aboutsummaryrefslogtreecommitdiff
path: root/src/devices/device.c
diff options
context:
space:
mode:
authorStefan Reinauer <reinauer@chromium.org>2012-11-30 12:34:04 -0800
committerRonald G. Minnich <rminnich@gmail.com>2012-11-30 23:59:58 +0100
commit8d7115560d469f901d7d8ccb242d0b437e7394aa (patch)
tree0f1b4bd63c48a233c49d5a9ca15f08a1675d1ff4 /src/devices/device.c
parent4b6be985aae8bff84ae442e7be7669e93694fa1e (diff)
Rename devices -> device
to match src/include/device Change-Id: I5d0e5b4361c34881a3b81347aac48738cb5b9af0 Signed-off-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/1960 Tested-by: build bot (Jenkins) Reviewed-by: David Hendricks <dhendrix@chromium.org>
Diffstat (limited to 'src/devices/device.c')
-rw-r--r--src/devices/device.c1157
1 files changed, 0 insertions, 1157 deletions
diff --git a/src/devices/device.c b/src/devices/device.c
deleted file mode 100644
index 07bbc7a72a..0000000000
--- a/src/devices/device.c
+++ /dev/null
@@ -1,1157 +0,0 @@
-/*
- * This file is part of the coreboot project.
- *
- * It was originally based on the Linux kernel (arch/i386/kernel/pci-pc.c).
- *
- * Modifications are:
- * Copyright (C) 2003 Eric Biederman <ebiederm@xmission.com>
- * Copyright (C) 2003-2004 Linux Networx
- * (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
- * Copyright (C) 2003 Ronald G. Minnich <rminnich@gmail.com>
- * Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
- * Copyright (C) 2005-2006 Tyan
- * (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
- * Copyright (C) 2005-2006 Stefan Reinauer <stepan@openbios.org>
- * Copyright (C) 2009 Myles Watson <mylesgw@gmail.com>
- */
-
-/*
- * (c) 1999--2000 Martin Mares <mj@suse.cz>
- */
-
-/*
- * Lots of mods by Ron Minnich <rminnich@lanl.gov>, with
- * the final architecture guidance from Tom Merritt <tjm@codegen.com>.
- *
- * In particular, we changed from the one-pass original version to
- * Tom's recommended multiple-pass version. I wasn't sure about doing
- * it with multiple passes, until I actually started doing it and saw
- * the wisdom of Tom's recommendations...
- *
- * Lots of cleanups by Eric Biederman to handle bridges, and to
- * handle resource allocation for non-PCI devices.
- */
-
-#include <console/console.h>
-#include <arch/io.h>
-#include <device/device.h>
-#include <device/pci.h>
-#include <device/pci_ids.h>
-#include <stdlib.h>
-#include <string.h>
-#include <smp/spinlock.h>
-#if CONFIG_ARCH_X86
-#include <arch/ebda.h>
-#endif
-
-/** Linked list of ALL devices */
-struct device *all_devices = &dev_root;
-/** Pointer to the last device */
-extern struct device *last_dev;
-/** Linked list of free resources */
-struct resource *free_resources = NULL;
-
-/**
- * Initialize all chips of statically known devices.
- *
- * Will be called before bus enumeration to initialize chips stated in the
- * device tree.
- */
-void dev_initialize_chips(void)
-{
- struct device *dev;
-
- for (dev = all_devices; dev; dev = dev->next) {
- /* Initialize chip if we haven't yet. */
- if (dev->chip_ops && dev->chip_ops->init &&
- !dev->chip_ops->initialized) {
- dev->chip_ops->init(dev->chip_info);
- dev->chip_ops->initialized = 1;
- }
- }
-}
-
-DECLARE_SPIN_LOCK(dev_lock)
-
-#if CONFIG_GFXUMA
-/* IGD UMA memory */
-uint64_t uma_memory_base = 0;
-uint64_t uma_memory_size = 0;
-#endif
-
-/**
- * Allocate a new device structure.
- *
- * Allocte a new device structure and attach it to the device tree as a
- * child of the parent bus.
- *
- * @param parent Parent bus the newly created device should be attached to.
- * @param path Path to the device to be created.
- * @return Pointer to the newly created device structure.
- *
- * @see device_path
- */
-static device_t __alloc_dev(struct bus *parent, struct device_path *path)
-{
- device_t dev, child;
-
- /* Find the last child of our parent. */
- for (child = parent->children; child && child->sibling; /* */ )
- child = child->sibling;
-
- dev = malloc(sizeof(*dev));
- if (dev == 0)
- die("alloc_dev(): out of memory.\n");
-
- memset(dev, 0, sizeof(*dev));
- memcpy(&dev->path, path, sizeof(*path));
-
- /* By default devices are enabled. */
- dev->enabled = 1;
-
- /* Add the new device to the list of children of the bus. */
- dev->bus = parent;
- if (child)
- child->sibling = dev;
- else
- parent->children = dev;
-
- /* Append a new device to the global device list.
- * The list is used to find devices once everything is set up.
- */
- last_dev->next = dev;
- last_dev = dev;
-
- return dev;
-}
-
-device_t alloc_dev(struct bus *parent, struct device_path *path)
-{
- device_t dev;
- spin_lock(&dev_lock);
- dev = __alloc_dev(parent, path);
- spin_unlock(&dev_lock);
- return dev;
-}
-
-/**
- * See if a device structure already exists and if not allocate it.
- *
- * @param parent The bus to find the device on.
- * @param path The relative path from the bus to the appropriate device.
- * @return Pointer to a device structure for the device on bus at path.
- */
-device_t alloc_find_dev(struct bus *parent, struct device_path *path)
-{
- device_t child;
- spin_lock(&dev_lock);
- child = find_dev_path(parent, path);
- if (!child)
- child = __alloc_dev(parent, path);
- spin_unlock(&dev_lock);
- return child;
-}
-
-/**
- * Round a number up to an alignment.
- *
- * @param val The starting value.
- * @param roundup Alignment as a power of two.
- * @return Rounded up number.
- */
-static resource_t round(resource_t val, unsigned long pow)
-{
- resource_t mask;
- mask = (1ULL << pow) - 1ULL;
- val += mask;
- val &= ~mask;
- return val;
-}
-
-/**
- * Read the resources on all devices of a given bus.
- *
- * @param bus Bus to read the resources on.
- */
-static void read_resources(struct bus *bus)
-{
- struct device *curdev;
-
- printk(BIOS_SPEW, "%s %s bus %x link: %d\n", dev_path(bus->dev),
- __func__, bus->secondary, bus->link_num);
-
- /* Walk through all devices and find which resources they need. */
- for (curdev = bus->children; curdev; curdev = curdev->sibling) {
- struct bus *link;
-
- if (!curdev->enabled)
- continue;
-
- if (!curdev->ops || !curdev->ops->read_resources) {
- printk(BIOS_ERR, "%s missing read_resources\n",
- dev_path(curdev));
- continue;
- }
- curdev->ops->read_resources(curdev);
-
- /* Read in the resources behind the current device's links. */
- for (link = curdev->link_list; link; link = link->next)
- read_resources(link);
- }
- printk(BIOS_SPEW, "%s read_resources bus %d link: %d done\n",
- dev_path(bus->dev), bus->secondary, bus->link_num);
-}
-
-struct pick_largest_state {
- struct resource *last;
- struct device *result_dev;
- struct resource *result;
- int seen_last;
-};
-
-static void pick_largest_resource(void *gp, struct device *dev,
- struct resource *resource)
-{
- struct pick_largest_state *state = gp;
- struct resource *last;
-
- last = state->last;
-
- /* Be certain to pick the successor to last. */
- if (resource == last) {
- state->seen_last = 1;
- return;
- }
- if (resource->flags & IORESOURCE_FIXED)
- return; /* Skip it. */
- if (last && ((last->align < resource->align) ||
- ((last->align == resource->align) &&
- (last->size < resource->size)) ||
- ((last->align == resource->align) &&
- (last->size == resource->size) && (!state->seen_last)))) {
- return;
- }
- if (!state->result ||
- (state->result->align < resource->align) ||
- ((state->result->align == resource->align) &&
- (state->result->size < resource->size))) {
- state->result_dev = dev;
- state->result = resource;
- }
-}
-
-static struct device *largest_resource(struct bus *bus,
- struct resource **result_res,
- unsigned long type_mask,
- unsigned long type)
-{
- struct pick_largest_state state;
-
- state.last = *result_res;
- state.result_dev = NULL;
- state.result = NULL;
- state.seen_last = 0;
-
- search_bus_resources(bus, type_mask, type, pick_largest_resource,
- &state);
-
- *result_res = state.result;
- return state.result_dev;
-}
-
-/**
- * This function is the guts of the resource allocator.
- *
- * The problem.
- * - Allocate resource locations for every device.
- * - Don't overlap, and follow the rules of bridges.
- * - Don't overlap with resources in fixed locations.
- * - Be efficient so we don't have ugly strategies.
- *
- * The strategy.
- * - Devices that have fixed addresses are the minority so don't
- * worry about them too much. Instead only use part of the address
- * space for devices with programmable addresses. This easily handles
- * everything except bridges.
- *
- * - PCI devices are required to have their sizes and their alignments
- * equal. In this case an optimal solution to the packing problem
- * exists. Allocate all devices from highest alignment to least
- * alignment or vice versa. Use this.
- *
- * - So we can handle more than PCI run two allocation passes on bridges. The
- * first to see how large the resources are behind the bridge, and what
- * their alignment requirements are. The second to assign a safe address to
- * the devices behind the bridge. This allows us to treat a bridge as just
- * a device with a couple of resources, and not need to special case it in
- * the allocator. Also this allows handling of other types of bridges.
- *
- * @param bus The bus we are traversing.
- * @param bridge The bridge resource which must contain the bus' resources.
- * @param type_mask This value gets ANDed with the resource type.
- * @param type This value must match the result of the AND.
- * @return TODO
- */
-static void compute_resources(struct bus *bus, struct resource *bridge,
- unsigned long type_mask, unsigned long type)
-{
- struct device *dev;
- struct resource *resource;
- resource_t base;
- base = round(bridge->base, bridge->align);
-
- printk(BIOS_SPEW, "%s %s_%s: base: %llx size: %llx align: %d gran: %d"
- " limit: %llx\n", dev_path(bus->dev), __func__,
- (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
- "prefmem" : "mem", base, bridge->size, bridge->align,
- bridge->gran, bridge->limit);
-
- /* For each child which is a bridge, compute the resource needs. */
- for (dev = bus->children; dev; dev = dev->sibling) {
- struct resource *child_bridge;
-
- if (!dev->link_list)
- continue;
-
- /* Find the resources with matching type flags. */
- for (child_bridge = dev->resource_list; child_bridge;
- child_bridge = child_bridge->next) {
- struct bus* link;
-
- if (!(child_bridge->flags & IORESOURCE_BRIDGE)
- || (child_bridge->flags & type_mask) != type)
- continue;
-
- /*
- * Split prefetchable memory if combined. Many domains
- * use the same address space for prefetchable memory
- * and non-prefetchable memory. Bridges below them need
- * it separated. Add the PREFETCH flag to the type_mask
- * and type.
- */
- link = dev->link_list;
- while (link && link->link_num !=
- IOINDEX_LINK(child_bridge->index))
- link = link->next;
-
- if (link == NULL) {
- printk(BIOS_ERR, "link %ld not found on %s\n",
- IOINDEX_LINK(child_bridge->index),
- dev_path(dev));
- }
-
- compute_resources(link, child_bridge,
- type_mask | IORESOURCE_PREFETCH,
- type | (child_bridge->flags &
- IORESOURCE_PREFETCH));
- }
- }
-
- /* Remember we haven't found anything yet. */
- resource = NULL;
-
- /*
- * Walk through all the resources on the current bus and compute the
- * amount of address space taken by them. Take granularity and
- * alignment into account.
- */
- while ((dev = largest_resource(bus, &resource, type_mask, type))) {
-
- /* Size 0 resources can be skipped. */
- if (!resource->size)
- continue;
-
- /* Propagate the resource alignment to the bridge resource. */
- if (resource->align > bridge->align)
- bridge->align = resource->align;
-
- /* Propagate the resource limit to the bridge register. */
- if (bridge->limit > resource->limit)
- bridge->limit = resource->limit;
-
- /* Warn if it looks like APICs aren't declared. */
- if ((resource->limit == 0xffffffff) &&
- (resource->flags & IORESOURCE_ASSIGNED)) {
- printk(BIOS_ERR,
- "Resource limit looks wrong! (no APIC?)\n");
- printk(BIOS_ERR, "%s %02lx limit %08llx\n",
- dev_path(dev), resource->index, resource->limit);
- }
-
- if (resource->flags & IORESOURCE_IO) {
- /*
- * Don't allow potential aliases over the legacy PCI
- * expansion card addresses. The legacy PCI decodes
- * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
- * 0x00 - 0xff can be used out of each 0x400 block of
- * I/O space.
- */
- if ((base & 0x300) != 0) {
- base = (base & ~0x3ff) + 0x400;
- }
- /*
- * Don't allow allocations in the VGA I/O range.
- * PCI has special cases for that.
- */
- else if ((base >= 0x3b0) && (base <= 0x3df)) {
- base = 0x3e0;
- }
- }
- /* Base must be aligned. */
- base = round(base, resource->align);
- resource->base = base;
- base += resource->size;
-
- printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
- dev_path(dev), resource->index, resource->base,
- resource->base + resource->size - 1,
- (resource->flags & IORESOURCE_IO) ? "io" :
- (resource->flags & IORESOURCE_PREFETCH) ?
- "prefmem" : "mem");
- }
-
- /*
- * A PCI bridge resource does not need to be a power of two size, but
- * it does have a minimum granularity. Round the size up to that
- * minimum granularity so we know not to place something else at an
- * address postitively decoded by the bridge.
- */
- bridge->size = round(base, bridge->gran) -
- round(bridge->base, bridge->align);
-
- printk(BIOS_SPEW, "%s %s_%s: base: %llx size: %llx align: %d gran: %d"
- " limit: %llx done\n", dev_path(bus->dev), __func__,
- (bridge->flags & IORESOURCE_IO) ? "io" :
- (bridge->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem",
- base, bridge->size, bridge->align, bridge->gran, bridge->limit);
-}
-
-/**
- * This function is the second part of the resource allocator.
- *
- * See the compute_resources function for a more detailed explanation.
- *
- * This function assigns the resources a value.
- *
- * @param bus The bus we are traversing.
- * @param bridge The bridge resource which must contain the bus' resources.
- * @param type_mask This value gets ANDed with the resource type.
- * @param type This value must match the result of the AND.
- *
- * @see compute_resources
- */
-static void allocate_resources(struct bus *bus, struct resource *bridge,
- unsigned long type_mask, unsigned long type)
-{
- struct device *dev;
- struct resource *resource;
- resource_t base;
- base = bridge->base;
-
- printk(BIOS_SPEW, "%s %s_%s: base:%llx size:%llx align:%d gran:%d "
- "limit:%llx\n", dev_path(bus->dev), __func__,
- (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
- "prefmem" : "mem",
- base, bridge->size, bridge->align, bridge->gran, bridge->limit);
-
- /* Remember we haven't found anything yet. */
- resource = NULL;
-
- /*
- * Walk through all the resources on the current bus and allocate them
- * address space.
- */
- while ((dev = largest_resource(bus, &resource, type_mask, type))) {
-
- /* Propagate the bridge limit to the resource register. */
- if (resource->limit > bridge->limit)
- resource->limit = bridge->limit;
-
- /* Size 0 resources can be skipped. */
- if (!resource->size) {
- /* Set the base to limit so it doesn't confuse tolm. */
- resource->base = resource->limit;
- resource->flags |= IORESOURCE_ASSIGNED;
- continue;
- }
-
- if (resource->flags & IORESOURCE_IO) {
- /*
- * Don't allow potential aliases over the legacy PCI
- * expansion card addresses. The legacy PCI decodes
- * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
- * 0x00 - 0xff can be used out of each 0x400 block of
- * I/O space.
- */
- if ((base & 0x300) != 0) {
- base = (base & ~0x3ff) + 0x400;
- }
- /*
- * Don't allow allocations in the VGA I/O range.
- * PCI has special cases for that.
- */
- else if ((base >= 0x3b0) && (base <= 0x3df)) {
- base = 0x3e0;
- }
- }
-
- if ((round(base, resource->align) + resource->size - 1) <=
- resource->limit) {
- /* Base must be aligned. */
- base = round(base, resource->align);
- resource->base = base;
- resource->flags |= IORESOURCE_ASSIGNED;
- resource->flags &= ~IORESOURCE_STORED;
- base += resource->size;
- } else {
- printk(BIOS_ERR, "!! Resource didn't fit !!\n");
- printk(BIOS_ERR, " aligned base %llx size %llx "
- "limit %llx\n", round(base, resource->align),
- resource->size, resource->limit);
- printk(BIOS_ERR, " %llx needs to be <= %llx "
- "(limit)\n", (round(base, resource->align) +
- resource->size) - 1, resource->limit);
- printk(BIOS_ERR, " %s%s %02lx * [0x%llx - 0x%llx]"
- " %s\n", (resource->flags & IORESOURCE_ASSIGNED)
- ? "Assigned: " : "", dev_path(dev),
- resource->index, resource->base,
- resource->base + resource->size - 1,
- (resource->flags & IORESOURCE_IO) ? "io"
- : (resource->flags & IORESOURCE_PREFETCH)
- ? "prefmem" : "mem");
- }
-
- printk(BIOS_SPEW, "%s%s %02lx * [0x%llx - 0x%llx] %s\n",
- (resource->flags & IORESOURCE_ASSIGNED) ? "Assigned: "
- : "", dev_path(dev), resource->index, resource->base,
- resource->size ? resource->base + resource->size - 1 :
- resource->base, (resource->flags & IORESOURCE_IO)
- ? "io" : (resource->flags & IORESOURCE_PREFETCH)
- ? "prefmem" : "mem");
- }
-
- /*
- * A PCI bridge resource does not need to be a power of two size, but
- * it does have a minimum granularity. Round the size up to that
- * minimum granularity so we know not to place something else at an
- * address positively decoded by the bridge.
- */
-
- bridge->flags |= IORESOURCE_ASSIGNED;
-
- printk(BIOS_SPEW, "%s %s_%s: next_base: %llx size: %llx align: %d "
- "gran: %d done\n", dev_path(bus->dev), __func__,
- (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
- "prefmem" : "mem", base, bridge->size, bridge->align,
- bridge->gran);
-
- /* For each child which is a bridge, allocate_resources. */
- for (dev = bus->children; dev; dev = dev->sibling) {
- struct resource *child_bridge;
-
- if (!dev->link_list)
- continue;
-
- /* Find the resources with matching type flags. */
- for (child_bridge = dev->resource_list; child_bridge;
- child_bridge = child_bridge->next) {
- struct bus* link;
-
- if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
- (child_bridge->flags & type_mask) != type)
- continue;
-
- /*
- * Split prefetchable memory if combined. Many domains
- * use the same address space for prefetchable memory
- * and non-prefetchable memory. Bridges below them need
- * it separated. Add the PREFETCH flag to the type_mask
- * and type.
- */
- link = dev->link_list;
- while (link && link->link_num !=
- IOINDEX_LINK(child_bridge->index))
- link = link->next;
- if (link == NULL)
- printk(BIOS_ERR, "link %ld not found on %s\n",
- IOINDEX_LINK(child_bridge->index),
- dev_path(dev));
-
- allocate_resources(link, child_bridge,
- type_mask | IORESOURCE_PREFETCH,
- type | (child_bridge->flags &
- IORESOURCE_PREFETCH));
- }
- }
-}
-
-#if CONFIG_PCI_64BIT_PREF_MEM
-#define MEM_MASK (IORESOURCE_PREFETCH | IORESOURCE_MEM)
-#else
-#define MEM_MASK (IORESOURCE_MEM)
-#endif
-
-#define IO_MASK (IORESOURCE_IO)
-#define PREF_TYPE (IORESOURCE_PREFETCH | IORESOURCE_MEM)
-#define MEM_TYPE (IORESOURCE_MEM)
-#define IO_TYPE (IORESOURCE_IO)
-
-struct constraints {
- struct resource pref, io, mem;
-};
-
-static void constrain_resources(struct device *dev, struct constraints* limits)
-{
- struct device *child;
- struct resource *res;
- struct resource *lim;
- struct bus *link;
-
- printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));
-
- /* Constrain limits based on the fixed resources of this device. */
- for (res = dev->resource_list; res; res = res->next) {
- if (!(res->flags & IORESOURCE_FIXED))
- continue;
- if (!res->size) {
- /* It makes no sense to have 0-sized, fixed resources.*/
- printk(BIOS_ERR, "skipping %s@%lx fixed resource, "
- "size=0!\n", dev_path(dev), res->index);
- continue;
- }
-
- /* PREFETCH, MEM, or I/O - skip any others. */
- if ((res->flags & MEM_MASK) == PREF_TYPE)
- lim = &limits->pref;
- else if ((res->flags & MEM_MASK) == MEM_TYPE)
- lim = &limits->mem;
- else if ((res->flags & IO_MASK) == IO_TYPE)
- lim = &limits->io;
- else
- continue;
-
- /*
- * Is it a fixed resource outside the current known region?
- * If so, we don't have to consider it - it will be handled
- * correctly and doesn't affect current region's limits.
- */
- if (((res->base + res->size -1) < lim->base)
- || (res->base > lim->limit))
- continue;
-
- /*
- * Choose to be above or below fixed resources. This check is
- * signed so that "negative" amounts of space are handled
- * correctly.
- */
- if ((signed long long)(lim->limit - (res->base + res->size -1))
- > (signed long long)(res->base - lim->base))
- lim->base = res->base + res->size;
- else
- lim->limit = res->base -1;
- }
-
- /* Descend into every enabled child and look for fixed resources. */
- for (link = dev->link_list; link; link = link->next) {
- for (child = link->children; child; child = child->sibling) {
- if (child->enabled)
- constrain_resources(child, limits);
- }
- }
-}
-
-static void avoid_fixed_resources(struct device *dev)
-{
- struct constraints limits;
- struct resource *res;
-
- printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));
-
- /* Initialize constraints to maximum size. */
- limits.pref.base = 0;
- limits.pref.limit = 0xffffffffffffffffULL;
- limits.io.base = 0;
- limits.io.limit = 0xffffffffffffffffULL;
- limits.mem.base = 0;
- limits.mem.limit = 0xffffffffffffffffULL;
-
- /* Constrain the limits to dev's initial resources. */
- for (res = dev->resource_list; res; res = res->next) {
- if ((res->flags & IORESOURCE_FIXED))
- continue;
- printk(BIOS_SPEW, "%s:@%s %02lx limit %08llx\n", __func__,
- dev_path(dev), res->index, res->limit);
- if ((res->flags & MEM_MASK) == PREF_TYPE &&
- (res->limit < limits.pref.limit))
- limits.pref.limit = res->limit;
- if ((res->flags & MEM_MASK) == MEM_TYPE &&
- (res->limit < limits.mem.limit))
- limits.mem.limit = res->limit;
- if ((res->flags & IO_MASK) == IO_TYPE &&
- (res->limit < limits.io.limit))
- limits.io.limit = res->limit;
- }
-
- /* Look through the tree for fixed resources and update the limits. */
- constrain_resources(dev, &limits);
-
- /* Update dev's resources with new limits. */
- for (res = dev->resource_list; res; res = res->next) {
- struct resource *lim;
-
- if ((res->flags & IORESOURCE_FIXED))
- continue;
-
- /* PREFETCH, MEM, or I/O - skip any others. */
- if ((res->flags & MEM_MASK) == PREF_TYPE)
- lim = &limits.pref;
- else if ((res->flags & MEM_MASK) == MEM_TYPE)
- lim = &limits.mem;
- else if ((res->flags & IO_MASK) == IO_TYPE)
- lim = &limits.io;
- else
- continue;
-
- printk(BIOS_SPEW, "%s2: %s@%02lx limit %08llx\n", __func__,
- dev_path(dev), res->index, res->limit);
- printk(BIOS_SPEW, "\tlim->base %08llx lim->limit %08llx\n",
- lim->base, lim->limit);
-
- /* Is the resource outside the limits? */
- if (lim->base > res->base)
- res->base = lim->base;
- if (res->limit > lim->limit)
- res->limit = lim->limit;
- }
-}
-
-device_t vga_pri = 0;
-static void set_vga_bridge_bits(void)
-{
- /*
- * FIXME: Modify set_vga_bridge() so it is less PCI centric!
- * This function knows too much about PCI stuff, it should be just
- * an iterator/visitor.
- */
-
- /* FIXME: Handle the VGA palette snooping. */
- struct device *dev, *vga, *vga_onboard;
- struct bus *bus;
-
- bus = 0;
- vga = 0;
- vga_onboard = 0;
-
- dev = NULL;
- while ((dev = dev_find_class(PCI_CLASS_DISPLAY_VGA << 8, dev))) {
- if (!dev->enabled)
- continue;
-
- printk(BIOS_DEBUG, "found VGA at %s\n", dev_path(dev));
-
- if (dev->on_mainboard) {
- vga_onboard = dev;
- } else {
- vga = dev;
- }
-
- /* It isn't safe to enable all VGA cards. */
- dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
- }
-
- if (!vga)
- vga = vga_onboard;
-
- if (CONFIG_ONBOARD_VGA_IS_PRIMARY && vga_onboard)
- vga = vga_onboard;
-
- /* If we prefer plugin VGA over chipset VGA, the chipset might
- want to know. */
- if (!CONFIG_ONBOARD_VGA_IS_PRIMARY && (vga != vga_onboard) &&
- vga_onboard && vga_onboard->ops && vga_onboard->ops->disable) {
- printk(BIOS_DEBUG, "Use plugin graphics over integrated.\n");
- vga_onboard->ops->disable(vga_onboard);
- }
-
- if (vga) {
- /* VGA is first add-on card or the only onboard VGA. */
- printk(BIOS_DEBUG, "Setting up VGA for %s\n", dev_path(vga));
- /* All legacy VGA cards have MEM & I/O space registers. */
- vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
- vga_pri = vga;
- bus = vga->bus;
- }
-
- /* Now walk up the bridges setting the VGA enable. */
- while (bus) {
- printk(BIOS_DEBUG, "Setting PCI_BRIDGE_CTL_VGA for bridge %s\n",
- dev_path(bus->dev));
- bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA;
- bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus;
- }
-}
-
-/**
- * Assign the computed resources to the devices on the bus.
- *
- * Use the device specific set_resources() method to store the computed
- * resources to hardware. For bridge devices, the set_resources() method
- * has to recurse into every down stream buses.
- *
- * Mutual recursion:
- * assign_resources() -> device_operation::set_resources()
- * device_operation::set_resources() -> assign_resources()
- *
- * @param bus Pointer to the structure for this bus.
- */
-void assign_resources(struct bus *bus)
-{
- struct device *curdev;
-
- printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
- dev_path(bus->dev), bus->secondary, bus->link_num);
-
- for (curdev = bus->children; curdev; curdev = curdev->sibling) {
- if (!curdev->enabled || !curdev->resource_list)
- continue;
-
- if (!curdev->ops || !curdev->ops->set_resources) {
- printk(BIOS_ERR, "%s missing set_resources\n",
- dev_path(curdev));
- continue;
- }
- curdev->ops->set_resources(curdev);
- }
- printk(BIOS_SPEW, "%s assign_resources, bus %d link: %d\n",
- dev_path(bus->dev), bus->secondary, bus->link_num);
-}
-
-/**
- * Enable the resources for devices on a link.
- *
- * Enable resources of the device by calling the device specific
- * enable_resources() method.
- *
- * The parent's resources should be enabled first to avoid having enabling
- * order problem. This is done by calling the parent's enable_resources()
- * method before its childrens' enable_resources() methods.
- *
- * @param link The link whose devices' resources are to be enabled.
- */
-static void enable_resources(struct bus *link)
-{
- struct device *dev;
- struct bus *c_link;
-
- for (dev = link->children; dev; dev = dev->sibling) {
- if (dev->enabled && dev->ops && dev->ops->enable_resources)
- dev->ops->enable_resources(dev);
- }
-
- for (dev = link->children; dev; dev = dev->sibling) {
- for (c_link = dev->link_list; c_link; c_link = c_link->next)
- enable_resources(c_link);
- }
-}
-
-/**
- * Reset all of the devices on a bus and clear the bus's reset_needed flag.
- *
- * @param bus Pointer to the bus structure.
- * @return 1 if the bus was successfully reset, 0 otherwise.
- */
-int reset_bus(struct bus *bus)
-{
- if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) {
- bus->dev->ops->reset_bus(bus);
- bus->reset_needed = 0;
- return 1;
- }
- return 0;
-}
-
-/**
- * Scan for devices on a bus.
- *
- * If there are bridges on the bus, recursively scan the buses behind the
- * bridges. If the setting up and tuning of the bus causes a reset to be
- * required, reset the bus and scan it again.
- *
- * @param busdev Pointer to the bus device.
- * @param max Current bus number.
- * @return The maximum bus number found, after scanning all subordinate buses.
- */
-unsigned int scan_bus(struct device *busdev, unsigned int max)
-{
- unsigned int new_max;
- int do_scan_bus;
-
- if (!busdev || !busdev->enabled || !busdev->ops ||
- !busdev->ops->scan_bus) {
- return max;
- }
-
- do_scan_bus = 1;
- while (do_scan_bus) {
- struct bus *link;
- new_max = busdev->ops->scan_bus(busdev, max);
- do_scan_bus = 0;
- for (link = busdev->link_list; link; link = link->next) {
- if (link->reset_needed) {
- if (reset_bus(link))
- do_scan_bus = 1;
- else
- busdev->bus->reset_needed = 1;
- }
- }
- }
- return new_max;
-}
-
-/**
- * Determine the existence of devices and extend the device tree.
- *
- * Most of the devices in the system are listed in the mainboard devicetree.cb
- * file. The device structures for these devices are generated at compile
- * time by the config tool and are organized into the device tree. This
- * function determines if the devices created at compile time actually exist
- * in the physical system.
- *
- * For devices in the physical system but not listed in devicetree.cb,
- * the device structures have to be created at run time and attached to the
- * device tree.
- *
- * This function starts from the root device 'dev_root', scans the buses in
- * the system recursively, and modifies the device tree according to the
- * result of the probe.
- *
- * This function has no idea how to scan and probe buses and devices at all.
- * It depends on the bus/device specific scan_bus() method to do it. The
- * scan_bus() method also has to create the device structure and attach
- * it to the device tree.
- */
-void dev_enumerate(void)
-{
- struct device *root;
-
- printk(BIOS_INFO, "Enumerating buses...\n");
-
- root = &dev_root;
-
- show_all_devs(BIOS_SPEW, "Before device enumeration.");
- printk(BIOS_SPEW, "Compare with tree...\n");
- show_devs_tree(root, BIOS_SPEW, 0, 0);
-
- if (root->chip_ops && root->chip_ops->enable_dev)
- root->chip_ops->enable_dev(root);
-
- if (!root->ops || !root->ops->scan_bus) {
- printk(BIOS_ERR, "dev_root missing scan_bus operation");
- return;
- }
- scan_bus(root, 0);
- printk(BIOS_INFO, "done\n");
-}
-
-/**
- * Configure devices on the devices tree.
- *
- * Starting at the root of the device tree, travel it recursively in two
- * passes. In the first pass, we compute and allocate resources (ranges)
- * requried by each device. In the second pass, the resources ranges are
- * relocated to their final position and stored to the hardware.
- *
- * I/O resources grow upward. MEM resources grow downward.
- *
- * Since the assignment is hierarchical we set the values into the dev_root
- * struct.
- */
-void dev_configure(void)
-{
- struct resource *res;
- struct device *root;
- struct device *child;
-
- set_vga_bridge_bits();
-
- printk(BIOS_INFO, "Allocating resources...\n");
-
- root = &dev_root;
-
- /*
- * Each domain should create resources which contain the entire address
- * space for IO, MEM, and PREFMEM resources in the domain. The
- * allocation of device resources will be done from this address space.
- */
-
- /* Read the resources for the entire tree. */
-
- printk(BIOS_INFO, "Reading resources...\n");
- read_resources(root->link_list);
- printk(BIOS_INFO, "Done reading resources.\n");
-
- print_resource_tree(root, BIOS_SPEW, "After reading.");
-
- /* Compute resources for all domains. */
- for (child = root->link_list->children; child; child = child->sibling) {
- if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN))
- continue;
- for (res = child->resource_list; res; res = res->next) {
- if (res->flags & IORESOURCE_FIXED)
- continue;
- if (res->flags & IORESOURCE_PREFETCH) {
- compute_resources(child->link_list,
- res, MEM_MASK, PREF_TYPE);
- continue;
- }
- if (res->flags & IORESOURCE_MEM) {
- compute_resources(child->link_list,
- res, MEM_MASK, MEM_TYPE);
- continue;
- }
- if (res->flags & IORESOURCE_IO) {
- compute_resources(child->link_list,
- res, IO_MASK, IO_TYPE);
- continue;
- }
- }
- }
-
- /* For all domains. */
- for (child = root->link_list->children; child; child=child->sibling)
- if (child->path.type == DEVICE_PATH_PCI_DOMAIN)
- avoid_fixed_resources(child);
-
- /*
- * Now we need to adjust the resources. MEM resources need to start at
- * the highest address managable.
- */
- for (child = root->link_list->children; child; child = child->sibling) {
- if (child->path.type != DEVICE_PATH_PCI_DOMAIN)
- continue;
- for (res = child->resource_list; res; res = res->next) {
- if (!(res->flags & IORESOURCE_MEM) ||
- res->flags & IORESOURCE_FIXED)
- continue;
- res->base = resource_max(res);
- }
- }
-
- /* Store the computed resource allocations into device registers ... */
- printk(BIOS_INFO, "Setting resources...\n");
- for (child = root->link_list->children; child; child = child->sibling) {
- if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN))
- continue;
- for (res = child->resource_list; res; res = res->next) {
- if (res->flags & IORESOURCE_FIXED)
- continue;
- if (res->flags & IORESOURCE_PREFETCH) {
- allocate_resources(child->link_list,
- res, MEM_MASK, PREF_TYPE);
- continue;
- }
- if (res->flags & IORESOURCE_MEM) {
- allocate_resources(child->link_list,
- res, MEM_MASK, MEM_TYPE);
- continue;
- }
- if (res->flags & IORESOURCE_IO) {
- allocate_resources(child->link_list,
- res, IO_MASK, IO_TYPE);
- continue;
- }
- }
- }
- assign_resources(root->link_list);
- printk(BIOS_INFO, "Done setting resources.\n");
- print_resource_tree(root, BIOS_SPEW, "After assigning values.");
-
- printk(BIOS_INFO, "Done allocating resources.\n");
-}
-
-/**
- * Enable devices on the device tree.
- *
- * Starting at the root, walk the tree and enable all devices/bridges by
- * calling the device's enable_resources() method.
- */
-void dev_enable(void)
-{
- struct bus *link;
-
- printk(BIOS_INFO, "Enabling resources...\n");
-
- /* Now enable everything. */
- for (link = dev_root.link_list; link; link = link->next)
- enable_resources(link);
-
- printk(BIOS_INFO, "done.\n");
-}
-
-/**
- * Initialize a specific device.
- *
- * The parent should be initialized first to avoid having an ordering problem.
- * This is done by calling the parent's init() method before its childrens'
- * init() methods.
- *
- * @param dev The device to be initialized.
- */
-static void init_dev(struct device *dev)
-{
- if (!dev->enabled)
- return;
-
- if (!dev->initialized && dev->ops && dev->ops->init) {
- if (dev->path.type == DEVICE_PATH_I2C) {
- printk(BIOS_DEBUG, "smbus: %s[%d]->",
- dev_path(dev->bus->dev), dev->bus->link_num);
- }
-
- printk(BIOS_DEBUG, "%s init\n", dev_path(dev));
- dev->initialized = 1;
- dev->ops->init(dev);
- }
-}
-
-static void init_link(struct bus *link)
-{
- struct device *dev;
- struct bus *c_link;
-
- for (dev = link->children; dev; dev = dev->sibling)
- init_dev(dev);
-
- for (dev = link->children; dev; dev = dev->sibling) {
- for (c_link = dev->link_list; c_link; c_link = c_link->next)
- init_link(c_link);
- }
-}
-
-/**
- * Initialize all devices in the global device tree.
- *
- * Starting at the root device, call the device's init() method to do
- * device-specific setup, then call each child's init() method.
- */
-void dev_initialize(void)
-{
- struct bus *link;
-
- printk(BIOS_INFO, "Initializing devices...\n");
-
-#if CONFIG_ARCH_X86
- /* Ensure EBDA is prepared before Option ROMs. */
- setup_default_ebda();
-#endif
-
- /* First call the mainboard init. */
- init_dev(&dev_root);
-
- /* Now initialize everything. */
- for (link = dev_root.link_list; link; link = link->next)
- init_link(link);
-
- printk(BIOS_INFO, "Devices initialized\n");
- show_all_devs(BIOS_SPEW, "After init.");
-}