1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
/* SPDX-License-Identifier: GPL-2.0-only */
/* This file is part of the coreboot project. */
#include <arch/acpi.h>
#include <arch/acpigen.h>
#include <device/mmio.h>
#include <arch/smp/mpspec.h>
#include <cbmem.h>
#include <console/console.h>
#include <device/pci_ops.h>
#include <ec/google/chromeec/ec.h>
#include <intelblocks/cpulib.h>
#include <intelblocks/pmclib.h>
#include <intelblocks/acpi.h>
#include <soc/cpu.h>
#include <soc/iomap.h>
#include <soc/nvs.h>
#include <soc/pci_devs.h>
#include <soc/pm.h>
#include <soc/soc_chip.h>
#include <soc/systemagent.h>
#include <string.h>
#include <wrdd.h>
/*
* List of supported C-states in this processor.
*/
enum {
C_STATE_C0, /* 0 */
C_STATE_C1, /* 1 */
C_STATE_C1E, /* 2 */
C_STATE_C6_SHORT_LAT, /* 3 */
C_STATE_C6_LONG_LAT, /* 4 */
C_STATE_C7_SHORT_LAT, /* 5 */
C_STATE_C7_LONG_LAT, /* 6 */
C_STATE_C7S_SHORT_LAT, /* 7 */
C_STATE_C7S_LONG_LAT, /* 8 */
C_STATE_C8, /* 9 */
C_STATE_C9, /* 10 */
C_STATE_C10, /* 11 */
NUM_C_STATES
};
#define MWAIT_RES(state, sub_state) \
{ \
.addrl = (((state) << 4) | (sub_state)), \
.space_id = ACPI_ADDRESS_SPACE_FIXED, \
.bit_width = ACPI_FFIXEDHW_VENDOR_INTEL, \
.bit_offset = ACPI_FFIXEDHW_CLASS_MWAIT, \
.access_size = ACPI_FFIXEDHW_FLAG_HW_COORD, \
}
static const acpi_cstate_t cstate_map[NUM_C_STATES] = {
[C_STATE_C0] = {},
[C_STATE_C1] = {
.latency = 0,
.power = C1_POWER,
.resource = MWAIT_RES(0, 0),
},
[C_STATE_C1E] = {
.latency = 0,
.power = C1_POWER,
.resource = MWAIT_RES(0, 1),
},
[C_STATE_C6_SHORT_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(0),
.power = C6_POWER,
.resource = MWAIT_RES(2, 0),
},
[C_STATE_C6_LONG_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(0),
.power = C6_POWER,
.resource = MWAIT_RES(2, 1),
},
[C_STATE_C7_SHORT_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(0),
.power = C7_POWER,
.resource = MWAIT_RES(3, 0),
},
[C_STATE_C7_LONG_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(0),
.power = C7_POWER,
.resource = MWAIT_RES(3, 1),
},
[C_STATE_C7S_SHORT_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(0),
.power = C7_POWER,
.resource = MWAIT_RES(3, 2),
},
[C_STATE_C7S_LONG_LAT] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(0),
.power = C7_POWER,
.resource = MWAIT_RES(3, 3),
},
[C_STATE_C8] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(0),
.power = C8_POWER,
.resource = MWAIT_RES(4, 0),
},
[C_STATE_C9] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(0),
.power = C9_POWER,
.resource = MWAIT_RES(5, 0),
},
[C_STATE_C10] = {
.latency = C_STATE_LATENCY_FROM_LAT_REG(0),
.power = C10_POWER,
.resource = MWAIT_RES(6, 0),
},
};
static int cstate_set_non_s0ix[] = {
C_STATE_C1E,
C_STATE_C6_LONG_LAT,
C_STATE_C7S_LONG_LAT
};
static int cstate_set_s0ix[] = {
C_STATE_C1E,
C_STATE_C7S_LONG_LAT,
C_STATE_C10
};
acpi_cstate_t *soc_get_cstate_map(size_t *entries)
{
static acpi_cstate_t map[MAX(ARRAY_SIZE(cstate_set_s0ix),
ARRAY_SIZE(cstate_set_non_s0ix))];
int *set;
int i;
config_t *config = config_of_soc();
int is_s0ix_enable = config->s0ix_enable;
if (is_s0ix_enable) {
*entries = ARRAY_SIZE(cstate_set_s0ix);
set = cstate_set_s0ix;
} else {
*entries = ARRAY_SIZE(cstate_set_non_s0ix);
set = cstate_set_non_s0ix;
}
for (i = 0; i < *entries; i++) {
memcpy(&map[i], &cstate_map[set[i]], sizeof(acpi_cstate_t));
map[i].ctype = i + 1;
}
return map;
}
void soc_power_states_generation(int core_id, int cores_per_package)
{
config_t *config = config_of_soc();
if (config->eist_enable)
/* Generate P-state tables */
generate_p_state_entries(core_id, cores_per_package);
}
void soc_fill_fadt(acpi_fadt_t *fadt)
{
const uint16_t pmbase = ACPI_BASE_ADDRESS;
config_t *config = config_of_soc();
fadt->pm_tmr_blk = pmbase + PM1_TMR;
fadt->pm_tmr_len = 4;
fadt->x_pm_tmr_blk.space_id = 1;
fadt->x_pm_tmr_blk.bit_width = fadt->pm_tmr_len * 8;
fadt->x_pm_tmr_blk.bit_offset = 0;
fadt->x_pm_tmr_blk.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS;
fadt->x_pm_tmr_blk.addrl = pmbase + PM1_TMR;
fadt->x_pm_tmr_blk.addrh = 0x0;
if (config->s0ix_enable)
fadt->flags |= ACPI_FADT_LOW_PWR_IDLE_S0;
}
uint32_t soc_read_sci_irq_select(void)
{
uintptr_t pmc_bar = soc_read_pmc_base();
return read32((void *)pmc_bar + IRQ_REG);
}
static unsigned long soc_fill_dmar(unsigned long current)
{
const struct device *const igfx_dev = pcidev_path_on_root(SA_DEVFN_IGD);
uint64_t gfxvtbar = MCHBAR64(GFXVTBAR) & VTBAR_MASK;
bool gfxvten = MCHBAR32(GFXVTBAR) & VTBAR_ENABLED;
if (igfx_dev && igfx_dev->enabled && gfxvtbar && gfxvten) {
unsigned long tmp = current;
current += acpi_create_dmar_drhd(current, 0, 0, gfxvtbar);
current += acpi_create_dmar_ds_pci(current, 0, 2, 0);
acpi_dmar_drhd_fixup(tmp, current);
}
const struct device *const ipu_dev = pcidev_path_on_root(SA_DEVFN_IPU);
uint64_t ipuvtbar = MCHBAR64(IPUVTBAR) & VTBAR_MASK;
bool ipuvten = MCHBAR32(IPUVTBAR) & VTBAR_ENABLED;
if (ipu_dev && ipu_dev->enabled && ipuvtbar && ipuvten) {
unsigned long tmp = current;
current += acpi_create_dmar_drhd(current, 0, 0, ipuvtbar);
current += acpi_create_dmar_ds_pci(current, 0, 5, 0);
acpi_dmar_drhd_fixup(tmp, current);
}
uint64_t vtvc0bar = MCHBAR64(VTVC0BAR) & VTBAR_MASK;
bool vtvc0en = MCHBAR32(VTVC0BAR) & VTBAR_ENABLED;
if (vtvc0bar && vtvc0en) {
const unsigned long tmp = current;
current += acpi_create_dmar_drhd(current,
DRHD_INCLUDE_PCI_ALL, 0, vtvc0bar);
current += acpi_create_dmar_ds_ioapic(current,
2, V_P2SB_CFG_IBDF_BUS, V_P2SB_CFG_IBDF_DEV,
V_P2SB_CFG_IBDF_FUNC);
current += acpi_create_dmar_ds_msi_hpet(current,
0, V_P2SB_CFG_HBDF_BUS, V_P2SB_CFG_HBDF_DEV,
V_P2SB_CFG_HBDF_FUNC);
acpi_dmar_drhd_fixup(tmp, current);
}
/* TCSS Thunderbolt root ports */
for (unsigned int i = 0; i < MAX_TBT_PCIE_PORT; i++) {
uint64_t tbtbar = MCHBAR64(TBT0BAR + i * 8) & VTBAR_MASK;
bool tbten = MCHBAR32(TBT0BAR + i * 8) & VTBAR_ENABLED;
if (tbtbar && tbten) {
unsigned long tmp = current;
current += acpi_create_dmar_drhd(current, 0, 0, tbtbar);
current += acpi_create_dmar_ds_pci_br(current, 0, 7, i);
acpi_dmar_drhd_fixup(tmp, current);
}
}
/* Add RMRR entry */
const unsigned long tmp = current;
current += acpi_create_dmar_rmrr(current, 0,
sa_get_gsm_base(), sa_get_tolud_base() - 1);
current += acpi_create_dmar_ds_pci(current, 0, 2, 0);
acpi_dmar_rmrr_fixup(tmp, current);
return current;
}
unsigned long sa_write_acpi_tables(struct device *dev, unsigned long current,
struct acpi_rsdp *rsdp)
{
acpi_dmar_t *const dmar = (acpi_dmar_t *)current;
/*
* Create DMAR table only if we have VT-d capability and FSP does not override its
* feature.
*/
if ((pci_read_config32(dev, CAPID0_A) & VTD_DISABLE) ||
!(MCHBAR32(VTVC0BAR) & VTBAR_ENABLED))
return current;
printk(BIOS_DEBUG, "ACPI: * DMAR\n");
acpi_create_dmar(dmar, DMAR_INTR_REMAP | DMA_CTRL_PLATFORM_OPT_IN_FLAG, soc_fill_dmar);
current += dmar->header.length;
current = acpi_align_current(current);
acpi_add_table(rsdp, dmar);
return current;
}
void acpi_create_gnvs(struct global_nvs_t *gnvs)
{
config_t *config = config_of_soc();
/* Set unknown wake source */
gnvs->pm1i = -1;
/* CPU core count */
gnvs->pcnt = dev_count_cpu();
if (CONFIG(CONSOLE_CBMEM))
/* Update the mem console pointer. */
gnvs->cbmc = (uintptr_t)cbmem_find(CBMEM_ID_CONSOLE);
if (CONFIG(CHROMEOS)) {
/* Initialize Verified Boot data */
chromeos_init_chromeos_acpi(&(gnvs->chromeos));
if (CONFIG(EC_GOOGLE_CHROMEEC)) {
gnvs->chromeos.vbt2 = google_ec_running_ro() ?
ACTIVE_ECFW_RO : ACTIVE_ECFW_RW;
} else
gnvs->chromeos.vbt2 = ACTIVE_ECFW_RO;
}
/* Enable DPTF based on mainboard configuration */
gnvs->dpte = config->dptf_enable;
/* Fill in the Wifi Region id */
gnvs->cid1 = wifi_regulatory_domain();
/* Set USB2/USB3 wake enable bitmaps. */
gnvs->u2we = config->usb2_wake_enable_bitmap;
gnvs->u3we = config->usb3_wake_enable_bitmap;
/* Fill in Above 4GB MMIO resource */
sa_fill_gnvs(gnvs);
}
uint32_t acpi_fill_soc_wake(uint32_t generic_pm1_en,
const struct chipset_power_state *ps)
{
/*
* WAK_STS bit is set when the system is in one of the sleep states
* (via the SLP_EN bit) and an enabled wake event occurs. Upon setting
* this bit, the PMC will transition the system to the ON state and
* can only be set by hardware and can only be cleared by writing a one
* to this bit position.
*/
generic_pm1_en |= WAK_STS | RTC_EN | PWRBTN_EN;
return generic_pm1_en;
}
int soc_madt_sci_irq_polarity(int sci)
{
return MP_IRQ_POLARITY_HIGH;
}
|