summaryrefslogtreecommitdiff
path: root/src/commonlib/device_tree.c
blob: a8a64ecbbefc9a843e684a0aec8ff858746c38c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
/* Taken from depthcharge: src/base/device_tree.c */
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include <assert.h>
#include <commonlib/device_tree.h>
#include <ctype.h>
#include <endian.h>
#include <stdbool.h>
#include <stdint.h>
#ifdef __COREBOOT__
#include <console/console.h>
#else
#include <stdio.h>
#define printk(level, ...) printf(__VA_ARGS__)
#endif
#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <limits.h>

#define FDT_PATH_MAX_DEPTH 10 // should be a good enough upper bound
#define FDT_PATH_MAX_LEN 128 // should be a good enough upper bound
#define FDT_MAX_MEMORY_NODES 4 // should be a good enough upper bound
#define FDT_MAX_MEMORY_REGIONS 16 // should be a good enough upper bound

/*
 * libpayload's malloc() has a linear allocation complexity, which means that it
 * degrades massively if we make a few thousand small allocations. Preventing
 * that problem with a custom scratchpad is well-worth some increase in BSS
 * size (64 * 2000 + 40 * 10000 = ~1/2 MB).
 */

/* Try to give these a healthy margin above what the average kernel DT needs. */
#define LP_ALLOC_NODE_SCRATCH_COUNT 2000
#define LP_ALLOC_PROP_SCRATCH_COUNT 10000

static struct device_tree_node *alloc_node(void)
{
#ifndef __COREBOOT__
	static struct device_tree_node scratch[LP_ALLOC_NODE_SCRATCH_COUNT];
	static int counter = 0;

	if (counter < ARRAY_SIZE(scratch))
		return &scratch[counter++];
#endif
	return xzalloc(sizeof(struct device_tree_node));
}

static struct device_tree_property *alloc_prop(void)
{
#ifndef __COREBOOT__
	static struct device_tree_property scratch[LP_ALLOC_PROP_SCRATCH_COUNT];
	static int counter = 0;

	if (counter < ARRAY_SIZE(scratch))
		return &scratch[counter++];
#endif
	return xzalloc(sizeof(struct device_tree_property));
}


/*
 * internal functions used by both unflattened and flattened device tree variants
 */


static size_t read_reg_prop(struct fdt_property *prop, u32 addr_cells, u32 size_cells,
			    struct device_tree_region regions[], size_t regions_count)
{
	// we found the reg property, no need to parse all regions in 'reg'
	size_t count = prop->size / (4 * addr_cells + 4 * size_cells);
	if (count > regions_count) {
		printk(BIOS_ERR, "reg property has more entries (%zd) than regions array can hold (%zd)\n", count, regions_count);
		count = regions_count;
	}
	if (addr_cells > 2 || size_cells > 2) {
		printk(BIOS_ERR, "addr_cells (%d) or size_cells (%d) bigger than 2\n",
				  addr_cells, size_cells);
		return 0;
	}
	uint32_t *ptr = prop->data;
	for (int i = 0; i < count; i++) {
		if (addr_cells == 1)
			regions[i].addr = be32dec(ptr);
		else if (addr_cells == 2)
			regions[i].addr = be64dec(ptr);
		ptr += addr_cells;
		if (size_cells == 1)
			regions[i].size = be32dec(ptr);
		else if (size_cells == 2)
			regions[i].size = be64dec(ptr);
		ptr += size_cells;
	}

	return count; // return the number of regions found in the reg property
}


/*
 * Functions for picking apart flattened trees.
 */


static int fdt_skip_nops(const void *blob, uint32_t offset)
{
	uint32_t *ptr = (uint32_t *)(((uint8_t *)blob) + offset);

	int index = 0;
	while (be32toh(ptr[index]) == FDT_TOKEN_NOP)
		index++;

	return index * sizeof(uint32_t);
}

int fdt_next_property(const void *blob, uint32_t offset,
		      struct fdt_property *prop)
{
	struct fdt_header *header = (struct fdt_header *)blob;
	uint32_t *ptr = (uint32_t *)(((uint8_t *)blob) + offset);

	// skip NOP tokens
	offset += fdt_skip_nops(blob, offset);

	int index = 0;
	if (be32toh(ptr[index++]) != FDT_TOKEN_PROPERTY)
		return 0;

	uint32_t size = be32toh(ptr[index++]);
	uint32_t name_offset = be32toh(ptr[index++]);
	name_offset += be32toh(header->strings_offset);

	if (prop) {
		prop->name = (char *)((uint8_t *)blob + name_offset);
		prop->data = &ptr[index];
		prop->size = size;
	}

	index += DIV_ROUND_UP(size, sizeof(uint32_t));

	return index * sizeof(uint32_t);
}

/*
 * fdt_next_node_name  reads a node name
 *
 * @params blob    address of FDT
 * @params offset  offset to the node to read the name from
 * @params name    parameter to hold the name that has been read or NULL
 *
 * @returns  Either 0 on error or offset to the properties that come after the node name
 */
int fdt_next_node_name(const void *blob, uint32_t offset, const char **name)
{
	// skip NOP tokens
	offset += fdt_skip_nops(blob, offset);

	char *ptr = ((char *)blob) + offset;
	if (be32dec(ptr) != FDT_TOKEN_BEGIN_NODE)
		return 0;

	ptr += 4;
	if (name)
		*name = ptr;

	return ALIGN_UP(strlen(ptr) + 1, 4) + 4;
}

/*
 * A utility function to skip past nodes in flattened trees.
 */
int fdt_skip_node(const void *blob, uint32_t start_offset)
{
	uint32_t offset = start_offset;

	const char *name;
	int size = fdt_next_node_name(blob, offset, &name);
	if (!size)
		return 0;
	offset += size;

	while ((size = fdt_next_property(blob, offset, NULL)))
		offset += size;

	while ((size = fdt_skip_node(blob, offset)))
		offset += size;

	// skip NOP tokens
	offset += fdt_skip_nops(blob, offset);

	return offset - start_offset + sizeof(uint32_t);
}

/*
 * fdt_read_prop reads a property inside a node
 *
 * @params blob         address of FDT
 * @params node_offset  offset to the node to read the property from
 * @params prop_name    name of the property to read
 * @params fdt_prop     property is saved inside this parameter
 *
 * @returns  Either 0 if no property has been found or an offset that points to the location
 *           of the property
 */
u32 fdt_read_prop(const void *blob, u32 node_offset, const char *prop_name,
		  struct fdt_property *fdt_prop)
{
	u32 offset = node_offset;

	offset += fdt_next_node_name(blob, offset, NULL); // skip node name

	size_t size;
	while ((size = fdt_next_property(blob, offset, fdt_prop))) {
		if (strcmp(fdt_prop->name, prop_name) == 0)
			return offset;
		offset += size;
	}
	return 0; // property not found
}

/*
 * fdt_read_reg_prop reads the reg property inside a node
 *
 * @params blob           address of FDT
 * @params node_offset    offset to the node to read the reg property from
 * @params addr_cells     number of cells used for one address
 * @params size_cells     number of cells used for one size
 * @params regions        all regions that are read inside the reg property are saved inside
 *                        this array
 * @params regions_count  maximum number of entries that can be saved inside the regions array.
 *
 * Returns: Either 0 on error or returns the number of regions put into the regions array.
 */
u32 fdt_read_reg_prop(const void *blob, u32 node_offset, u32 addr_cells, u32 size_cells,
		      struct device_tree_region regions[], size_t regions_count)
{
	struct fdt_property prop;
	u32 offset = fdt_read_prop(blob, node_offset, "reg", &prop);

	if (!offset) {
		printk(BIOS_DEBUG, "no reg property found in node_offset: %x\n", node_offset);
		return 0;
	}

	return read_reg_prop(&prop, addr_cells, size_cells, regions, regions_count);
}

static u32 fdt_read_cell_props(const void *blob, u32 node_offset, u32 *addrcp, u32 *sizecp)
{
	struct fdt_property prop;
	u32 offset = node_offset;
	size_t size;
	while ((size = fdt_next_property(blob, offset, &prop))) {
		if (addrcp && !strcmp(prop.name, "#address-cells"))
			*addrcp = be32dec(prop.data);
		if (sizecp && !strcmp(prop.name, "#size-cells"))
			*sizecp = be32dec(prop.data);
		offset += size;
	}
	return offset;
}

/*
 * fdt_find_node searches for a node relative to another node
 *
 * @params blob  address of FDT
 *
 * @params parent_node_offset  offset to node from which to traverse the tree
 *
 * @params path  null terminated array of node names specifying a
 *               relative path (e.g: { "cpus", "cpu0", NULL })
 *
 * @params addrcp/sizecp  If any address-cells and size-cells properties are found that are
 *                        part of the parent node of the node we are looking, addrcp and sizecp
 *                        are set to these respectively.
 *
 * @returns: Either 0 if no node has been found or the offset to the node found
 */
static u32 fdt_find_node(const void *blob, u32 parent_node_offset, char **path,
			 u32 *addrcp, u32 *sizecp)
{
	if (*path == NULL)
		return parent_node_offset; // node found

	size_t size = fdt_next_node_name(blob, parent_node_offset, NULL); // skip node name

	/*
	 * get address-cells and size-cells properties while skipping the others.
	 * According to spec address-cells and size-cells are not inherited, but we
	 * intentionally follow the Linux implementation here and treat them as inheritable.
	 */
	u32 node_offset = fdt_read_cell_props(blob, parent_node_offset + size, addrcp, sizecp);

	const char *node_name;
	// walk all children nodes
	while ((size = fdt_next_node_name(blob, node_offset, &node_name))) {
		if (!strcmp(*path, node_name)) {
			// traverse one level deeper into the path
			return fdt_find_node(blob, node_offset, path + 1, addrcp, sizecp);
		}
		// node is not the correct one. skip current node
		node_offset += fdt_skip_node(blob, node_offset);
	}

	// we have searched everything and could not find a fitting node
	return 0;
}

/*
 * fdt_find_node_by_path finds a node behind a given node path
 *
 * @params blob  address of FDT
 * @params path  absolute path to the node that should be searched for
 *
 * @params addrcp/sizecp  Pointer that will be updated with any #address-cells and #size-cells
 *                        value found in the node of the node specified by node_offset. Either
 *                        may be NULL to ignore. If no #address-cells and #size-cells is found
 *                        default values of #address-cells=2 and #size-cells=1 are returned.
 *
 * @returns Either 0 on error or the offset to the node found behind the path
 */
u32 fdt_find_node_by_path(const void *blob, const char *path, u32 *addrcp, u32 *sizecp)
{
	// sanity check
	if (path[0] != '/') {
		printk(BIOS_ERR, "devicetree path must start with a /\n");
		return 0;
	}
	if (!blob) {
		printk(BIOS_ERR, "devicetree blob is NULL\n");
		return 0;
	}

	if (addrcp)
		*addrcp = 2;
	if (sizecp)
		*sizecp = 1;

	struct fdt_header *fdt_hdr = (struct fdt_header *)blob;

	/*
	 * split path into separate nodes
	 * e.g: "/cpus/cpu0" -> { "cpus", "cpu0" }
	 */
	char *path_array[FDT_PATH_MAX_DEPTH];
	size_t path_size = strlen(path);
	assert(path_size < FDT_PATH_MAX_LEN);
	char path_copy[FDT_PATH_MAX_LEN];
	memcpy(path_copy, path, path_size + 1);
	char *cur = path_copy;
	int i;
	for (i = 0; i < FDT_PATH_MAX_DEPTH; i++) {
		path_array[i] = strtok_r(NULL, "/", &cur);
		if (!path_array[i])
			break;
	}
	assert(i < FDT_PATH_MAX_DEPTH);

	return fdt_find_node(blob, be32toh(fdt_hdr->structure_offset), path_array, addrcp, sizecp);
}

/*
 * fdt_find_subnodes_by_prefix finds a node with a given prefix relative to a parent node
 *
 * @params blob  The FDT to search.
 *
 * @params node_offset  offset to the node of which the children should be searched
 *
 * @params prefix  A string to search for a node with a given prefix. This can for example
 *                 be 'cpu' to look for all nodes matching this prefix. Only children of
 *                 node_offset are searched. Therefore in order to search all nodes matching
 *                 the 'cpu' prefix, node_offset should probably point to the 'cpus' node.
 *                 An empty prefix ("") searches for all children nodes of node_offset.
 *
 * @params addrcp/sizecp  Pointer that will be updated with any #address-cells and #size-cells
 *                        value found in the node of the node specified by node_offset. Either
 *                        may be NULL to ignore. If no #address-cells and #size-cells is found
 *                        addrcp and sizecp are left untouched.
 *
 * @params results      Array of offsets pointing to each node matching the given prefix.
 * @params results_len  Number of entries allocated for the 'results' array
 *
 * @returns  offset to last node found behind path or 0 if no node has been found
 */
size_t fdt_find_subnodes_by_prefix(const void *blob, u32 node_offset, const char *prefix,
				   u32 *addrcp, u32 *sizecp, u32 *results, size_t results_len)
{
	// sanity checks
	if (!blob || !results || !prefix) {
		printk(BIOS_ERR, "%s: input parameter cannot be null/\n", __func__);
		return 0;
	}

	u32 offset = node_offset;

	// we don't care about the name of the current node
	u32 size = fdt_next_node_name(blob, offset, NULL);
	if (!size) {
		printk(BIOS_ERR, "%s: node_offset: %x does not point to a node\n",
		       __func__, node_offset);
		return 0;
	}
	offset += size;

	/*
	 * update addrcp and sizecp if the node contains an address-cells and size-cells
	 * property. Otherwise use addrcp and sizecp provided by caller.
	 */
	offset = fdt_read_cell_props(blob, offset, addrcp, sizecp);

	size_t count_results = 0;
	int prefix_len = strlen(prefix);
	const char *node_name;
	// walk all children nodes of offset
	while ((size = fdt_next_node_name(blob, offset, &node_name))) {

		if (count_results >= results_len) {
			printk(BIOS_WARNING,
				"%s: results_len (%zd) smaller than count_results (%zd)\n",
				__func__, results_len, count_results);
			break;
		}

		if (!strncmp(prefix, node_name, prefix_len)) {
			// we found a node that matches the prefix
			results[count_results++] = offset;
		}

		// node does not match the prefix. skip current node
		offset += fdt_skip_node(blob, offset);
	}

	// return last occurrence
	return count_results;
}

static const char *fdt_read_alias_prop(const void *blob, const char *alias_name)
{
	u32 node_offset =  fdt_find_node_by_path(blob, "/aliases", NULL, NULL);
	if (!node_offset) {
		printk(BIOS_DEBUG, "no /aliases node found\n");
		return NULL;
	}
	struct fdt_property alias_prop;
	if (!fdt_read_prop(blob, node_offset, alias_name, &alias_prop)) {
		printk(BIOS_DEBUG, "property %s in /aliases node not found\n", alias_name);
		return NULL;
	}
	return (const char *)alias_prop.data;
}

/*
 * Find a node in the tree from a string device tree path.
 *
 * @params blob           Address to the FDT
 * @params alias_name     node name alias that should be searched for.
 * @params addrcp/sizecp  Pointer that will be updated with any #address-cells and #size-cells
 *                        value found in the node of the node specified by node_offset. Either
 *                        may be NULL to ignore. If no #address-cells and #size-cells is found
 *                        default values of #address-cells=2 and #size-cells=1 are returned.
 *
 * @returns  offset to last node found behind path or 0 if no node has been found
 */
u32 fdt_find_node_by_alias(const void *blob, const char *alias_name, u32 *addrcp, u32 *sizecp)
{
	const char *node_name = fdt_read_alias_prop(blob, alias_name);
	if (!node_name)  {
		printk(BIOS_DEBUG, "alias %s not found\n", alias_name);
		return 0;
	}

	u32 node_offset = fdt_find_node_by_path(blob, node_name, addrcp, sizecp);
	if (!node_offset) {
		// This should not happen (invalid devicetree)
		printk(BIOS_WARNING,
		       "Could not find node '%s', which alias was referring to '%s'\n",
		       node_name, alias_name);
		return 0;
	}
	return node_offset;
}


/*
 * Functions for printing flattened trees.
 */

static void print_indent(int depth)
{
	printk(BIOS_DEBUG, "%*s", depth * 8, "");
}

static void print_property(const struct fdt_property *prop, int depth)
{
	int is_string = prop->size > 0 &&
			((char *)prop->data)[prop->size - 1] == '\0';

	if (is_string) {
		for (int i = 0; i < prop->size - 1; i++) {
			if (!isprint(((char *)prop->data)[i])) {
				is_string = 0;
				break;
			}
		}
	}

	print_indent(depth);
	if (is_string) {
		printk(BIOS_DEBUG, "%s = \"%s\";\n",
		       prop->name, (const char *)prop->data);
	} else {
		printk(BIOS_DEBUG, "%s = < ", prop->name);
		for (int i = 0; i < MIN(128, prop->size); i += 4) {
			uint32_t val = 0;
			for (int j = 0; j < MIN(4, prop->size - i); j++)
				val |= ((uint8_t *)prop->data)[i + j] <<
					(24 - j * 8);
			printk(BIOS_DEBUG, "%#.2x ", val);
		}
		if (prop->size > 128)
			printk(BIOS_DEBUG, "...");
		printk(BIOS_DEBUG, ">;\n");
	}
}

static int print_flat_node(const void *blob, uint32_t start_offset, int depth)
{
	int offset = start_offset;
	const char *name;
	int size;

	size = fdt_next_node_name(blob, offset, &name);
	if (!size)
		return 0;
	offset += size;

	print_indent(depth);
	printk(BIOS_DEBUG, "%s {\n", name);

	struct fdt_property prop;
	while ((size = fdt_next_property(blob, offset, &prop))) {
		print_property(&prop, depth + 1);

		offset += size;
	}

	printk(BIOS_DEBUG, "\n");	/* empty line between props and nodes */

	while ((size = print_flat_node(blob, offset, depth + 1)))
		offset += size;

	print_indent(depth);
	printk(BIOS_DEBUG, "}\n");

	return offset - start_offset + sizeof(uint32_t);
}

void fdt_print_node(const void *blob, uint32_t offset)
{
	print_flat_node(blob, offset, 0);
}

/*
 * fdt_read_memory_regions finds memory ranges from a flat device-tree
 *
 * @params blob	          address of FDT
 * @params regions        all regions that are read inside the reg property of
 *                        memory nodes are saved inside this array
 * @params regions_count  maximum number of entries that can be saved inside
 *                        the regions array.
 *
 * Returns: Either 0 on error or returns the number of regions put into the regions array.
 */
size_t fdt_read_memory_regions(const void *blob,
			       struct device_tree_region regions[],
			       size_t regions_count)
{
	u32 node, root, addrcp, sizecp;
	u32 nodes[FDT_MAX_MEMORY_NODES] = {0};
	size_t region_idx = 0;
	size_t node_count = 0;

	if (!fdt_is_valid(blob))
		return 0;

	node = fdt_find_node_by_path(blob, "/memory",  &addrcp, &sizecp);
	if (node) {
		region_idx += fdt_read_reg_prop(blob, node, addrcp, sizecp,
						regions, regions_count);
		if (region_idx >= regions_count) {
			printk(BIOS_WARNING, "FDT: Too many memory regions\n");
			goto out;
		}
	}

	root = fdt_find_node_by_path(blob, "/",  &addrcp, &sizecp);
	node_count = fdt_find_subnodes_by_prefix(blob, root, "memory@",
						 &addrcp, &sizecp, nodes,
						 FDT_MAX_MEMORY_NODES);
	if (node_count >= FDT_MAX_MEMORY_NODES) {
		printk(BIOS_WARNING, "FDT: Too many memory nodes\n");
		/* Can still reading the regions for those we got */
	}

	for (size_t i = 0; i < MIN(node_count, FDT_MAX_MEMORY_NODES); i++) {
		region_idx += fdt_read_reg_prop(blob, nodes[i], addrcp, sizecp,
						&regions[region_idx],
						regions_count - region_idx);
		if (region_idx >= regions_count) {
			printk(BIOS_WARNING, "FDT: Too many memory regions\n");
			goto out;
		}
	}

out:
	for (size_t i = 0; i < MIN(region_idx, regions_count); i++) {
		printk(BIOS_DEBUG, "FDT: Memory region [%#llx - %#llx]\n",
		       regions[i].addr, regions[i].addr + regions[i].size);
	}

	return region_idx;
}

/*
 * fdt_get_memory_top finds top of memory from a flat device-tree
 *
 * @params blob	          address of FDT
 *
 * Returns: Either 0 on error or returns the maximum memory address
 */
uint64_t fdt_get_memory_top(const void *blob)
{
	struct device_tree_region regions[FDT_MAX_MEMORY_REGIONS] = {0};
	uint64_t top = 0;
	uint64_t total = 0;
	size_t count;

	if (!fdt_is_valid(blob))
		return 0;

	count = fdt_read_memory_regions(blob, regions, FDT_MAX_MEMORY_REGIONS);
	for (size_t i = 0; i < MIN(count, FDT_MAX_MEMORY_REGIONS); i++) {
		top = MAX(top, regions[i].addr + regions[i].size);
		total += regions[i].size;
	}

	printk(BIOS_DEBUG, "FDT: Found %u MiB of RAM\n",
	       (uint32_t)(total / MiB));

	return top;
}

/*
 * Functions to turn a flattened tree into an unflattened one.
 */

static int dt_prop_is_phandle(struct device_tree_property *prop)
{
	return !(strcmp("phandle", prop->prop.name) &&
		 strcmp("linux,phandle", prop->prop.name));
}

static int fdt_unflatten_node(const void *blob, uint32_t start_offset,
			      struct device_tree *tree,
			      struct device_tree_node **new_node)
{
	struct list_node *last;
	int offset = start_offset;
	const char *name;
	int size;

	size = fdt_next_node_name(blob, offset, &name);
	if (!size)
		return 0;
	offset += size;

	struct device_tree_node *node = alloc_node();
	*new_node = node;
	node->name = name;

	struct fdt_property fprop;
	last = &node->properties;
	while ((size = fdt_next_property(blob, offset, &fprop))) {
		struct device_tree_property *prop = alloc_prop();
		prop->prop = fprop;

		if (dt_prop_is_phandle(prop)) {
			node->phandle = be32dec(prop->prop.data);
			if (node->phandle > tree->max_phandle)
				tree->max_phandle = node->phandle;
		}

		list_insert_after(&prop->list_node, last);
		last = &prop->list_node;

		offset += size;
	}

	struct device_tree_node *child;
	last = &node->children;
	while ((size = fdt_unflatten_node(blob, offset, tree, &child))) {
		list_insert_after(&child->list_node, last);
		last = &child->list_node;

		offset += size;
	}

	return offset - start_offset + sizeof(uint32_t);
}

static int fdt_unflatten_map_entry(const void *blob, uint32_t offset,
				   struct device_tree_reserve_map_entry **new)
{
	const uint64_t *ptr = (const uint64_t *)(((uint8_t *)blob) + offset);
	const uint64_t start = be64toh(ptr[0]);
	const uint64_t size = be64toh(ptr[1]);

	if (!size)
		return 0;

	struct device_tree_reserve_map_entry *entry = xzalloc(sizeof(*entry));
	*new = entry;
	entry->start = start;
	entry->size = size;

	return sizeof(uint64_t) * 2;
}

bool fdt_is_valid(const void *blob)
{
	const struct fdt_header *header = (const struct fdt_header *)blob;

	uint32_t magic = be32toh(header->magic);
	uint32_t version = be32toh(header->version);
	uint32_t last_comp_version = be32toh(header->last_comp_version);

	if (magic != FDT_HEADER_MAGIC) {
		printk(BIOS_ERR, "Invalid device tree magic %#.8x!\n", magic);
		return false;
	}
	if (last_comp_version > FDT_SUPPORTED_VERSION) {
		printk(BIOS_ERR, "Unsupported device tree version %u(>=%u)\n",
		       version, last_comp_version);
		return false;
	}
	if (version > FDT_SUPPORTED_VERSION)
		printk(BIOS_NOTICE, "FDT version %u too new, should add support!\n",
		       version);
	return true;
}

struct device_tree *fdt_unflatten(const void *blob)
{
	struct device_tree *tree = xzalloc(sizeof(*tree));
	const struct fdt_header *header = (const struct fdt_header *)blob;
	tree->header = header;

	if (!fdt_is_valid(blob))
		return NULL;

	uint32_t struct_offset = be32toh(header->structure_offset);
	uint32_t strings_offset = be32toh(header->strings_offset);
	uint32_t reserve_offset = be32toh(header->reserve_map_offset);
	uint32_t min_offset = 0;
	min_offset = MIN(struct_offset, strings_offset);
	min_offset = MIN(min_offset, reserve_offset);
	/* Assume everything up to the first non-header component is part of
	   the header and needs to be preserved. This will protect us against
	   new elements being added in the future. */
	tree->header_size = min_offset;

	struct device_tree_reserve_map_entry *entry;
	uint32_t offset = reserve_offset;
	int size;
	struct list_node *last = &tree->reserve_map;
	while ((size = fdt_unflatten_map_entry(blob, offset, &entry))) {
		list_insert_after(&entry->list_node, last);
		last = &entry->list_node;

		offset += size;
	}

	fdt_unflatten_node(blob, struct_offset, tree, &tree->root);

	return tree;
}



/*
 * Functions to find the size of the device tree if it was flattened.
 */

static void dt_flat_prop_size(struct device_tree_property *prop,
			      uint32_t *struct_size, uint32_t *strings_size)
{
	/* Starting token. */
	*struct_size += sizeof(uint32_t);
	/* Size. */
	*struct_size += sizeof(uint32_t);
	/* Name offset. */
	*struct_size += sizeof(uint32_t);
	/* Property value. */
	*struct_size += ALIGN_UP(prop->prop.size, sizeof(uint32_t));

	/* Property name. */
	*strings_size += strlen(prop->prop.name) + 1;
}

static void dt_flat_node_size(struct device_tree_node *node,
			      uint32_t *struct_size, uint32_t *strings_size)
{
	/* Starting token. */
	*struct_size += sizeof(uint32_t);
	/* Node name. */
	*struct_size += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t));

	struct device_tree_property *prop;
	list_for_each(prop, node->properties, list_node)
		dt_flat_prop_size(prop, struct_size, strings_size);

	struct device_tree_node *child;
	list_for_each(child, node->children, list_node)
		dt_flat_node_size(child, struct_size, strings_size);

	/* End token. */
	*struct_size += sizeof(uint32_t);
}

uint32_t dt_flat_size(const struct device_tree *tree)
{
	uint32_t size = tree->header_size;
	struct device_tree_reserve_map_entry *entry;
	list_for_each(entry, tree->reserve_map, list_node)
		size += sizeof(uint64_t) * 2;
	size += sizeof(uint64_t) * 2;

	uint32_t struct_size = 0;
	uint32_t strings_size = 0;
	dt_flat_node_size(tree->root, &struct_size, &strings_size);

	size += struct_size;
	/* End token. */
	size += sizeof(uint32_t);

	size += strings_size;

	return size;
}



/*
 * Functions to flatten a device tree.
 */

static void dt_flatten_map_entry(struct device_tree_reserve_map_entry *entry,
				 void **map_start)
{
	((uint64_t *)*map_start)[0] = htobe64(entry->start);
	((uint64_t *)*map_start)[1] = htobe64(entry->size);
	*map_start = ((uint8_t *)*map_start) + sizeof(uint64_t) * 2;
}

static void dt_flatten_prop(struct device_tree_property *prop,
			    void **struct_start, void *strings_base,
			    void **strings_start)
{
	uint8_t *dstruct = (uint8_t *)*struct_start;
	uint8_t *dstrings = (uint8_t *)*strings_start;

	be32enc(dstruct, FDT_TOKEN_PROPERTY);
	dstruct += sizeof(uint32_t);

	be32enc(dstruct, prop->prop.size);
	dstruct += sizeof(uint32_t);

	uint32_t name_offset = (uintptr_t)dstrings - (uintptr_t)strings_base;
	be32enc(dstruct, name_offset);
	dstruct += sizeof(uint32_t);

	strcpy((char *)dstrings, prop->prop.name);
	dstrings += strlen(prop->prop.name) + 1;

	memcpy(dstruct, prop->prop.data, prop->prop.size);
	dstruct += ALIGN_UP(prop->prop.size, sizeof(uint32_t));

	*struct_start = dstruct;
	*strings_start = dstrings;
}

static void dt_flatten_node(const struct device_tree_node *node,
			    void **struct_start, void *strings_base,
			    void **strings_start)
{
	uint8_t *dstruct = (uint8_t *)*struct_start;
	uint8_t *dstrings = (uint8_t *)*strings_start;

	be32enc(dstruct, FDT_TOKEN_BEGIN_NODE);
	dstruct += sizeof(uint32_t);

	strcpy((char *)dstruct, node->name);
	dstruct += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t));

	struct device_tree_property *prop;
	list_for_each(prop, node->properties, list_node)
		dt_flatten_prop(prop, (void **)&dstruct, strings_base,
				(void **)&dstrings);

	struct device_tree_node *child;
	list_for_each(child, node->children, list_node)
		dt_flatten_node(child, (void **)&dstruct, strings_base,
				(void **)&dstrings);

	be32enc(dstruct, FDT_TOKEN_END_NODE);
	dstruct += sizeof(uint32_t);

	*struct_start = dstruct;
	*strings_start = dstrings;
}

void dt_flatten(const struct device_tree *tree, void *start_dest)
{
	uint8_t *dest = (uint8_t *)start_dest;

	memcpy(dest, tree->header, tree->header_size);
	struct fdt_header *header = (struct fdt_header *)dest;
	dest += tree->header_size;

	struct device_tree_reserve_map_entry *entry;
	list_for_each(entry, tree->reserve_map, list_node)
		dt_flatten_map_entry(entry, (void **)&dest);
	((uint64_t *)dest)[0] = ((uint64_t *)dest)[1] = 0;
	dest += sizeof(uint64_t) * 2;

	uint32_t struct_size = 0;
	uint32_t strings_size = 0;
	dt_flat_node_size(tree->root, &struct_size, &strings_size);

	uint8_t *struct_start = dest;
	header->structure_offset = htobe32(dest - (uint8_t *)start_dest);
	header->structure_size = htobe32(struct_size);
	dest += struct_size;

	*((uint32_t *)dest) = htobe32(FDT_TOKEN_END);
	dest += sizeof(uint32_t);

	uint8_t *strings_start = dest;
	header->strings_offset = htobe32(dest - (uint8_t *)start_dest);
	header->strings_size = htobe32(strings_size);
	dest += strings_size;

	dt_flatten_node(tree->root, (void **)&struct_start, strings_start,
			(void **)&strings_start);

	header->totalsize = htobe32(dest - (uint8_t *)start_dest);
}



/*
 * Functions for printing a non-flattened device tree.
 */

static void print_node(const struct device_tree_node *node, int depth)
{
	print_indent(depth);
	if (depth == 0)	/* root node has no name, print a starting slash */
		printk(BIOS_DEBUG, "/");
	printk(BIOS_DEBUG, "%s {\n", node->name);

	struct device_tree_property *prop;
	list_for_each(prop, node->properties, list_node)
		print_property(&prop->prop, depth + 1);

	printk(BIOS_DEBUG, "\n");	/* empty line between props and nodes */

	struct device_tree_node *child;
	list_for_each(child, node->children, list_node)
		print_node(child, depth + 1);

	print_indent(depth);
	printk(BIOS_DEBUG, "};\n");
}

void dt_print_node(const struct device_tree_node *node)
{
	print_node(node, 0);
}



/*
 * Functions for reading and manipulating an unflattened device tree.
 */

/*
 * dt_read_reg_prop reads the reg property inside a node
 *
 * @params node           device tree node to read reg property from
 * @params addr_cells     number of cells used for one address
 * @params size_cells     number of cells used for one size
 * @params regions        all regions that are read inside the reg property are saved inside
 *                        this array
 * @params regions_count  maximum number of entries that can be saved inside the regions array.
 *
 * Returns: Either 0 on error or returns the number of regions put into the regions array.
 */
size_t dt_read_reg_prop(struct device_tree_node *node, u32 addr_cells, u32 size_cells,
			struct device_tree_region regions[], size_t regions_count)
{
	struct device_tree_property *prop;
	bool found = false;
	list_for_each(prop, node->properties, list_node) {
		if (!strcmp("reg", prop->prop.name)) {
			found = true;
			break;
		}
	}

	if (!found) {
		printk(BIOS_DEBUG, "no reg property found\n");
		return 0;
	}
	return read_reg_prop(&prop->prop, addr_cells, size_cells, regions, regions_count);
}

/*
 * Read #address-cells and #size-cells properties from a node.
 *
 * @param node		The device tree node to read from.
 * @param addrcp	Pointer to store #address-cells in, skipped if NULL.
 * @param sizecp	Pointer to store #size-cells in, skipped if NULL.
 */
void dt_read_cell_props(const struct device_tree_node *node, u32 *addrcp,
			u32 *sizecp)
{
	struct device_tree_property *prop;
	list_for_each(prop, node->properties, list_node) {
		if (addrcp && !strcmp("#address-cells", prop->prop.name))
			*addrcp = be32dec(prop->prop.data);
		if (sizecp && !strcmp("#size-cells", prop->prop.name))
			*sizecp = be32dec(prop->prop.data);
	}
}

/*
 * Find a node from a device tree path, relative to a parent node.
 *
 * @param parent	The node from which to start the relative path lookup.
 * @param path		An array of path component strings that will be looked
 *			up in order to find the node. Must be terminated with
 *			a NULL pointer. Example: {'firmware', 'coreboot', NULL}
 * @param addrcp	Pointer that will be updated with any #address-cells
 *			value found in the path. May be NULL to ignore.
 * @param sizecp	Pointer that will be updated with any #size-cells
 *			value found in the path. May be NULL to ignore.
 * @param create	1: Create node(s) if not found. 0: Return NULL instead.
 * @return		The found/created node, or NULL.
 */
struct device_tree_node *dt_find_node(struct device_tree_node *parent,
				      const char **path, u32 *addrcp,
				      u32 *sizecp, int create)
{
	struct device_tree_node *node, *found = NULL;

	/* Update #address-cells and #size-cells for this level. */
	dt_read_cell_props(parent, addrcp, sizecp);

	if (!*path)
		return parent;

	/* Find the next node in the path, if it exists. */
	list_for_each(node, parent->children, list_node) {
		if (!strcmp(node->name, *path)) {
			found = node;
			break;
		}
	}

	/* Otherwise create it or return NULL. */
	if (!found) {
		if (!create)
			return NULL;

		found = alloc_node();
		found->name = strdup(*path);
		if (!found->name)
			return NULL;

		list_insert_after(&found->list_node, &parent->children);
	}

	return dt_find_node(found, path + 1, addrcp, sizecp, create);
}

/*
 * Find a node in the tree from a string device tree path.
 *
 * @param tree		The device tree to search.
 * @param path          A string representing a path in the device tree, with
 *			nodes separated by '/'. Example: "/firmware/coreboot"
 * @param addrcp	Pointer that will be updated with any #address-cells
 *			value found in the path. May be NULL to ignore.
 * @param sizecp	Pointer that will be updated with any #size-cells
 *			value found in the path. May be NULL to ignore.
 * @param create	1: Create node(s) if not found. 0: Return NULL instead.
 * @return		The found/created node, or NULL.
 *
 * It is the caller responsibility to provide a path string that doesn't end
 * with a '/' and doesn't contain any "//". If the path does not start with a
 * '/', the first segment is interpreted as an alias. */
struct device_tree_node *dt_find_node_by_path(struct device_tree *tree,
					      const char *path, u32 *addrcp,
					      u32 *sizecp, int create)
{
	char *sub_path;
	char *duped_str;
	struct device_tree_node *parent;
	char *next_slash;
	/* Hopefully enough depth for any node. */
	const char *path_array[15];
	int i;
	struct device_tree_node *node = NULL;

	if (path[0] == '/') { /* regular path */
		if (path[1] == '\0') {	/* special case: "/" is root node */
			dt_read_cell_props(tree->root, addrcp, sizecp);
			return tree->root;
		}

		sub_path = duped_str = strdup(&path[1]);
		if (!sub_path)
			return NULL;

		parent = tree->root;
	} else { /* alias */
		char *alias;

		alias = duped_str = strdup(path);
		if (!alias)
			return NULL;

		sub_path = strchr(alias, '/');
		if (sub_path)
			*sub_path = '\0';

		parent = dt_find_node_by_alias(tree, alias);
		if (!parent) {
			printk(BIOS_DEBUG,
			       "Could not find node '%s', alias '%s' does not exist\n",
			       path, alias);
			free(duped_str);
			return NULL;
		}

		if (!sub_path) {
			/* it's just the alias, no sub-path */
			free(duped_str);
			return parent;
		}

		sub_path++;
	}

	next_slash = sub_path;
	path_array[0] = sub_path;
	for (i = 1; i < (ARRAY_SIZE(path_array) - 1); i++) {
		next_slash = strchr(next_slash, '/');
		if (!next_slash)
			break;

		*next_slash++ = '\0';
		path_array[i] = next_slash;
	}

	if (!next_slash) {
		path_array[i] = NULL;
		node = dt_find_node(parent, path_array,
				    addrcp, sizecp, create);
	}

	free(duped_str);
	return node;
}

/*
 * Find a node from an alias
 *
 * @param tree		The device tree.
 * @param alias		The alias name.
 * @return		The found node, or NULL.
 */
struct device_tree_node *dt_find_node_by_alias(struct device_tree *tree,
					       const char *alias)
{
	struct device_tree_node *node;
	const char *alias_path;

	node = dt_find_node_by_path(tree, "/aliases", NULL, NULL, 0);
	if (!node)
		return NULL;

	alias_path = dt_find_string_prop(node, alias);
	if (!alias_path)
		return NULL;

	return dt_find_node_by_path(tree, alias_path, NULL, NULL, 0);
}

struct device_tree_node *dt_find_node_by_phandle(struct device_tree_node *root,
						 uint32_t phandle)
{
	if (!root)
		return NULL;

	if (root->phandle == phandle)
		return root;

	struct device_tree_node *node;
	struct device_tree_node *result;
	list_for_each(node, root->children, list_node) {
		result = dt_find_node_by_phandle(node, phandle);
		if (result)
			return result;
	}

	return NULL;
}

/*
 * Check if given node is compatible.
 *
 * @param node		The node which is to be checked for compatible property.
 * @param compat	The compatible string to match.
 * @return		1 = compatible, 0 = not compatible.
 */
static int dt_check_compat_match(struct device_tree_node *node,
				 const char *compat)
{
	struct device_tree_property *prop;

	list_for_each(prop, node->properties, list_node) {
		if (!strcmp("compatible", prop->prop.name)) {
			size_t bytes = prop->prop.size;
			const char *str = prop->prop.data;
			while (bytes > 0) {
				if (!strncmp(compat, str, bytes))
					return 1;
				size_t len = strnlen(str, bytes) + 1;
				if (bytes <= len)
					break;
				str += len;
				bytes -= len;
			}
			break;
		}
	}

	return 0;
}

/*
 * Find a node from a compatible string, in the subtree of a parent node.
 *
 * @param parent	The parent node under which to look.
 * @param compat	The compatible string to find.
 * @return		The found node, or NULL.
 */
struct device_tree_node *dt_find_compat(struct device_tree_node *parent,
					const char *compat)
{
	/* Check if the parent node itself is compatible. */
	if (dt_check_compat_match(parent, compat))
		return parent;

	struct device_tree_node *child;
	list_for_each(child, parent->children, list_node) {
		struct device_tree_node *found = dt_find_compat(child, compat);
		if (found)
			return found;
	}

	return NULL;
}

/*
 * Find the next compatible child of a given parent. All children up to the
 * child passed in by caller are ignored. If child is NULL, it considers all the
 * children to find the first child which is compatible.
 *
 * @param parent	The parent node under which to look.
 * @param child	The child node to start search from (exclusive). If NULL
 *                      consider all children.
 * @param compat	The compatible string to find.
 * @return		The found node, or NULL.
 */
struct device_tree_node *
dt_find_next_compat_child(struct device_tree_node *parent,
			  struct device_tree_node *child,
			  const char *compat)
{
	struct device_tree_node *next;
	int ignore = 0;

	if (child)
		ignore = 1;

	list_for_each(next, parent->children, list_node) {
		if (ignore) {
			if (child == next)
				ignore = 0;
			continue;
		}

		if (dt_check_compat_match(next, compat))
			return next;
	}

	return NULL;
}

/*
 * Find a node with matching property value, in the subtree of a parent node.
 *
 * @param parent	The parent node under which to look.
 * @param name		The property name to look for.
 * @param data		The property value to look for.
 * @param size		The property size.
 */
struct device_tree_node *dt_find_prop_value(struct device_tree_node *parent,
					    const char *name, void *data,
					    size_t size)
{
	struct device_tree_property *prop;

	/* Check if parent itself has the required property value. */
	list_for_each(prop, parent->properties, list_node) {
		if (!strcmp(name, prop->prop.name)) {
			size_t bytes = prop->prop.size;
			const void *prop_data = prop->prop.data;
			if (size != bytes)
				break;
			if (!memcmp(data, prop_data, size))
				return parent;
			break;
		}
	}

	struct device_tree_node *child;
	list_for_each(child, parent->children, list_node) {
		struct device_tree_node *found = dt_find_prop_value(child, name,
								    data, size);
		if (found)
			return found;
	}
	return NULL;
}

/*
 * Write an arbitrary sized big-endian integer into a pointer.
 *
 * @param dest		Pointer to the DT property data buffer to write.
 * @param src		The integer to write (in CPU endianness).
 * @param length	the length of the destination integer in bytes.
 */
void dt_write_int(u8 *dest, u64 src, size_t length)
{
	while (length--) {
		dest[length] = (u8)src;
		src >>= 8;
	}
}

/*
 * Delete a property by name in a given node if it exists.
 *
 * @param node		The device tree node to operate on.
 * @param name		The name of the property to delete.
 */
void dt_delete_prop(struct device_tree_node *node, const char *name)
{
	struct device_tree_property *prop;

	list_for_each(prop, node->properties, list_node) {
		if (!strcmp(prop->prop.name, name)) {
			list_remove(&prop->list_node);
			return;
		}
	}
}

/*
 * Add an arbitrary property to a node, or update it if it already exists.
 *
 * @param node		The device tree node to add to.
 * @param name		The name of the new property.
 * @param data		The raw data blob to be stored in the property.
 * @param size		The size of data in bytes.
 */
void dt_add_bin_prop(struct device_tree_node *node, const char *name,
		     void *data, size_t size)
{
	struct device_tree_property *prop;

	list_for_each(prop, node->properties, list_node) {
		if (!strcmp(prop->prop.name, name)) {
			prop->prop.data = data;
			prop->prop.size = size;
			return;
		}
	}

	prop = alloc_prop();
	list_insert_after(&prop->list_node, &node->properties);
	prop->prop.name = name;
	prop->prop.data = data;
	prop->prop.size = size;
}

/*
 * Find given string property in a node and return its content.
 *
 * @param node		The device tree node to search.
 * @param name		The name of the property.
 * @return		The found string, or NULL.
 */
const char *dt_find_string_prop(const struct device_tree_node *node,
				const char *name)
{
	const void *content;
	size_t size;

	dt_find_bin_prop(node, name, &content, &size);

	return content;
}

/*
 * Find given property in a node.
 *
 * @param node		The device tree node to search.
 * @param name		The name of the property.
 * @param data		Pointer to return raw data blob in the property.
 * @param size		Pointer to return the size of data in bytes.
 */
void dt_find_bin_prop(const struct device_tree_node *node, const char *name,
		      const void **data, size_t *size)
{
	struct device_tree_property *prop;

	*data = NULL;
	*size = 0;

	list_for_each(prop, node->properties, list_node) {
		if (!strcmp(prop->prop.name, name)) {
			*data = prop->prop.data;
			*size = prop->prop.size;
			return;
		}
	}
}

/*
 * Add a string property to a node, or update it if it already exists.
 *
 * @param node		The device tree node to add to.
 * @param name		The name of the new property.
 * @param str		The zero-terminated string to be stored in the property.
 */
void dt_add_string_prop(struct device_tree_node *node, const char *name,
			const char *str)
{
	dt_add_bin_prop(node, name, (char *)str, strlen(str) + 1);
}

/*
 * Add a 32-bit integer property to a node, or update it if it already exists.
 *
 * @param node		The device tree node to add to.
 * @param name		The name of the new property.
 * @param val		The integer to be stored in the property.
 */
void dt_add_u32_prop(struct device_tree_node *node, const char *name, u32 val)
{
	u32 *val_ptr = xmalloc(sizeof(val));
	*val_ptr = htobe32(val);
	dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr));
}

/*
 * Add a 64-bit integer property to a node, or update it if it already exists.
 *
 * @param node		The device tree node to add to.
 * @param name		The name of the new property.
 * @param val		The integer to be stored in the property.
 */
void dt_add_u64_prop(struct device_tree_node *node, const char *name, u64 val)
{
	u64 *val_ptr = xmalloc(sizeof(val));
	*val_ptr = htobe64(val);
	dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr));
}

/*
 * Add a 'reg' address list property to a node, or update it if it exists.
 *
 * @param node		The device tree node to add to.
 * @param regions       Array of address values to be stored in the property.
 * @param sizes		Array of corresponding size values to 'addrs'.
 * @param count		Number of values in 'addrs' and 'sizes' (must be equal).
 * @param addr_cells	Value of #address-cells property valid for this node.
 * @param size_cells	Value of #size-cells property valid for this node.
 */
void dt_add_reg_prop(struct device_tree_node *node, u64 *addrs, u64 *sizes,
		     int count, u32 addr_cells, u32 size_cells)
{
	int i;
	size_t length = (addr_cells + size_cells) * sizeof(u32) * count;
	u8 *data = xmalloc(length);
	u8 *cur = data;

	for (i = 0; i < count; i++) {
		dt_write_int(cur, addrs[i], addr_cells * sizeof(u32));
		cur += addr_cells * sizeof(u32);
		dt_write_int(cur, sizes[i], size_cells * sizeof(u32));
		cur += size_cells * sizeof(u32);
	}

	dt_add_bin_prop(node, "reg", data, length);
}

/*
 * Fixups to apply to a kernel's device tree before booting it.
 */

struct list_node device_tree_fixups;

int dt_apply_fixups(struct device_tree *tree)
{
	struct device_tree_fixup *fixup;
	list_for_each(fixup, device_tree_fixups, list_node) {
		assert(fixup->fixup);
		if (fixup->fixup(fixup, tree))
			return 1;
	}
	return 0;
}

int dt_set_bin_prop_by_path(struct device_tree *tree, const char *path,
			    void *data, size_t data_size, int create)
{
	char *path_copy, *prop_name;
	struct device_tree_node *dt_node;

	path_copy = strdup(path);

	if (!path_copy) {
		printk(BIOS_ERR, "Failed to allocate a copy of path %s\n",
		       path);
		return 1;
	}

	prop_name = strrchr(path_copy, '/');
	if (!prop_name) {
		free(path_copy);
		printk(BIOS_ERR, "Path %s does not include '/'\n", path);
		return 1;
	}

	*prop_name++ = '\0'; /* Separate path from the property name. */

	dt_node = dt_find_node_by_path(tree, path_copy, NULL,
				       NULL, create);

	if (!dt_node) {
		printk(BIOS_ERR, "Failed to %s %s in the device tree\n",
		       create ? "create" : "find", path_copy);
		free(path_copy);
		return 1;
	}

	dt_add_bin_prop(dt_node, prop_name, data, data_size);
	free(path_copy);

	return 0;
}

/*
 * Prepare the /reserved-memory/ node.
 *
 * Technically, this can be called more than one time, to init and/or retrieve
 * the node. But dt_add_u32_prop() may leak a bit of memory if you do.
 *
 * @tree: Device tree to add/retrieve from.
 * @return: The /reserved-memory/ node (or NULL, if error).
 */
struct device_tree_node *dt_init_reserved_memory_node(struct device_tree *tree)
{
	struct device_tree_node *reserved;
	u32 addr = 0, size = 0;

	reserved = dt_find_node_by_path(tree, "/reserved-memory", &addr,
					&size, 1);
	if (!reserved)
		return NULL;

	/* Binding doc says this should have the same #{address,size}-cells as
	   the root. */
	dt_add_u32_prop(reserved, "#address-cells", addr);
	dt_add_u32_prop(reserved, "#size-cells", size);
	/* Binding doc says this should be empty (1:1 mapping from root). */
	dt_add_bin_prop(reserved, "ranges", NULL, 0);

	return reserved;
}

/*
 * Increment a single phandle in prop at a given offset by a given adjustment.
 *
 * @param prop		Property whose phandle should be adjusted.
 * @param adjustment	Value that should be added to the existing phandle.
 * @param offset	Byte offset of the phandle in the property data.
 *
 * @return		New phandle value, or 0 on error.
 */
static uint32_t dt_adjust_phandle(struct device_tree_property *prop,
				  uint32_t adjustment, uint32_t offset)
{
	if (offset + 4 > prop->prop.size)
		return 0;

	uint32_t phandle = be32dec(prop->prop.data + offset);
	if (phandle == 0 ||
	    phandle == FDT_PHANDLE_ILLEGAL ||
	    phandle == 0xffffffff)
		return 0;

	phandle += adjustment;
	if (phandle >= FDT_PHANDLE_ILLEGAL)
		return 0;

	be32enc(prop->prop.data + offset, phandle);
	return phandle;
}

/*
 * Adjust all phandles in subtree by adding a new base offset.
 *
 * @param node		Root node of the subtree to work on.
 * @param base		New phandle base to be added to all phandles.
 *
 * @return		New highest phandle in the subtree, or 0 on error.
 */
static uint32_t dt_adjust_all_phandles(struct device_tree_node *node,
				       uint32_t base)
{
	uint32_t new_max = MAX(base, 1);  /* make sure we don't return 0 */
	struct device_tree_property *prop;
	struct device_tree_node *child;

	if (!node)
		return new_max;

	list_for_each(prop, node->properties, list_node)
		if (dt_prop_is_phandle(prop)) {
			node->phandle = dt_adjust_phandle(prop, base, 0);
			if (!node->phandle)
				return 0;
			new_max = MAX(new_max, node->phandle);
		}  /* no break -- can have more than one phandle prop */

	list_for_each(child, node->children, list_node)
		new_max = MAX(new_max, dt_adjust_all_phandles(child, base));

	return new_max;
}

/*
 * Apply a /__local_fixup__ subtree to the corresponding overlay subtree.
 *
 * @param node		Root node of the overlay subtree to fix up.
 * @param node		Root node of the /__local_fixup__ subtree.
 * @param base		Adjustment that was added to phandles in the overlay.
 *
 * @return		0 on success, -1 on error.
 */
static int dt_fixup_locals(struct device_tree_node *node,
		    struct device_tree_node *fixup, uint32_t base)
{
	struct device_tree_property *prop;
	struct device_tree_property *fixup_prop;
	struct device_tree_node *child;
	struct device_tree_node *fixup_child;
	int i;

	/*
	 * For local fixups the /__local_fixup__ subtree contains the same node
	 * hierarchy as the main tree we're fixing up. Each property contains
	 * the fixup offsets for the respective property in the main tree. For
	 * each property in the fixup node, find the corresponding property in
	 * the base node and apply fixups to all offsets it specifies.
	 */
	list_for_each(fixup_prop, fixup->properties, list_node) {
		struct device_tree_property *base_prop = NULL;
		list_for_each(prop, node->properties, list_node)
			if (!strcmp(prop->prop.name, fixup_prop->prop.name)) {
				base_prop = prop;
				break;
			}

		/* We should always find a corresponding base prop for a fixup,
		   and fixup props contain a list of 32-bit fixup offsets. */
		if (!base_prop || fixup_prop->prop.size % sizeof(uint32_t))
			return -1;

		for (i = 0; i < fixup_prop->prop.size; i += sizeof(uint32_t))
			if (!dt_adjust_phandle(base_prop, base, be32dec(
					fixup_prop->prop.data + i)))
				return -1;
	}

	/* Now recursively descend both the base tree and the /__local_fixups__
	   subtree in sync to apply all fixups. */
	list_for_each(fixup_child, fixup->children, list_node) {
		struct device_tree_node *base_child = NULL;
		list_for_each(child, node->children, list_node)
			if (!strcmp(child->name, fixup_child->name)) {
				base_child = child;
				break;
			}

		/* All fixup nodes should have a corresponding base node. */
		if (!base_child)
			return -1;

		if (dt_fixup_locals(base_child, fixup_child, base) < 0)
			return -1;
	}

	return 0;
}

/*
 * Update all /__symbols__ properties in an overlay that start with
 * "/fragment@X/__overlay__" with corresponding path prefix in the base tree.
 *
 * @param symbols	/__symbols__ done to update.
 * @param fragment	/fragment@X node that references to should be updated.
 * @param base_path	Path of base tree node that the fragment overlaid.
 */
static void dt_fix_symbols(struct device_tree_node *symbols,
			   struct device_tree_node *fragment,
			   const char *base_path)
{
	struct device_tree_property *prop;
	char buf[512]; /* Should be enough for maximum DT path length? */
	char node_path[64]; /* easily enough for /fragment@XXXX/__overlay__ */

	if (!symbols) /* If the overlay has no /__symbols__ node, we're done! */
		return;

	int len = snprintf(node_path, sizeof(node_path), "/%s/__overlay__",
			   fragment->name);

	list_for_each(prop, symbols->properties, list_node)
		if (!strncmp(prop->prop.data, node_path, len)) {
			prop->prop.size = snprintf(buf, sizeof(buf), "%s%s",
				base_path, (char *)prop->prop.data + len) + 1;
			free(prop->prop.data);
			prop->prop.data = strdup(buf);
		}
}

/*
 * Fix up overlay according to a property in /__fixup__. If the fixed property
 * is a /fragment@X:target, also update /__symbols__ references to fragment.
 *
 * @params overlay	Overlay to fix up.
 * @params fixup	/__fixup__ property.
 * @params phandle	phandle value to insert where the fixup points to.
 * @params base_path	Path to the base DT node that the fixup points to.
 * @params overlay_symbols /__symbols__ node of the overlay.
 *
 * @return		0 on success, -1 on error.
 */
static int dt_fixup_external(struct device_tree *overlay,
			     struct device_tree_property *fixup,
			     uint32_t phandle, const char *base_path,
			     struct device_tree_node *overlay_symbols)
{
	struct device_tree_property *prop;

	/* External fixup properties are encoded as "<path>:<prop>:<offset>". */
	char *entry = fixup->prop.data;
	while ((void *)entry < fixup->prop.data + fixup->prop.size) {
		/* okay to destroy fixup property value, won't need it again */
		char *node_path = entry;
		entry = strchr(node_path, ':');
		if (!entry)
			return -1;
		*entry++ = '\0';

		char *prop_name = entry;
		entry = strchr(prop_name, ':');
		if (!entry)
			return -1;
		*entry++ = '\0';

		struct device_tree_node *ovl_node = dt_find_node_by_path(
			overlay, node_path, NULL, NULL, 0);
		if (!ovl_node || !isdigit(*entry))
			return -1;

		struct device_tree_property *ovl_prop = NULL;
		list_for_each(prop, ovl_node->properties, list_node)
			if (!strcmp(prop->prop.name, prop_name)) {
				ovl_prop = prop;
				break;
			}

		/* Move entry to first char after number, must be a '\0'. */
		uint32_t offset = skip_atoi(&entry);
		if (!ovl_prop || offset + 4 > ovl_prop->prop.size || entry[0])
			return -1;
		entry++;  /* jump over '\0' to potential next fixup */

		be32enc(ovl_prop->prop.data + offset, phandle);

		/* If this is a /fragment@X:target property, update references
		   to this fragment in the overlay __symbols__ now. */
		if (offset == 0 && !strcmp(prop_name, "target") &&
		    !strchr(node_path + 1, '/')) /* only toplevel nodes */
			dt_fix_symbols(overlay_symbols, ovl_node, base_path);
	}

	return 0;
}

/*
 * Apply all /__fixup__ properties in the overlay. This will destroy the
 * property data in /__fixup__ and it should not be accessed again.
 *
 * @params tree		Base device tree that the overlay updates.
 * @params symbols	/__symbols__ node of the base device tree.
 * @params overlay	Overlay to fix up.
 * @params fixups	/__fixup__ node in the overlay.
 * @params overlay_symbols /__symbols__ node of the overlay.
 *
 * @return		0 on success, -1 on error.
 */
static int dt_fixup_all_externals(struct device_tree *tree,
				  struct device_tree_node *symbols,
				  struct device_tree *overlay,
				  struct device_tree_node *fixups,
				  struct device_tree_node *overlay_symbols)
{
	struct device_tree_property *fix;

	/* If we have any external fixups, base tree must have /__symbols__. */
	if (!symbols)
		return -1;

	/*
	 * Unlike /__local_fixups__, /__fixups__ is not a whole subtree that
	 * mirrors the node hierarchy. It's just a directory of fixup properties
	 * that each directly contain all information necessary to apply them.
	 */
	list_for_each(fix, fixups->properties, list_node) {
		/* The name of a fixup property is the label of the node we want
		   a property to phandle-reference. Look up in /__symbols__. */
		const char *path = dt_find_string_prop(symbols, fix->prop.name);
		if (!path)
			return -1;

		/* Find node the label pointed to figure out its phandle. */
		struct device_tree_node *node = dt_find_node_by_path(tree, path,
			NULL, NULL, 0);
		if (!node)
			return -1;

		/* Write into the overlay property(s) pointing to that node. */
		if (dt_fixup_external(overlay, fix, node->phandle,
				      path, overlay_symbols) < 0)
			return -1;
	}

	return 0;
}

/*
 * Copy all nodes and properties from one DT subtree into another. This is a
 * shallow copy so both trees will point to the same property data afterwards.
 *
 * @params dst		Destination subtree to copy into.
 * @params src		Source subtree to copy from.
 * @params upd		1 to overwrite same-name properties, 0 to discard them.
 */
static void dt_copy_subtree(struct device_tree_node *dst,
			    struct device_tree_node *src, int upd)
{
	struct device_tree_property *prop;
	struct device_tree_property *src_prop;
	list_for_each(src_prop, src->properties, list_node) {
		if (dt_prop_is_phandle(src_prop) ||
		    !strcmp(src_prop->prop.name, "name")) {
			printk(BIOS_DEBUG,
			       "WARNING: ignoring illegal overlay prop '%s'\n",
			       src_prop->prop.name);
			continue;
		}

		struct device_tree_property *dst_prop = NULL;
		list_for_each(prop, dst->properties, list_node)
			if (!strcmp(prop->prop.name, src_prop->prop.name)) {
				dst_prop = prop;
				break;
			}

		if (dst_prop) {
			if (!upd) {
				printk(BIOS_DEBUG,
				       "WARNING: ignoring prop update '%s'\n",
				       src_prop->prop.name);
				continue;
			}
		} else {
			dst_prop = alloc_prop();
			list_insert_after(&dst_prop->list_node,
					  &dst->properties);
		}

		dst_prop->prop = src_prop->prop;
	}

	struct device_tree_node *node;
	struct device_tree_node *src_node;
	list_for_each(src_node, src->children, list_node) {
		struct device_tree_node *dst_node = NULL;
		list_for_each(node, dst->children, list_node)
			if (!strcmp(node->name, src_node->name)) {
				dst_node = node;
				break;
			}

		if (!dst_node) {
			dst_node = alloc_node();
			*dst_node = *src_node;
			list_insert_after(&dst_node->list_node, &dst->children);
		} else {
			dt_copy_subtree(dst_node, src_node, upd);
		}
	}
}

/*
 * Apply an overlay /fragment@X node to a base device tree.
 *
 * @param tree		Base device tree.
 * @param fragment	/fragment@X node.
 * @params overlay_symbols /__symbols__ node of the overlay.
 *
 * @return		0 on success, -1 on error.
 */
static int dt_import_fragment(struct device_tree *tree,
			      struct device_tree_node *fragment,
			      struct device_tree_node *overlay_symbols)
{
	/* The actual overlaid nodes/props are in an __overlay__ child node. */
	static const char *overlay_path[] = { "__overlay__", NULL };
	struct device_tree_node *overlay = dt_find_node(fragment, overlay_path,
							NULL, NULL, 0);

	/* If it doesn't have an __overlay__ child, it's not a fragment. */
	if (!overlay)
		return 0;

	/* Target node of the fragment can be given by path or by phandle. */
	struct device_tree_property *prop;
	struct device_tree_property *phandle = NULL;
	struct device_tree_property *path = NULL;
	list_for_each(prop, fragment->properties, list_node) {
		if (!strcmp(prop->prop.name, "target")) {
			phandle = prop;
			break; /* phandle target has priority, stop looking */
		}
		if (!strcmp(prop->prop.name, "target-path"))
			path = prop;
	}

	struct device_tree_node *target = NULL;
	if (phandle) {
		if (phandle->prop.size != sizeof(uint32_t))
			return -1;
		target = dt_find_node_by_phandle(tree->root,
						 be32dec(phandle->prop.data));
		/* Symbols already updated as part of dt_fixup_external(). */
	} else if (path) {
		target = dt_find_node_by_path(tree, path->prop.data,
					      NULL, NULL, 0);
		dt_fix_symbols(overlay_symbols, fragment, path->prop.data);
	}
	if (!target)
		return -1;

	dt_copy_subtree(target, overlay, 1);
	return 0;
}

/*
 * Apply a device tree overlay to a base device tree. This will
 * destroy/incorporate the overlay data, so it should not be freed or reused.
 * See dtc.git/Documentation/dt-object-internal.txt for overlay format details.
 *
 * @param tree		Unflattened base device tree to add the overlay into.
 * @param overlay	Unflattened overlay device tree to apply to the base.
 *
 * @return		0 on success, -1 on error.
 */
int dt_apply_overlay(struct device_tree *tree, struct device_tree *overlay)
{
	/*
	 * First, we need to make sure phandles inside the overlay don't clash
	 * with those in the base tree. We just define the highest phandle value
	 * in the base tree as the "phandle offset" for this overlay and
	 * increment all phandles in it by that value.
	 */
	uint32_t phandle_base = tree->max_phandle;
	uint32_t new_max = dt_adjust_all_phandles(overlay->root, phandle_base);
	if (!new_max) {
		printk(BIOS_ERR, "invalid phandles in overlay\n");
		return -1;
	}
	tree->max_phandle = new_max;

	/* Now that we changed phandles in the overlay, we need to update any
	   nodes referring to them. Those are listed in /__local_fixups__. */
	struct device_tree_node *local_fixups = dt_find_node_by_path(overlay,
					"/__local_fixups__", NULL, NULL, 0);
	if (local_fixups && dt_fixup_locals(overlay->root, local_fixups,
					    phandle_base) < 0) {
		printk(BIOS_ERR, "invalid local fixups in overlay\n");
		return -1;
	}

	/*
	 * Besides local phandle references (from nodes within the overlay to
	 * other nodes within the overlay), the overlay may also contain phandle
	 * references to the base tree. These are stored with invalid values and
	 * must be updated now. /__symbols__ contains a list of all labels in
	 * the base tree, and /__fixups__ describes all nodes in the overlay
	 * that contain external phandle references.
	 * We also take this opportunity to update all /fragment@X/__overlay__/
	 * prefixes in the overlay's /__symbols__ node to the correct path that
	 * the fragment will be placed in later, since this is the only step
	 * where we have all necessary information for that easily available.
	 */
	struct device_tree_node *symbols = dt_find_node_by_path(tree,
		"/__symbols__", NULL, NULL, 0);
	struct device_tree_node *fixups = dt_find_node_by_path(overlay,
		"/__fixups__", NULL, NULL, 0);
	struct device_tree_node *overlay_symbols = dt_find_node_by_path(overlay,
		"/__symbols__", NULL, NULL, 0);
	if (fixups && dt_fixup_all_externals(tree, symbols, overlay,
					     fixups, overlay_symbols) < 0) {
		printk(BIOS_ERR, "cannot match external fixups from overlay\n");
		return -1;
	}

	/* After all this fixing up, we can finally merge overlay into the tree
	   (one fragment at a time, because for some reason it's split up). */
	struct device_tree_node *fragment;
	list_for_each(fragment, overlay->root->children, list_node)
		if (dt_import_fragment(tree, fragment, overlay_symbols) < 0) {
			printk(BIOS_ERR, "bad DT fragment '%s'\n",
			       fragment->name);
			return -1;
		}

	/*
	 * We need to also update /__symbols__ to include labels from this
	 * overlay, in case we want to load further overlays with external
	 * phandle references to it. If the base tree already has a /__symbols__
	 * we merge them together, otherwise we just insert the overlay's
	 * /__symbols__ node into the base tree root.
	 */
	if (overlay_symbols) {
		if (symbols)
			dt_copy_subtree(symbols, overlay_symbols, 0);
		else
			list_insert_after(&overlay_symbols->list_node,
					  &tree->root->children);
	}

	return 0;
}