// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This example program is based on Simple_VertexShader.c from: // // Book: OpenGL(R) ES 2.0 Programming Guide // Authors: Aaftab Munshi, Dan Ginsburg, Dave Shreiner // ISBN-10: 0321502795 // ISBN-13: 9780321502797 // Publisher: Addison-Wesley Professional // URLs: http://safari.informit.com/9780321563835 // http://www.opengles-book.com // #include "spinning_cube.h" #include #include #include #include #include "GLES2/gl2.h" namespace { const float kPi = 3.14159265359f; int GenerateCube(GLuint *vbo_vertices, GLuint *vbo_indices) { const int num_indices = 36; const GLfloat cube_vertices[] = { -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, 0.5f, 0.5f, -0.5f, 0.5f, 0.5f, -0.5f, -0.5f, -0.5f, 0.5f, -0.5f, -0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, 0.5f, -0.5f, 0.5f, 0.5f, -0.5f, 0.5f, -0.5f, -0.5f, -0.5f, -0.5f, 0.5f, -0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, -0.5f, 0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, 0.5f, -0.5f, 0.5f, 0.5f, -0.5f, 0.5f, -0.5f, 0.5f, -0.5f, -0.5f, 0.5f, -0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, -0.5f, }; const GLushort cube_indices[] = { 0, 2, 1, 0, 3, 2, 4, 5, 6, 4, 6, 7, 8, 9, 10, 8, 10, 11, 12, 15, 14, 12, 14, 13, 16, 17, 18, 16, 18, 19, 20, 23, 22, 20, 22, 21 }; if (vbo_vertices) { glGenBuffers(1, vbo_vertices); glBindBuffer(GL_ARRAY_BUFFER, *vbo_vertices); glBufferData(GL_ARRAY_BUFFER, sizeof(cube_vertices), cube_vertices, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } if (vbo_indices) { glGenBuffers(1, vbo_indices); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *vbo_indices); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(cube_indices), cube_indices, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } return num_indices; } GLuint LoadShader(GLenum type, const char* shader_source) { GLuint shader = glCreateShader(type); glShaderSource(shader, 1, &shader_source, NULL); glCompileShader(shader); GLint compiled = 0; glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled); if (!compiled) { glDeleteShader(shader); return 0; } return shader; } GLuint LoadProgram(const char* vertext_shader_source, const char* fragment_shader_source) { GLuint vertex_shader = LoadShader(GL_VERTEX_SHADER, vertext_shader_source); if (!vertex_shader) return 0; GLuint fragment_shader = LoadShader(GL_FRAGMENT_SHADER, fragment_shader_source); if (!fragment_shader) { glDeleteShader(vertex_shader); return 0; } GLuint program_object = glCreateProgram(); glAttachShader(program_object, vertex_shader); glAttachShader(program_object, fragment_shader); glLinkProgram(program_object); glDeleteShader(vertex_shader); glDeleteShader(fragment_shader); GLint linked = 0; glGetProgramiv(program_object, GL_LINK_STATUS, &linked); if (!linked) { glDeleteProgram(program_object); return 0; } return program_object; } class ESMatrix { public: GLfloat m[4][4]; ESMatrix() { LoadZero(); } void LoadZero() { memset(this, 0x0, sizeof(ESMatrix)); } void LoadIdentity() { LoadZero(); m[0][0] = 1.0f; m[1][1] = 1.0f; m[2][2] = 1.0f; m[3][3] = 1.0f; } void Multiply(ESMatrix* a, ESMatrix* b) { ESMatrix result; for (int i = 0; i < 4; ++i) { result.m[i][0] = (a->m[i][0] * b->m[0][0]) + (a->m[i][1] * b->m[1][0]) + (a->m[i][2] * b->m[2][0]) + (a->m[i][3] * b->m[3][0]); result.m[i][1] = (a->m[i][0] * b->m[0][1]) + (a->m[i][1] * b->m[1][1]) + (a->m[i][2] * b->m[2][1]) + (a->m[i][3] * b->m[3][1]); result.m[i][2] = (a->m[i][0] * b->m[0][2]) + (a->m[i][1] * b->m[1][2]) + (a->m[i][2] * b->m[2][2]) + (a->m[i][3] * b->m[3][2]); result.m[i][3] = (a->m[i][0] * b->m[0][3]) + (a->m[i][1] * b->m[1][3]) + (a->m[i][2] * b->m[2][3]) + (a->m[i][3] * b->m[3][3]); } *this = result; } void Frustum(float left, float right, float bottom, float top, float near_z, float far_z) { float delta_x = right - left; float delta_y = top - bottom; float delta_z = far_z - near_z; if ((near_z <= 0.0f) || (far_z <= 0.0f) || (delta_z <= 0.0f) || (delta_y <= 0.0f) || (delta_y <= 0.0f)) return; ESMatrix frust; frust.m[0][0] = 2.0f * near_z / delta_x; frust.m[0][1] = frust.m[0][2] = frust.m[0][3] = 0.0f; frust.m[1][1] = 2.0f * near_z / delta_y; frust.m[1][0] = frust.m[1][2] = frust.m[1][3] = 0.0f; frust.m[2][0] = (right + left) / delta_x; frust.m[2][1] = (top + bottom) / delta_y; frust.m[2][2] = -(near_z + far_z) / delta_z; frust.m[2][3] = -1.0f; frust.m[3][2] = -2.0f * near_z * far_z / delta_z; frust.m[3][0] = frust.m[3][1] = frust.m[3][3] = 0.0f; Multiply(&frust, this); } void Perspective(float fov_y, float aspect, float near_z, float far_z) { GLfloat frustum_h = tanf(fov_y / 360.0f * kPi) * near_z; GLfloat frustum_w = frustum_h * aspect; Frustum(-frustum_w, frustum_w, -frustum_h, frustum_h, near_z, far_z); } void Translate(GLfloat tx, GLfloat ty, GLfloat tz) { m[3][0] += m[0][0] * tx + m[1][0] * ty + m[2][0] * tz; m[3][1] += m[0][1] * tx + m[1][1] * ty + m[2][1] * tz; m[3][2] += m[0][2] * tx + m[1][2] * ty + m[2][2] * tz; m[3][3] += m[0][3] * tx + m[1][3] * ty + m[2][3] * tz; } void Rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) { GLfloat mag = sqrtf(x * x + y * y + z * z); GLfloat sin_angle = sinf(angle * kPi / 180.0f); GLfloat cos_angle = cosf(angle * kPi / 180.0f); if (mag > 0.0f) { GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs; GLfloat one_minus_cos; ESMatrix rotation; x /= mag; y /= mag; z /= mag; xx = x * x; yy = y * y; zz = z * z; xy = x * y; yz = y * z; zx = z * x; xs = x * sin_angle; ys = y * sin_angle; zs = z * sin_angle; one_minus_cos = 1.0f - cos_angle; rotation.m[0][0] = (one_minus_cos * xx) + cos_angle; rotation.m[0][1] = (one_minus_cos * xy) - zs; rotation.m[0][2] = (one_minus_cos * zx) + ys; rotation.m[0][3] = 0.0F; rotation.m[1][0] = (one_minus_cos * xy) + zs; rotation.m[1][1] = (one_minus_cos * yy) + cos_angle; rotation.m[1][2] = (one_minus_cos * yz) - xs; rotation.m[1][3] = 0.0F; rotation.m[2][0] = (one_minus_cos * zx) - ys; rotation.m[2][1] = (one_minus_cos * yz) + xs; rotation.m[2][2] = (one_minus_cos * zz) + cos_angle; rotation.m[2][3] = 0.0F; rotation.m[3][0] = 0.0F; rotation.m[3][1] = 0.0F; rotation.m[3][2] = 0.0F; rotation.m[3][3] = 1.0F; Multiply(&rotation, this); } } }; float RotationForTimeDelta(float delta_time) { return delta_time * 40.0f; } float RotationForDragDistance(float drag_distance) { return drag_distance / 5; // Arbitrary damping. } } // namespace class SpinningCube::GLState { public: GLState(); void OnGLContextLost(); GLfloat angle_; // Survives losing the GL context. GLuint program_object_; GLint position_location_; GLint mvp_location_; GLuint vbo_vertices_; GLuint vbo_indices_; int num_indices_; ESMatrix mvp_matrix_; }; SpinningCube::GLState::GLState() : angle_(0) { OnGLContextLost(); } void SpinningCube::GLState::OnGLContextLost() { program_object_ = 0; position_location_ = 0; mvp_location_ = 0; vbo_vertices_ = 0; vbo_indices_ = 0; num_indices_ = 0; } SpinningCube::SpinningCube() : initialized_(false), width_(0), height_(0), state_(new GLState()), fling_multiplier_(1.0f), direction_(1) { state_->angle_ = 45.0f; } SpinningCube::~SpinningCube() { if (!initialized_) return; if (state_->vbo_vertices_) glDeleteBuffers(1, &state_->vbo_vertices_); if (state_->vbo_indices_) glDeleteBuffers(1, &state_->vbo_indices_); if (state_->program_object_) glDeleteProgram(state_->program_object_); delete state_; } void SpinningCube::Init(uint32_t width, uint32_t height) { width_ = width; height_ = height; if (!initialized_) { initialized_ = true; const char vertext_shader_source[] = "uniform mat4 u_mvpMatrix;\n" "attribute vec4 a_position;\n" "void main()\n" "{\n" " gl_Position = u_mvpMatrix * a_position;\n" "}\n"; const char fragment_shader_source[] = "precision mediump float;\n" "void main()\n" "{\n" " gl_FragColor = vec4( 0.0, 0.0, 1.0, 1.0 );\n" "}\n"; state_->program_object_ = LoadProgram( vertext_shader_source, fragment_shader_source); state_->position_location_ = glGetAttribLocation( state_->program_object_, "a_position"); state_->mvp_location_ = glGetUniformLocation( state_->program_object_, "u_mvpMatrix"); state_->num_indices_ = GenerateCube( &state_->vbo_vertices_, &state_->vbo_indices_); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); } } void SpinningCube::OnGLContextLost() { // TODO(yzshen): Is it correct that in this case we don't need to do cleanup // for program and buffers? initialized_ = false; height_ = 0; width_ = 0; state_->OnGLContextLost(); } void SpinningCube::SetFlingMultiplier(float drag_distance, float drag_time) { fling_multiplier_ = RotationForDragDistance(drag_distance) / RotationForTimeDelta(drag_time); } void SpinningCube::UpdateForTimeDelta(float delta_time) { state_->angle_ += RotationForTimeDelta(delta_time) * fling_multiplier_; if (state_->angle_ >= 360.0f) state_->angle_ -= 360.0f; // Arbitrary 50-step linear reduction in spin speed. if (fling_multiplier_ > 1.0f) { fling_multiplier_ = std::max(1.0f, fling_multiplier_ - (fling_multiplier_ - 1.0f) / 50); } Update(); } void SpinningCube::UpdateForDragDistance(float distance) { state_->angle_ += RotationForDragDistance(distance); if (state_->angle_ >= 360.0f ) state_->angle_ -= 360.0f; Update(); } void SpinningCube::Draw() { glViewport(0, 0, width_, height_); glClear(GL_COLOR_BUFFER_BIT); glUseProgram(state_->program_object_); glBindBuffer(GL_ARRAY_BUFFER, state_->vbo_vertices_); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, state_->vbo_indices_); glVertexAttribPointer(state_->position_location_, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), 0); glEnableVertexAttribArray(state_->position_location_); glUniformMatrix4fv(state_->mvp_location_, 1, GL_FALSE, (GLfloat*) &state_->mvp_matrix_.m[0][0]); glDrawElements(GL_TRIANGLES, state_->num_indices_, GL_UNSIGNED_SHORT, 0); } void SpinningCube::Update() { float aspect = static_cast(width_) / static_cast(height_); ESMatrix perspective; perspective.LoadIdentity(); perspective.Perspective(60.0f, aspect, 1.0f, 20.0f ); ESMatrix modelview; modelview.LoadIdentity(); modelview.Translate(0.0, 0.0, -2.0); modelview.Rotate(state_->angle_ * direction_, 1.0, 0.0, 1.0); state_->mvp_matrix_.Multiply(&modelview, &perspective); }