summaryrefslogtreecommitdiff
path: root/src/devices/oprom/yabel/mem.c
diff options
context:
space:
mode:
authorStefan Reinauer <stepan@coresystems.de>2010-03-16 23:07:29 +0000
committerStefan Reinauer <stepan@openbios.org>2010-03-16 23:07:29 +0000
commit859e94a30420c726a0043a00a73abb946cfb94c3 (patch)
tree37d7924bc8dbf8d28662f1d17c40acea811d9727 /src/devices/oprom/yabel/mem.c
parent11b1eb994cedef869618bff5368859d9b3c99b1d (diff)
it was reason for workaround rules already, and it's somewhat ugly:
util/x86emu is the only part of coreboot that is linked into coreboot itself that lives in util/. It's not a utility and it does not really belong where it lives. ---> svn mv util/x86emu src/devices/oprom plus necessary Makefile changes to get it building again Signed-off-by: Stefan Reinauer <stepan@coresystems.de> Acked-by: Ronald G. Minnich <rminnich@gmail.com> Acked-by: Peter Stuge <peter@stuge.se> git-svn-id: svn://svn.coreboot.org/coreboot/trunk@5228 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
Diffstat (limited to 'src/devices/oprom/yabel/mem.c')
-rw-r--r--src/devices/oprom/yabel/mem.c493
1 files changed, 493 insertions, 0 deletions
diff --git a/src/devices/oprom/yabel/mem.c b/src/devices/oprom/yabel/mem.c
new file mode 100644
index 0000000000..8bcc9e12c2
--- /dev/null
+++ b/src/devices/oprom/yabel/mem.c
@@ -0,0 +1,493 @@
+/******************************************************************************
+ * Copyright (c) 2004, 2008 IBM Corporation
+ * Copyright (c) 2009 Pattrick Hueper <phueper@hueper.net>
+ * All rights reserved.
+ * This program and the accompanying materials
+ * are made available under the terms of the BSD License
+ * which accompanies this distribution, and is available at
+ * http://www.opensource.org/licenses/bsd-license.php
+ *
+ * Contributors:
+ * IBM Corporation - initial implementation
+ *****************************************************************************/
+
+#include <types.h>
+#include "debug.h"
+#include "device.h"
+#include "x86emu/x86emu.h"
+#include "biosemu.h"
+#include "mem.h"
+#include "compat/time.h"
+
+// define a check for access to certain (virtual) memory regions (interrupt handlers, BIOS Data Area, ...)
+#if CONFIG_X86EMU_DEBUG
+static u8 in_check = 0; // to avoid recursion...
+u16 ebda_segment;
+u32 ebda_size;
+
+//TODO: these macros have grown so large, that they should be changed to an inline function,
+//just for the sake of readability...
+
+#define DEBUG_CHECK_VMEM_READ(_addr, _rval) \
+ if ((debug_flags & DEBUG_CHECK_VMEM_ACCESS) && (in_check == 0)) { \
+ in_check = 1; \
+ /* determine ebda_segment and size \
+ * since we are using my_rdx calls, make sure, this is after setting in_check! */ \
+ /* offset 03 in BDA is EBDA segment */ \
+ ebda_segment = my_rdw(0x40e); \
+ /* first value in ebda is size in KB */ \
+ ebda_size = my_rdb(ebda_segment << 4) * 1024; \
+ /* check Interrupt Vector Access (0000:0000h - 0000:0400h) */ \
+ if (_addr < 0x400) { \
+ DEBUG_PRINTF_CS_IP("%s: read from Interrupt Vector %x --> %x\n", \
+ __func__, _addr / 4, _rval); \
+ } \
+ /* access to BIOS Data Area (0000:0400h - 0000:0500h)*/ \
+ else if ((_addr >= 0x400) && (addr < 0x500)) { \
+ DEBUG_PRINTF_CS_IP("%s: read from BIOS Data Area: addr: %x --> %x\n", \
+ __func__, _addr, _rval); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* access to first 64k of memory... */ \
+ else if (_addr < 0x10000) { \
+ DEBUG_PRINTF_CS_IP("%s: read from segment 0000h: addr: %x --> %x\n", \
+ __func__, _addr, _rval); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* read from PMM_CONV_SEGMENT */ \
+ else if ((_addr <= ((PMM_CONV_SEGMENT << 4) | 0xffff)) && (_addr >= (PMM_CONV_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: read from PMM Segment %04xh: addr: %x --> %x\n", \
+ __func__, PMM_CONV_SEGMENT, _addr, _rval); \
+ /* HALT_SYS(); */ \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* read from PNP_DATA_SEGMENT */ \
+ else if ((_addr <= ((PNP_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (PNP_DATA_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: read from PnP Data Segment %04xh: addr: %x --> %x\n", \
+ __func__, PNP_DATA_SEGMENT, _addr, _rval); \
+ /* HALT_SYS(); */ \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* read from EBDA Segment */ \
+ else if ((_addr <= ((ebda_segment << 4) | (ebda_size - 1))) && (_addr >= (ebda_segment << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: read from Extended BIOS Data Area %04xh, size: %04x: addr: %x --> %x\n", \
+ __func__, ebda_segment, ebda_size, _addr, _rval); \
+ } \
+ /* read from BIOS_DATA_SEGMENT */ \
+ else if ((_addr <= ((BIOS_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (BIOS_DATA_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: read from BIOS Data Segment %04xh: addr: %x --> %x\n", \
+ __func__, BIOS_DATA_SEGMENT, _addr, _rval); \
+ /* for PMM debugging */ \
+ /*if (_addr == BIOS_DATA_SEGMENT << 4) { \
+ X86EMU_trace_on(); \
+ M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F; \
+ }*/ \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ in_check = 0; \
+ }
+#define DEBUG_CHECK_VMEM_WRITE(_addr, _val) \
+ if ((debug_flags & DEBUG_CHECK_VMEM_ACCESS) && (in_check == 0)) { \
+ in_check = 1; \
+ /* determine ebda_segment and size \
+ * since we are using my_rdx calls, make sure, this is after setting in_check! */ \
+ /* offset 03 in BDA is EBDA segment */ \
+ ebda_segment = my_rdw(0x40e); \
+ /* first value in ebda is size in KB */ \
+ ebda_size = my_rdb(ebda_segment << 4) * 1024; \
+ /* check Interrupt Vector Access (0000:0000h - 0000:0400h) */ \
+ if (_addr < 0x400) { \
+ DEBUG_PRINTF_CS_IP("%s: write to Interrupt Vector %x <-- %x\n", \
+ __func__, _addr / 4, _val); \
+ } \
+ /* access to BIOS Data Area (0000:0400h - 0000:0500h)*/ \
+ else if ((_addr >= 0x400) && (addr < 0x500)) { \
+ DEBUG_PRINTF_CS_IP("%s: write to BIOS Data Area: addr: %x <-- %x\n", \
+ __func__, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* access to first 64k of memory...*/ \
+ else if (_addr < 0x10000) { \
+ DEBUG_PRINTF_CS_IP("%s: write to segment 0000h: addr: %x <-- %x\n", \
+ __func__, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* write to PMM_CONV_SEGMENT... */ \
+ else if ((_addr <= ((PMM_CONV_SEGMENT << 4) | 0xffff)) && (_addr >= (PMM_CONV_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: write to PMM Segment %04xh: addr: %x <-- %x\n", \
+ __func__, PMM_CONV_SEGMENT, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* write to PNP_DATA_SEGMENT... */ \
+ else if ((_addr <= ((PNP_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (PNP_DATA_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: write to PnP Data Segment %04xh: addr: %x <-- %x\n", \
+ __func__, PNP_DATA_SEGMENT, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* write to EBDA Segment... */ \
+ else if ((_addr <= ((ebda_segment << 4) | (ebda_size - 1))) && (_addr >= (ebda_segment << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: write to Extended BIOS Data Area %04xh, size: %04x: addr: %x <-- %x\n", \
+ __func__, ebda_segment, ebda_size, _addr, _val); \
+ } \
+ /* write to BIOS_DATA_SEGMENT... */ \
+ else if ((_addr <= ((BIOS_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (BIOS_DATA_SEGMENT << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: write to BIOS Data Segment %04xh: addr: %x <-- %x\n", \
+ __func__, BIOS_DATA_SEGMENT, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ /* write to current CS segment... */ \
+ else if ((_addr < ((M.x86.R_CS << 4) | 0xffff)) && (_addr > (M.x86.R_CS << 4))) { \
+ DEBUG_PRINTF_CS_IP("%s: write to CS segment %04xh: addr: %x <-- %x\n", \
+ __func__, M.x86.R_CS, _addr, _val); \
+ /* dump registers */ \
+ /* x86emu_dump_xregs(); */ \
+ } \
+ in_check = 0; \
+ }
+#else
+#define DEBUG_CHECK_VMEM_READ(_addr, _rval)
+#define DEBUG_CHECK_VMEM_WRITE(_addr, _val)
+#endif
+
+void update_time(u32);
+
+#if !defined(CONFIG_YABEL_DIRECTHW) || (!CONFIG_YABEL_DIRECTHW)
+// read byte from memory
+u8
+my_rdb(u32 addr)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ u8 rval;
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%08x): access to VGA Memory\n",
+ __func__, addr);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ set_ci();
+ rval = *((u8 *) translated_addr);
+ clr_ci();
+ DEBUG_PRINTF_MEM("%s(%08x) VGA --> %02x\n", __func__, addr,
+ rval);
+ return rval;
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* read from virtual memory */
+ rval = *((u8 *) (M.mem_base + addr));
+ DEBUG_CHECK_VMEM_READ(addr, rval);
+ return rval;
+ }
+ return -1;
+}
+
+//read word from memory
+u16
+my_rdw(u32 addr)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ u16 rval;
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%08x): access to VGA Memory\n",
+ __func__, addr);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ // check for legacy memory, because of the remapping to BARs, the reads must
+ // be byte reads...
+ if ((addr >= 0xa0000) && (addr < 0xc0000)) {
+ //read bytes a using my_rdb, because of the remapping to BARs
+ //words may not be contiguous in memory, so we need to translate
+ //every address...
+ rval = ((u8) my_rdb(addr)) |
+ (((u8) my_rdb(addr + 1)) << 8);
+ } else {
+ if ((translated_addr & (u64) 0x1) == 0) {
+ // 16 bit aligned access...
+ set_ci();
+ rval = in16le((void *) translated_addr);
+ clr_ci();
+ } else {
+ // unaligned access, read single bytes
+ set_ci();
+ rval = (*((u8 *) translated_addr)) |
+ (*((u8 *) translated_addr + 1) << 8);
+ clr_ci();
+ }
+ }
+ DEBUG_PRINTF_MEM("%s(%08x) VGA --> %04x\n", __func__, addr,
+ rval);
+ return rval;
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* read from virtual memory */
+ rval = in16le((void *) (M.mem_base + addr));
+ DEBUG_CHECK_VMEM_READ(addr, rval);
+ return rval;
+ }
+ return -1;
+}
+
+//read long from memory
+u32
+my_rdl(u32 addr)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ u32 rval;
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%x): access to VGA Memory\n",
+ __func__, addr);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ // check for legacy memory, because of the remapping to BARs, the reads must
+ // be byte reads...
+ if ((addr >= 0xa0000) && (addr < 0xc0000)) {
+ //read bytes a using my_rdb, because of the remapping to BARs
+ //dwords may not be contiguous in memory, so we need to translate
+ //every address...
+ rval = ((u8) my_rdb(addr)) |
+ (((u8) my_rdb(addr + 1)) << 8) |
+ (((u8) my_rdb(addr + 2)) << 16) |
+ (((u8) my_rdb(addr + 3)) << 24);
+ } else {
+ if ((translated_addr & (u64) 0x3) == 0) {
+ // 32 bit aligned access...
+ set_ci();
+ rval = in32le((void *) translated_addr);
+ clr_ci();
+ } else {
+ // unaligned access, read single bytes
+ set_ci();
+ rval = (*((u8 *) translated_addr)) |
+ (*((u8 *) translated_addr + 1) << 8) |
+ (*((u8 *) translated_addr + 2) << 16) |
+ (*((u8 *) translated_addr + 3) << 24);
+ clr_ci();
+ }
+ }
+ DEBUG_PRINTF_MEM("%s(%08x) VGA --> %08x\n", __func__, addr,
+ rval);
+ //HALT_SYS();
+ return rval;
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* read from virtual memory */
+ rval = in32le((void *) (M.mem_base + addr));
+ switch (addr) {
+ case 0x46c:
+ //BDA Time Data, update it, before reading
+ update_time(rval);
+ rval = in32le((void *) (M.mem_base + addr));
+ break;
+ }
+ DEBUG_CHECK_VMEM_READ(addr, rval);
+ return rval;
+ }
+ return -1;
+}
+
+//write byte to memory
+void
+my_wrb(u32 addr, u8 val)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
+ __func__, addr, val);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ set_ci();
+ *((u8 *) translated_addr) = val;
+ clr_ci();
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* write to virtual memory */
+ DEBUG_CHECK_VMEM_WRITE(addr, val);
+ *((u8 *) (M.mem_base + addr)) = val;
+ }
+}
+
+void
+my_wrw(u32 addr, u16 val)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
+ __func__, addr, val);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ // check for legacy memory, because of the remapping to BARs, the reads must
+ // be byte reads...
+ if ((addr >= 0xa0000) && (addr < 0xc0000)) {
+ //read bytes a using my_rdb, because of the remapping to BARs
+ //words may not be contiguous in memory, so we need to translate
+ //every address...
+ my_wrb(addr, (u8) (val & 0x00FF));
+ my_wrb(addr + 1, (u8) ((val & 0xFF00) >> 8));
+ } else {
+ if ((translated_addr & (u64) 0x1) == 0) {
+ // 16 bit aligned access...
+ set_ci();
+ out16le((void *) translated_addr, val);
+ clr_ci();
+ } else {
+ // unaligned access, write single bytes
+ set_ci();
+ *((u8 *) translated_addr) =
+ (u8) (val & 0x00FF);
+ *((u8 *) translated_addr + 1) =
+ (u8) ((val & 0xFF00) >> 8);
+ clr_ci();
+ }
+ }
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* write to virtual memory */
+ DEBUG_CHECK_VMEM_WRITE(addr, val);
+ out16le((void *) (M.mem_base + addr), val);
+ }
+}
+void
+my_wrl(u32 addr, u32 val)
+{
+ unsigned long translated_addr = addr;
+ u8 translated = biosemu_dev_translate_address(&translated_addr);
+ if (translated != 0) {
+ //translation successfull, access VGA Memory (BAR or Legacy...)
+ DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
+ __func__, addr, val);
+ //DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
+ // check for legacy memory, because of the remapping to BARs, the reads must
+ // be byte reads...
+ if ((addr >= 0xa0000) && (addr < 0xc0000)) {
+ //read bytes a using my_rdb, because of the remapping to BARs
+ //words may not be contiguous in memory, so we need to translate
+ //every address...
+ my_wrb(addr, (u8) (val & 0x000000FF));
+ my_wrb(addr + 1, (u8) ((val & 0x0000FF00) >> 8));
+ my_wrb(addr + 2, (u8) ((val & 0x00FF0000) >> 16));
+ my_wrb(addr + 3, (u8) ((val & 0xFF000000) >> 24));
+ } else {
+ if ((translated_addr & (u64) 0x3) == 0) {
+ // 32 bit aligned access...
+ set_ci();
+ out32le((void *) translated_addr, val);
+ clr_ci();
+ } else {
+ // unaligned access, write single bytes
+ set_ci();
+ *((u8 *) translated_addr) =
+ (u8) (val & 0x000000FF);
+ *((u8 *) translated_addr + 1) =
+ (u8) ((val & 0x0000FF00) >> 8);
+ *((u8 *) translated_addr + 2) =
+ (u8) ((val & 0x00FF0000) >> 16);
+ *((u8 *) translated_addr + 3) =
+ (u8) ((val & 0xFF000000) >> 24);
+ clr_ci();
+ }
+ }
+ } else if (addr > M.mem_size) {
+ DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
+ __func__, addr);
+ //disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
+ HALT_SYS();
+ } else {
+ /* write to virtual memory */
+ DEBUG_CHECK_VMEM_WRITE(addr, val);
+ out32le((void *) (M.mem_base + addr), val);
+ }
+}
+#else
+u8
+my_rdb(u32 addr)
+{
+ return rdb(addr);
+}
+
+u16
+my_rdw(u32 addr)
+{
+ return rdw(addr);
+}
+
+u32
+my_rdl(u32 addr)
+{
+ return rdl(addr);
+}
+
+void
+my_wrb(u32 addr, u8 val)
+{
+ wrb(addr, val);
+}
+
+void
+my_wrw(u32 addr, u16 val)
+{
+ wrw(addr, val);
+}
+
+void
+my_wrl(u32 addr, u32 val)
+{
+ wrl(addr, val);
+}
+#endif
+
+//update time in BIOS Data Area
+//DWord at offset 0x6c is the timer ticks since midnight, timer is running at 18Hz
+//byte at 0x70 is timer overflow (set if midnight passed since last call to interrupt 1a function 00
+//cur_val is the current value, of offset 6c...
+void
+update_time(u32 cur_val)
+{
+ //for convenience, we let the start of timebase be at midnight, we currently dont support
+ //real daytime anyway...
+ u64 ticks_per_day = tb_freq * 60 * 24;
+ // at 18Hz a period is ~55ms, converted to ticks (tb_freq is ticks/second)
+ u32 period_ticks = (55 * tb_freq) / 1000;
+ u64 curr_time = get_time();
+ u64 ticks_since_midnight = curr_time % ticks_per_day;
+ u32 periods_since_midnight = ticks_since_midnight / period_ticks;
+ // if periods since midnight is smaller than last value, set overflow
+ // at BDA Offset 0x70
+ if (periods_since_midnight < cur_val) {
+ my_wrb(0x470, 1);
+ }
+ // store periods since midnight at BDA offset 0x6c
+ my_wrl(0x46c, periods_since_midnight);
+}