1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <cbmem.h>
#include <device/device.h>
#include <device/dram/ddr4.h>
#include <string.h>
#include <memory_info.h>
#include <smbios.h>
#include <types.h>
enum ddr4_speed_grade {
DDR4_1600,
DDR4_1866,
DDR4_2133,
DDR4_2400,
DDR4_2666,
DDR4_2933,
DDR4_3200
};
struct ddr4_speed_attr {
uint32_t min_clock_mhz; // inclusive
uint32_t max_clock_mhz; // inclusive
uint32_t reported_mts;
};
/**
* DDR4 speed attributes derived from JEDEC 79-4C tables 169 & 170
*
* min_clock_mhz = 1000/max_tCk_avg(ns) + 1
* Adding 1 to make minimum inclusive
* max_clock_mhz = 1000/min_tCk_avg(ns)
* reported_mts = Standard reported DDR4 speed in MT/s
* May be 1 less than the actual max MT/s
*/
static const struct ddr4_speed_attr ddr4_speeds[] = {
[DDR4_1600] = {
.min_clock_mhz = 668,
.max_clock_mhz = 800,
.reported_mts = 1600
},
[DDR4_1866] = {
.min_clock_mhz = 801,
.max_clock_mhz = 934,
.reported_mts = 1866
},
[DDR4_2133] = {
.min_clock_mhz = 935,
.max_clock_mhz = 1067,
.reported_mts = 2133
},
[DDR4_2400] = {
.min_clock_mhz = 1068,
.max_clock_mhz = 1200,
.reported_mts = 2400
},
[DDR4_2666] = {
.min_clock_mhz = 1201,
.max_clock_mhz = 1333,
.reported_mts = 2666
},
[DDR4_2933] = {
.min_clock_mhz = 1334,
.max_clock_mhz = 1466,
.reported_mts = 2933
},
[DDR4_3200] = {
.min_clock_mhz = 1467,
.max_clock_mhz = 1600,
.reported_mts = 3200
}
};
typedef enum {
BLOCK_0, /* Base Configuration and DRAM Parameters */
BLOCK_1,
BLOCK_1_L, /* Standard Module Parameters */
BLOCK_1_H, /* Hybrid Module Parameters */
BLOCK_2,
BLOCK_2_L, /* Hybrid Module Extended Function Parameters */
BLOCK_2_H, /* Manufacturing Information */
BLOCK_3 /* End user programmable */
} spd_block_type;
typedef struct {
spd_block_type type;
uint16_t start; /* starting offset from beginning of the spd */
uint16_t len; /* size of the block */
uint16_t crc_start; /* offset from start of crc bytes, 0 if none */
} spd_block;
/* 'SPD contents architecture' as per datasheet */
const spd_block spd_blocks[] = {
{.type = BLOCK_0, 0, 128, 126}, {.type = BLOCK_1, 128, 128, 126},
{.type = BLOCK_1_L, 128, 64, 0}, {.type = BLOCK_1_H, 192, 64, 0},
{.type = BLOCK_2_L, 256, 64, 62}, {.type = BLOCK_2_H, 320, 64, 0},
{.type = BLOCK_3, 384, 128, 0} };
static bool verify_block(const spd_block *block, spd_raw_data spd)
{
uint16_t crc, spd_crc;
spd_crc = (spd[block->start + block->crc_start + 1] << 8)
| spd[block->start + block->crc_start];
crc = ddr_crc16(&spd[block->start], block->len - 2);
return spd_crc == crc;
}
/* Check if given block is 'reserved' for a given module type */
static bool block_exists(spd_block_type type, u8 dimm_type)
{
bool is_hybrid;
switch (type) {
case BLOCK_0: /* fall-through */
case BLOCK_1: /* fall-through */
case BLOCK_1_L: /* fall-through */
case BLOCK_1_H: /* fall-through */
case BLOCK_2_H: /* fall-through */
case BLOCK_3: /* fall-through */
return true;
case BLOCK_2_L:
is_hybrid = (dimm_type >> 4) & ((1 << 3) - 1);
if (is_hybrid)
return true;
return false;
default: /* fall-through */
return false;
}
}
/**
* Converts DDR4 clock speed in MHz to the standard reported speed in MT/s
*/
uint16_t ddr4_speed_mhz_to_reported_mts(uint16_t speed_mhz)
{
for (enum ddr4_speed_grade speed = 0; speed < ARRAY_SIZE(ddr4_speeds); speed++) {
const struct ddr4_speed_attr *speed_attr = &ddr4_speeds[speed];
if (speed_mhz >= speed_attr->min_clock_mhz &&
speed_mhz <= speed_attr->max_clock_mhz) {
return speed_attr->reported_mts;
}
}
printk(BIOS_ERR, "ERROR: DDR4 speed of %d MHz is out of range\n", speed_mhz);
return 0;
}
/**
* \brief Decode the raw SPD data
*
* Decodes a raw SPD data from a DDR4 DIMM, and organizes it into a
* @ref dimm_attr structure. The SPD data must first be read in a contiguous
* array, and passed to this function.
*
* @param dimm pointer to @ref dimm_attr structure where the decoded data is to
* be stored
* @param spd array of raw data previously read from the SPD.
*
* @return @ref spd_status enumerator
* SPD_STATUS_OK -- decoding was successful
* SPD_STATUS_INVALID -- invalid SPD or not a DDR4 SPD
* SPD_STATUS_CRC_ERROR -- checksum mismatch
*/
int spd_decode_ddr4(struct dimm_attr_ddr4_st *dimm, spd_raw_data spd)
{
u8 reg8;
u8 bus_width, sdram_width;
u16 cap_per_die_mbit;
u16 spd_bytes_total, spd_bytes_used;
const uint16_t spd_bytes_used_table[] = {0, 128, 256, 384, 512};
/* Make sure that the SPD dump is indeed from a DDR4 module */
if (spd[2] != SPD_MEMORY_TYPE_DDR4_SDRAM) {
printk(BIOS_ERR, "Not a DDR4 SPD!\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
spd_bytes_total = (spd[0] >> 4) & 0x7;
spd_bytes_used = spd[0] & 0xf;
if (!spd_bytes_total || !spd_bytes_used) {
printk(BIOS_ERR, "SPD failed basic sanity checks\n");
return SPD_STATUS_INVALID;
}
if (spd_bytes_total >= 3)
printk(BIOS_WARNING, "SPD Bytes Total value is reserved\n");
spd_bytes_total = 256 << (spd_bytes_total - 1);
if (spd_bytes_used > 4) {
printk(BIOS_ERR, "SPD Bytes Used value is reserved\n");
return SPD_STATUS_INVALID;
}
spd_bytes_used = spd_bytes_used_table[spd_bytes_used];
if (spd_bytes_used > spd_bytes_total) {
printk(BIOS_ERR, "SPD Bytes Used is greater than SPD Bytes Total\n");
return SPD_STATUS_INVALID;
}
/* Verify CRC of blocks that have them, do not step over 'used' length */
for (int i = 0; i < ARRAY_SIZE(spd_blocks); i++) {
/* this block is not checksummed */
if (spd_blocks[i].crc_start == 0)
continue;
/* we shouldn't have this block */
if (spd_blocks[i].start + spd_blocks[i].len > spd_bytes_used)
continue;
/* check if block exists in the current schema */
if (!block_exists(spd_blocks[i].type, spd[3]))
continue;
if (!verify_block(&spd_blocks[i], spd)) {
printk(BIOS_ERR, "CRC failed for block %d\n", i);
return SPD_STATUS_CRC_ERROR;
}
}
dimm->dram_type = SPD_MEMORY_TYPE_DDR4_SDRAM;
dimm->dimm_type = spd[3] & ((1 << 4) - 1);
reg8 = spd[13] & ((1 << 4) - 1);
dimm->bus_width = reg8;
bus_width = 8 << (reg8 & ((1 << 3) - 1));
reg8 = spd[12] & ((1 << 3) - 1);
dimm->sdram_width = reg8;
sdram_width = 4 << reg8;
reg8 = spd[4] & ((1 << 4) - 1);
dimm->cap_per_die_mbit = reg8;
cap_per_die_mbit = (1 << reg8) * 256;
reg8 = (spd[12] >> 3) & ((1 << 3) - 1);
dimm->ranks = reg8 + 1;
if (!bus_width || !sdram_width) {
printk(BIOS_ERR, "SPD information is invalid");
dimm->size_mb = 0;
return SPD_STATUS_INVALID;
}
/* seems to be only one, in mV */
dimm->vdd_voltage = 1200;
/* calculate size */
dimm->size_mb = cap_per_die_mbit / 8 * bus_width / sdram_width * dimm->ranks;
/* make sure we have the manufacturing information block */
if (spd_bytes_used > 320) {
dimm->manufacturer_id = (spd[351] << 8) | spd[350];
memcpy(dimm->part_number, &spd[329], SPD_DDR4_PART_LEN);
dimm->part_number[SPD_DDR4_PART_LEN] = 0;
memcpy(dimm->serial_number, &spd[325], sizeof(dimm->serial_number));
}
return SPD_STATUS_OK;
}
enum cb_err spd_add_smbios17_ddr4(const u8 channel, const u8 slot, const u16 selected_freq,
const struct dimm_attr_ddr4_st *info)
{
struct memory_info *mem_info;
struct dimm_info *dimm;
/*
* Allocate CBMEM area for DIMM information used to populate SMBIOS
* table 17
*/
mem_info = cbmem_find(CBMEM_ID_MEMINFO);
if (!mem_info) {
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(*mem_info));
printk(BIOS_DEBUG, "CBMEM entry for DIMM info: %p\n", mem_info);
if (!mem_info)
return CB_ERR;
memset(mem_info, 0, sizeof(*mem_info));
}
if (mem_info->dimm_cnt >= ARRAY_SIZE(mem_info->dimm)) {
printk(BIOS_WARNING, "BUG: Too many DIMM infos for %s.\n", __func__);
return CB_ERR;
}
dimm = &mem_info->dimm[mem_info->dimm_cnt];
if (info->size_mb) {
dimm->ddr_type = MEMORY_TYPE_DDR4;
dimm->ddr_frequency = selected_freq;
dimm->dimm_size = info->size_mb;
dimm->channel_num = channel;
dimm->rank_per_dimm = info->ranks;
dimm->dimm_num = slot;
memcpy(dimm->module_part_number, info->part_number, SPD_DDR4_PART_LEN);
dimm->mod_id = info->manufacturer_id;
switch (info->dimm_type) {
case SPD_DDR4_DIMM_TYPE_SO_DIMM:
dimm->mod_type = DDR4_SPD_SODIMM;
break;
case SPD_DDR4_DIMM_TYPE_72B_SO_RDIMM:
dimm->mod_type = DDR4_SPD_72B_SO_RDIMM;
break;
case SPD_DDR4_DIMM_TYPE_UDIMM:
dimm->mod_type = DDR4_SPD_UDIMM;
break;
case SPD_DDR4_DIMM_TYPE_RDIMM:
dimm->mod_type = DDR4_SPD_RDIMM;
break;
default:
dimm->mod_type = SPD_UNDEFINED;
break;
}
dimm->bus_width = info->bus_width;
memcpy(dimm->serial, info->serial_number,
MIN(sizeof(dimm->serial), sizeof(info->serial_number)));
dimm->vdd_voltage = info->vdd_voltage;
mem_info->dimm_cnt++;
}
return CB_SUCCESS;
}
|