifics.
+ *
+ * This sets PCI configuration registers to known good values based on the
+ * table 'constant_register_values', which are a triple of configuration
+ * register offset, mask, and bits to set.
+ */
+static void ram_set_d0f0_regs(void)
+{
+ int i;
+ int num_values = ARRAY_SIZE(constant_register_values);
+
+ ASSERT((num_values % 3) == 0); // Bad table?
+
+ for (i = 0; i < num_values; i += 3) {
+
+ uint32_t register_offset = constant_register_values[i];
+ uint32_t bits_to_mask = constant_register_values[i + 1];
+ uint32_t bits_to_set = constant_register_values[i + 2];
+ uint32_t register_value;
+
+ // It's theoretically possible to set values for something other than D0:F0,
+ // but it's not typically done here
+ ASSERT(!(register_offset & 0xFFFFFF00));
+
+ // bits_to_mask and bits_to_set should not reference the same bits
+ // Again, not strictly an error, but flagged as a potential bug
+ ASSERT((bits_to_mask & bits_to_set) == 0);
+
+ register_value =
+ pci_read_config32(PCI_DEV(0, 0, 0), register_offset);
+ register_value &= bits_to_mask;
+ register_value |= bits_to_set;
+
+ pci_write_config32(PCI_DEV(0, 0, 0), register_offset,
+ register_value);
+ }
+}
+
+/**
+ * Copy 64 bytes from one location to another.
+ *
+ * @param src_addr TODO
+ * @param dst_addr TODO
+ */
+static void write_8dwords(const uint32_t *src_addr, uint32_t dst_addr)
+{
+ int i;
+ for (i = 0; i < 8; i++) {
+ write32(dst_addr, *src_addr);
+ src_addr++;
+ dst_addr += sizeof(uint32_t);
+ }
+}
+
+/**
+ * Set the E7501's (undocumented) RCOMP registers.
+ *
+ * Per the 855PM datasheet and IXP2800 HW Initialization Reference Manual,
+ * RCOMP registers appear to affect drive strength, pullup/pulldown offset,
+ * and slew rate of various signal groups.
+ *
+ * Comments below are conjecture based on apparent similarity between the
+ * E7501 and these two chips.
+ */
+static void ram_set_rcomp_regs(void)
+{
+ uint32_t dword;
+ uint8_t maybe_strength_control;
+
+ RAM_DEBUG_MESSAGE("Setting RCOMP registers.\n");
+
+ /*enable access to the rcomp bar */
+ dword = pci_read_config32(PCI_DEV(0, 0, 0), MAYBE_MCHTST);
+ dword |= (1 << 22);
+ pci_write_config32(PCI_DEV(0, 0, 0), MAYBE_MCHTST, dword);
+
+ // Set the RCOMP MMIO base address
+ pci_write_config32(PCI_DEV(0, 0, 0), MAYBE_SMRBASE, RCOMP_MMIO);
+
+ // Block RCOMP updates while we configure the registers
+ dword = read32(RCOMP_MMIO + MAYBE_SMRCTL);
+ dword |= (1 << 9);
+ write32(RCOMP_MMIO + MAYBE_SMRCTL, dword);
+
+ /* Begin to write the RCOMP registers */
+
+ // Set CMD and DQ/DQS strength to 2x (?)
+ maybe_strength_control = read8(RCOMP_MMIO + MAYBE_DQCMDSTR) & 0x88;
+ maybe_strength_control |= 0x44;
+ write8(RCOMP_MMIO + MAYBE_DQCMDSTR, maybe_strength_control);
+
+ write_8dwords(maybe_2x_slew_table, RCOMP_MMIO + 0x80);
+ write16(RCOMP_MMIO + 0x42, 0);
+
+ write_8dwords(maybe_1x_slew_table, RCOMP_MMIO + 0x60);
+
+ // NOTE: some factory BIOS set 0x9088 here. Seems to work either way.
+ write16(RCOMP_MMIO + 0x40, 0);
+
+ // Set RCVEnOut# strength to 2x (?)
+ maybe_strength_control = read8(RCOMP_MMIO + MAYBE_RCVENSTR) & 0xF8;
+ maybe_strength_control |= 4;
+ write8(RCOMP_MMIO + MAYBE_RCVENSTR, maybe_strength_control);
+
+ write_8dwords(maybe_2x_slew_table, RCOMP_MMIO + 0x1c0);
+ write16(RCOMP_MMIO + 0x50, 0);
+
+ // Set CS# strength for x4 SDRAM to 2x (?)
+ maybe_strength_control = read8(RCOMP_MMIO + MAYBE_CSBSTR) & 0xF8;
+ maybe_strength_control |= 4;
+ write8(RCOMP_MMIO + MAYBE_CSBSTR, maybe_strength_control);
+
+ write_8dwords(maybe_2x_slew_table, RCOMP_MMIO + 0x140);
+ write16(RCOMP_MMIO + 0x48, 0);
+
+ // Set CKE strength for x4 SDRAM to 2x (?)
+ maybe_strength_control = read8(RCOMP_MMIO + MAYBE_CKESTR) & 0xF8;
+ maybe_strength_control |= 4;
+ write8(RCOMP_MMIO + MAYBE_CKESTR, maybe_strength_control);
+
+ write_8dwords(maybe_2x_slew_table, RCOMP_MMIO + 0xa0);
+ write16(RCOMP_MMIO + 0x44, 0);
+
+ // Set CK strength for x4 SDRAM to 1x (?)
+ maybe_strength_control = read8(RCOMP_MMIO + MAYBE_CKSTR) & 0xF8;
+ maybe_strength_control |= 1;
+ write8(RCOMP_MMIO + MAYBE_CKSTR, maybe_strength_control);
+
+ write_8dwords(maybe_pull_updown_offset_table, RCOMP_MMIO + 0x180);
+ write16(RCOMP_MMIO + 0x4c, 0);
+
+ write8(RCOMP_MMIO + 0x2c, 0xff);
+
+ // Set the digital filter length to 8 (?)
+ dword = read32(RCOMP_MMIO + MAYBE_SMRCTL);
+
+ // NOTE: Some factory BIOS don't do this.
+ // Doesn't seem to matter either way.
+ dword &= ~2;
+
+ dword |= 1;
+ write32(RCOMP_MMIO + MAYBE_SMRCTL, dword);
+
+ /* Wait 40 usec */
+ SLOW_DOWN_IO;
+
+ /* unblock updates */
+ dword = read32(RCOMP_MMIO + MAYBE_SMRCTL);
+ dword &= ~(1 << 9);
+ write32(RCOMP_MMIO + MAYBE_SMRCTL, dword);
+
+ // Force a RCOMP measurement cycle?
+ dword |= (1 << 8);
+ write32(RCOMP_MMIO + MAYBE_SMRCTL, dword);
+ dword &= ~(1 << 8);
+ write32(RCOMP_MMIO + MAYBE_SMRCTL, dword);
+
+ /* Wait 40 usec */
+ SLOW_DOWN_IO;
+
+ /*disable access to the rcomp bar */
+ dword = pci_read_config32(PCI_DEV(0, 0, 0), MAYBE_MCHTST);
+ dword &= ~(1 << 22);
+ pci_write_config32(PCI_DEV(0, 0, 0), MAYBE_MCHTST, dword);
+
+}
+
+/*-----------------------------------------------------------------------------
+Public interface:
+-----------------------------------------------------------------------------*/
+
+/**
+ * Go through the JEDEC initialization sequence for all DIMMs, then enable
+ * refresh and initialize ECC and memory to zero. Upon exit, SDRAM is up
+ * and running.
+ *
+ * @param controllers Not used.
+ * @param ctrl PCI addresses of memory controller functions, and SMBus
+ * addresses of DIMM slots on the mainboard.
+ */
+static void sdram_enable(int controllers,
+ const struct mem_controller *ctrl)
+{
+ uint8_t dimm_mask = pci_read_config16(PCI_DEV(0, 0, 0), SKPD);
+ uint32_t dram_controller_mode;
+
+ if (dimm_mask == 0)
+ return;
+
+ /* 1 & 2 Power up and start clocks */
+ RAM_DEBUG_MESSAGE("Ram Enable 1\n");
+ RAM_DEBUG_MESSAGE("Ram Enable 2\n");
+
+ /* A 200us delay is needed */
+ DO_DELAY; EXTRA_DELAY;
+
+ /* 3. Apply NOP */
+ RAM_DEBUG_MESSAGE("Ram Enable 3\n");
+ do_ram_command(RAM_COMMAND_NOP, 0);
+ EXTRA_DELAY;
+
+ /* 4 Precharge all */
+ RAM_DEBUG_MESSAGE("Ram Enable 4\n");
+ do_ram_command(RAM_COMMAND_PRECHARGE, 0);
+ EXTRA_DELAY;
+ /* wait until the all banks idle state... */
+
+ /* 5. Issue EMRS to enable DLL */
+ RAM_DEBUG_MESSAGE("Ram Enable 5\n");
+ do_ram_command(RAM_COMMAND_EMRS,
+ SDRAM_EXTMODE_DLL_ENABLE |
+ SDRAM_EXTMODE_DRIVE_NORMAL);
+ EXTRA_DELAY;
+
+ /* 6. Reset DLL */
+ RAM_DEBUG_MESSAGE("Ram Enable 6\n");
+ set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_DLL_RESET);
+ EXTRA_DELAY;
+ /* Ensure a 200us delay between the DLL reset in step 6 and the final
+ * mode register set in step 9.
+ * Infineon needs this before any other command is sent to the ram.
+ */
+ DO_DELAY; EXTRA_DELAY;
+
+ /* 7 Precharge all */
+ RAM_DEBUG_MESSAGE("Ram Enable 7\n");
+ do_ram_command(RAM_COMMAND_PRECHARGE, 0);
+ EXTRA_DELAY;
+
+ /* 8 Now we need 2 AUTO REFRESH / CBR cycles to be performed */
+ RAM_DEBUG_MESSAGE("Ram Enable 8\n");
+ do_ram_command(RAM_COMMAND_CBR, 0);
+ EXTRA_DELAY;
+ do_ram_command(RAM_COMMAND_CBR, 0);
+ EXTRA_DELAY;
+
+ /* And for good luck 6 more CBRs */
+ do_ram_command(RAM_COMMAND_CBR, 0);
+ EXTRA_DELAY;
+ do_ram_command(RAM_COMMAND_CBR, 0);
+ EXTRA_DELAY;
+ do_ram_command(RAM_COMMAND_CBR, 0);
+ EXTRA_DELAY;
+ do_ram_command(RAM_COMMAND_CBR, 0);
+ EXTRA_DELAY;
+ do_ram_command(RAM_COMMAND_CBR, 0);
+ EXTRA_DELAY;
+ do_ram_command(RAM_COMMAND_CBR, 0);
+ EXTRA_DELAY;
+
+ /* 9 mode register set */
+ RAM_DEBUG_MESSAGE("Ram Enable 9\n");
+ set_ram_mode(E7501_SDRAM_MODE | SDRAM_MODE_NORMAL);
+ EXTRA_DELAY;
+
+ /* 10 DDR Receive FIFO RE-Sync */
+ RAM_DEBUG_MESSAGE("Ram Enable 10\n");
+ RAM_RESET_DDR_PTR();
+ EXTRA_DELAY;
+
+ /* 11 normal operation */
+ RAM_DEBUG_MESSAGE("Ram Enable 11\n");
+ do_ram_command(RAM_COMMAND_NORMAL, 0);
+ EXTRA_DELAY;
+
+ // Reconfigure the row boundaries and Top of Low Memory
+ // to match the true size of the DIMMs
+ configure_e7501_ram_addresses(ctrl, dimm_mask);
+
+ /* Finally enable refresh */
+ dram_controller_mode = pci_read_config32(PCI_DEV(0, 0, 0), DRC);
+ dram_controller_mode |= (1 << 29);
+ pci_write_config32(PCI_DEV(0, 0, 0), DRC, dram_controller_mode);
+ EXTRA_DELAY;
+ initialize_ecc();
+
+ dram_controller_mode = pci_read_config32(PCI_DEV(0, 0, 0), DRC); /* FCS_EN */
+ dram_controller_mode |= (1 << 17); // NOTE: undocumented reserved bit
+ pci_write_config32(PCI_DEV(0, 0, 0), DRC, dram_controller_mode);
+
+ RAM_DEBUG_MESSAGE("Northbridge following SDRAM init:\n");
+ DUMPNORTH();
+}
+
+/**
+ * Configure SDRAM controller parameters that depend on characteristics of the
+ * DIMMs installed in the system. These characteristics are read from the
+ * DIMMs via the standard Serial Presence Detect (SPD) interface.
+ *
+ * @param ctrl PCI addresses of memory controller functions, and SMBus
+ * addresses of DIMM slots on the mainboard.
+ */
+static void sdram_set_spd_registers(const struct mem_controller *ctrl)
+{
+ uint8_t dimm_mask;
+
+ RAM_DEBUG_MESSAGE("Reading SPD data...\n");
+
+ dimm_mask = spd_get_supported_dimms(ctrl);
+
+ if (dimm_mask == 0) {
+ print_debug("No usable memory for this controller\n");
+ } else {
+ enable_e7501_clocks(dimm_mask);
+
+ RAM_DEBUG_MESSAGE("setting based on SPD data...\n");
+
+ configure_e7501_row_attributes(ctrl, dimm_mask);
+ configure_e7501_dram_controller_mode(ctrl, dimm_mask);
+ configure_e7501_cas_latency(ctrl, dimm_mask);
+ RAM_RESET_DDR_PTR();
+
+ configure_e7501_dram_timing(ctrl, dimm_mask);
+ DO_DELAY;
+ RAM_DEBUG_MESSAGE("done\n");
+ }
+
+ /* NOTE: configure_e7501_ram_addresses() is NOT called here.
+ * We want to keep the default 64 MB/row mapping until sdram_enable() is called,
+ * even though the default mapping is almost certainly incorrect.
+ * The default mapping makes it easy to initialize all of the DIMMs
+ * even if the total system memory is > 4 GB.
+ *
+ * Save the dimm_mask for when sdram_enable is called, so it can call
+ * configure_e7501_ram_addresses() without having to regenerate the bitmask
+ * of usable DIMMs.
+ */
+ pci_write_config16(PCI_DEV(0, 0, 0), SKPD, dimm_mask);
+}
+
+/**
+ * Do basic RAM setup that does NOT depend on serial presence detect
+ * information (i.e. independent of DIMM specifics).
+ *
+ * @param ctrl PCI addresses of memory controller functions, and SMBus
+ * addresses of DIMM slots on the mainboard.
+ */
+static void sdram_set_registers(const struct mem_controller *ctrl)
+{
+ RAM_DEBUG_MESSAGE("Northbridge prior to SDRAM init:\n");
+ DUMPNORTH();
+
+ ram_set_rcomp_regs();
+ ram_set_d0f0_regs();
+}