summaryrefslogtreecommitdiff
path: root/src/lib/fit_payload.c
blob: aea1ba75e9a65b89a785f847b9a770679a4746d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/* SPDX-License-Identifier: GPL-2.0-only */

#include <commonlib/bsd/compression.h>
#include <console/console.h>
#include <bootmem.h>
#include <cbmem.h>
#include <device/resource.h>
#include <stdlib.h>
#include <commonlib/region.h>
#include <fit.h>
#include <program_loading.h>
#include <timestamp.h>
#include <string.h>
#include <lib.h>
#include <boardid.h>

/* Pack the device_tree and place it at given position. */
static void pack_fdt(struct region *fdt, struct device_tree *dt)
{
	printk(BIOS_INFO, "FIT: Flattening FDT to %p\n",
	       (void *)fdt->offset);

	dt_flatten(dt, (void *)fdt->offset);
	prog_segment_loaded(fdt->offset, fdt->size, 0);
}

/**
 * Extract a node to given regions.
 * Returns true on error, false on success.
 */
static bool extract(struct region *region, struct fit_image_node *node)
{
	void *dst = (void *)region->offset;
	const char *comp_name;
	size_t true_size = 0;

	if (node->size == 0) {
		printk(BIOS_ERR, "The %s size is 0\n", node->name);
		return true;
	}

	switch (node->compression) {
	case CBFS_COMPRESS_NONE:
		comp_name = "Relocating uncompressed";
		break;
	case CBFS_COMPRESS_LZMA:
		comp_name = "Decompressing LZMA";
		break;
	case CBFS_COMPRESS_LZ4:
		comp_name = "Decompressing LZ4";
		break;
	default:
		printk(BIOS_ERR, "Unsupported compression\n");
		return true;
	}

	printk(BIOS_INFO, "FIT: %s %s to %p\n", comp_name, node->name, dst);

	switch (node->compression) {
	case CBFS_COMPRESS_NONE:
		memcpy(dst, node->data, node->size);
		true_size = node->size;
		break;
	case CBFS_COMPRESS_LZMA:
		timestamp_add_now(TS_ULZMA_START);
		true_size = ulzman(node->data, node->size, dst, region->size);
		timestamp_add_now(TS_ULZMA_END);
		break;
	case CBFS_COMPRESS_LZ4:
		timestamp_add_now(TS_ULZ4F_START);
		true_size = ulz4fn(node->data, node->size, dst, region->size);
		timestamp_add_now(TS_ULZ4F_END);
		break;
	default:
		return true;
	}

	if (!true_size) {
		printk(BIOS_ERR, "%s decompression failed!\n",
		       comp_name);
		return true;
	}

	return false;
}

static struct device_tree *unpack_fdt(struct fit_image_node *image_node)
{
	void *data = image_node->data;

	if (image_node->compression != CBFS_COMPRESS_NONE) {
		/* TODO: This is an ugly heuristic for how much the size will
		   expand on decompression, fix once FIT images support storing
		   the real uncompressed size. */
		struct region r = { .offset = 0, .size = image_node->size * 5 };
		data = malloc(r.size);
		r.offset = (uintptr_t)data;
		if (!data || extract(&r, image_node))
			return NULL;
	}

	return fdt_unflatten(data);
}

/**
 * Add coreboot tables, CBMEM information and optional board specific strapping
 * IDs to the device tree loaded via FIT.
 */
static void add_cb_fdt_data(struct device_tree *tree)
{
	u32 addr_cells = 1, size_cells = 1;
	u64 reg_addrs[2], reg_sizes[2];
	void *baseptr;
	size_t size;

	static const char *firmware_path[] = {"firmware", NULL};
	struct device_tree_node *firmware_node = dt_find_node(tree->root,
		firmware_path, &addr_cells, &size_cells, 1);

	/* Need to add 'ranges' to the intermediate node to make 'reg' work. */
	dt_add_bin_prop(firmware_node, "ranges", NULL, 0);

	static const char *coreboot_path[] = {"coreboot", NULL};
	struct device_tree_node *coreboot_node = dt_find_node(firmware_node,
		coreboot_path, &addr_cells, &size_cells, 1);

	dt_add_string_prop(coreboot_node, "compatible", "coreboot");

	/* Fetch CB tables from cbmem */
	void *cbtable = cbmem_find(CBMEM_ID_CBTABLE);
	if (!cbtable) {
		printk(BIOS_WARNING, "FIT: No coreboot table found!\n");
		return;
	}

	/* First 'reg' address range is the coreboot table. */
	const struct lb_header *header = cbtable;
	reg_addrs[0] = (uintptr_t)header;
	reg_sizes[0] = header->header_bytes + header->table_bytes;

	/* Second is the CBMEM area (which usually includes the coreboot
	table). */
	if (cbmem_get_region(&baseptr, &size)) {
		printk(BIOS_WARNING, "FIT: CBMEM pointer/size not found!\n");
		return;
	}

	reg_addrs[1] = (uintptr_t)baseptr;
	reg_sizes[1] = size;

	dt_add_reg_prop(coreboot_node, reg_addrs, reg_sizes, 2, addr_cells,
			size_cells);

	/* Expose board ID, SKU ID, and RAM code to payload.*/
	if (board_id() != UNDEFINED_STRAPPING_ID)
		dt_add_u32_prop(coreboot_node, "board-id", board_id());

	if (sku_id() != UNDEFINED_STRAPPING_ID)
		dt_add_u32_prop(coreboot_node, "sku-id", sku_id());

	if (ram_code() != UNDEFINED_STRAPPING_ID)
		dt_add_u32_prop(coreboot_node, "ram-code", ram_code());
}

/*
 * Parse the uImage FIT, choose a configuration and extract images.
 */
void fit_payload(struct prog *payload, void *data)
{
	struct device_tree *dt = NULL;
	struct region kernel = {0}, fdt = {0}, initrd = {0};

	printk(BIOS_INFO, "FIT: Examine payload %s\n", payload->name);

	struct fit_config_node *config = fit_load(data);

	if (!config) {
		printk(BIOS_ERR, "Could not load FIT\n");
		return;
	}

	dt = unpack_fdt(config->fdt);
	if (!dt) {
		printk(BIOS_ERR, "Failed to unflatten the FDT.\n");
		return;
	}

	struct fit_overlay_chain *chain;
	list_for_each(chain, config->overlays, list_node) {
		struct device_tree *overlay = unpack_fdt(chain->overlay);
		if (!overlay || dt_apply_overlay(dt, overlay)) {
			printk(BIOS_ERR, "Failed to apply overlay %s!\n",
			       chain->overlay->name);
		}
	}

	dt_apply_fixups(dt);

	/* Insert coreboot specific information */
	add_cb_fdt_data(dt);

	/* Update device_tree */
#if defined(CONFIG_LINUX_COMMAND_LINE)
	fit_update_chosen(dt, (char *)CONFIG_LINUX_COMMAND_LINE);
#endif
	fit_update_memory(dt);

	/* Collect infos for fit_payload_arch */
	kernel.size = config->kernel->size;
	fdt.size = dt_flat_size(dt);
	initrd.size = config->ramdisk ? config->ramdisk->size : 0;

	/* Invoke arch specific payload placement and fixups */
	if (!fit_payload_arch(payload, config, &kernel, &fdt, &initrd)) {
		printk(BIOS_ERR, "Failed to find free memory region\n");
		bootmem_dump_ranges();
		return;
	}

	/* Update ramdisk location in FDT */
	if (config->ramdisk)
		fit_add_ramdisk(dt, (void *)initrd.offset, initrd.size);

	/* Repack FDT for handoff to kernel */
	pack_fdt(&fdt, dt);

	if (config->ramdisk &&
	    extract(&initrd, config->ramdisk)) {
		printk(BIOS_ERR, "Failed to extract initrd\n");
		prog_set_entry(payload, NULL, NULL);
		return;
	}

	timestamp_add_now(TS_KERNEL_DECOMPRESSION);

	if (extract(&kernel, config->kernel)) {
		printk(BIOS_ERR, "Failed to extract kernel\n");
		prog_set_entry(payload, NULL, NULL);
		return;
	}

	timestamp_add_now(TS_KERNEL_START);
}