1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
/* SPDX-License-Identifier: BSD-3-Clause */
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <symbols.h>
#include <console/console.h>
#include <arch/mmu.h>
#include <arch/lib_helpers.h>
#include <arch/cache.h>
/* This just caches the next free table slot (okay to do since they fill up from
* bottom to top and can never be freed up again). It will reset to its initial
* value on stage transition, so we still need to check it for UNUSED_DESC. */
static uint64_t *next_free_table = (void *)_ttb;
static void print_tag(int level, uint64_t tag)
{
printk(level, tag & MA_MEM_NC ? "non-cacheable | " :
" cacheable | ");
printk(level, tag & MA_RO ? "read-only | " :
"read-write | ");
printk(level, tag & MA_NS ? "non-secure | " :
" secure | ");
printk(level, tag & MA_MEM ? "normal\n" :
"device\n");
}
/* Func : get_block_attr
* Desc : Get block descriptor attributes based on the value of tag in memrange
* region
*/
static uint64_t get_block_attr(unsigned long tag)
{
uint64_t attr;
attr = (tag & MA_NS) ? BLOCK_NS : 0;
attr |= (tag & MA_RO) ? BLOCK_AP_RO : BLOCK_AP_RW;
attr |= BLOCK_ACCESS;
if (tag & MA_MEM) {
attr |= BLOCK_SH_INNER_SHAREABLE;
if (tag & MA_MEM_NC)
attr |= BLOCK_INDEX_MEM_NORMAL_NC << BLOCK_INDEX_SHIFT;
else
attr |= BLOCK_INDEX_MEM_NORMAL << BLOCK_INDEX_SHIFT;
} else {
attr |= BLOCK_INDEX_MEM_DEV_NGNRNE << BLOCK_INDEX_SHIFT;
attr |= BLOCK_XN;
}
return attr;
}
/* Func : setup_new_table
* Desc : Get next free table from TTB and set it up to match old parent entry.
*/
static uint64_t *setup_new_table(uint64_t desc, size_t xlat_size)
{
while (next_free_table[0] != UNUSED_DESC) {
next_free_table += GRANULE_SIZE/sizeof(*next_free_table);
if (_ettb - (u8 *)next_free_table <= 0)
die("Ran out of page table space!");
}
void *frame_base = (void *)(desc & XLAT_ADDR_MASK);
printk(BIOS_DEBUG, "Backing address range [%p:%p) with new page"
" table @%p\n", frame_base, frame_base +
(xlat_size << BITS_RESOLVED_PER_LVL), next_free_table);
if (!desc) {
memset(next_free_table, 0, GRANULE_SIZE);
} else {
/* Can reuse old parent entry, but may need to adjust type. */
if (xlat_size == L3_XLAT_SIZE)
desc |= PAGE_DESC;
int i = 0;
for (; i < GRANULE_SIZE/sizeof(*next_free_table); i++) {
next_free_table[i] = desc;
desc += xlat_size;
}
}
return next_free_table;
}
/* Func: get_next_level_table
* Desc: Check if the table entry is a valid descriptor. If not, initialize new
* table, update the entry and return the table addr. If valid, return the addr
*/
static uint64_t *get_next_level_table(uint64_t *ptr, size_t xlat_size)
{
uint64_t desc = *ptr;
if ((desc & DESC_MASK) != TABLE_DESC) {
uint64_t *new_table = setup_new_table(desc, xlat_size);
desc = ((uint64_t)new_table) | TABLE_DESC;
*ptr = desc;
}
return (uint64_t *)(desc & XLAT_ADDR_MASK);
}
/* Func : init_xlat_table
* Desc : Given a base address and size, it identifies the indices within
* different level XLAT tables which map the given base addr. Similar to table
* walk, except that all invalid entries during the walk are updated
* accordingly. On success, it returns the size of the block/page addressed by
* the final table.
*/
static uint64_t init_xlat_table(uint64_t base_addr,
uint64_t size,
uint64_t tag)
{
uint64_t l0_index = (base_addr & L0_ADDR_MASK) >> L0_ADDR_SHIFT;
uint64_t l1_index = (base_addr & L1_ADDR_MASK) >> L1_ADDR_SHIFT;
uint64_t l2_index = (base_addr & L2_ADDR_MASK) >> L2_ADDR_SHIFT;
uint64_t l3_index = (base_addr & L3_ADDR_MASK) >> L3_ADDR_SHIFT;
uint64_t *table = (uint64_t *)_ttb;
uint64_t desc;
uint64_t attr = get_block_attr(tag);
/* L0 entry stores a table descriptor (doesn't support blocks) */
table = get_next_level_table(&table[l0_index], L1_XLAT_SIZE);
/* L1 table lookup */
if ((size >= L1_XLAT_SIZE) &&
IS_ALIGNED(base_addr, (1UL << L1_ADDR_SHIFT))) {
/* If block address is aligned and size is greater than
* or equal to size addressed by each L1 entry, we can
* directly store a block desc */
desc = base_addr | BLOCK_DESC | attr;
table[l1_index] = desc;
/* L2 lookup is not required */
return L1_XLAT_SIZE;
}
/* L1 entry stores a table descriptor */
table = get_next_level_table(&table[l1_index], L2_XLAT_SIZE);
/* L2 table lookup */
if ((size >= L2_XLAT_SIZE) &&
IS_ALIGNED(base_addr, (1UL << L2_ADDR_SHIFT))) {
/* If block address is aligned and size is greater than
* or equal to size addressed by each L2 entry, we can
* directly store a block desc */
desc = base_addr | BLOCK_DESC | attr;
table[l2_index] = desc;
/* L3 lookup is not required */
return L2_XLAT_SIZE;
}
/* L2 entry stores a table descriptor */
table = get_next_level_table(&table[l2_index], L3_XLAT_SIZE);
/* L3 table lookup */
desc = base_addr | PAGE_DESC | attr;
table[l3_index] = desc;
return L3_XLAT_SIZE;
}
/* Func : sanity_check
* Desc : Check address/size alignment of a table or page.
*/
static void sanity_check(uint64_t addr, uint64_t size)
{
assert(!(addr & GRANULE_SIZE_MASK) &&
!(size & GRANULE_SIZE_MASK) &&
(addr + size < (1UL << BITS_PER_VA)) &&
size >= GRANULE_SIZE);
}
/* Func : get_pte
* Desc : Returns the page table entry governing a specific address. */
static uint64_t get_pte(void *addr)
{
int shift = L0_ADDR_SHIFT;
uint64_t *pte = (uint64_t *)_ttb;
while (1) {
int index = ((uintptr_t)addr >> shift) &
((1UL << BITS_RESOLVED_PER_LVL) - 1);
if ((pte[index] & DESC_MASK) != TABLE_DESC ||
shift <= GRANULE_SIZE_SHIFT)
return pte[index];
pte = (uint64_t *)(pte[index] & XLAT_ADDR_MASK);
shift -= BITS_RESOLVED_PER_LVL;
}
}
/* Func : assert_correct_ttb_mapping
* Desc : Asserts that mapping for addr matches the access type used by the
* page table walk (i.e. addr is correctly mapped to be part of the TTB). */
static void assert_correct_ttb_mapping(void *addr)
{
uint64_t pte = get_pte(addr);
assert(((pte >> BLOCK_INDEX_SHIFT) & BLOCK_INDEX_MASK)
== BLOCK_INDEX_MEM_NORMAL && !(pte & BLOCK_NS));
}
/* Func : mmu_config_range
* Desc : This function repeatedly calls init_xlat_table with the base
* address. Based on size returned from init_xlat_table, base_addr is updated
* and subsequent calls are made for initializing the xlat table until the whole
* region is initialized.
*/
void mmu_config_range(void *start, size_t size, uint64_t tag)
{
uint64_t base_addr = (uintptr_t)start;
uint64_t temp_size = size;
printk(BIOS_INFO, "Mapping address range [%p:%p) as ",
start, start + size);
print_tag(BIOS_INFO, tag);
sanity_check(base_addr, temp_size);
while (temp_size)
temp_size -= init_xlat_table(base_addr + (size - temp_size),
temp_size, tag);
/* ARMv8 MMUs snoop L1 data cache, no need to flush it. */
dsb();
tlbiall();
dsb();
isb();
}
/* Func : mmu_init
* Desc : Initialize MMU registers and page table memory region. This must be
* called exactly ONCE PER BOOT before trying to configure any mappings.
*/
void mmu_init(void)
{
/* Initially mark all table slots unused (first PTE == UNUSED_DESC). */
uint64_t *table = (uint64_t *)_ttb;
for (; _ettb - (u8 *)table > 0; table += GRANULE_SIZE/sizeof(*table))
table[0] = UNUSED_DESC;
/* Initialize the root table (L0) to be completely unmapped. */
uint64_t *root = setup_new_table(INVALID_DESC, L0_XLAT_SIZE);
assert((u8 *)root == _ttb);
/* Initialize TTBR */
raw_write_ttbr0((uintptr_t)root);
/* Initialize MAIR indices */
raw_write_mair(MAIR_ATTRIBUTES);
/* Initialize TCR flags */
raw_write_tcr(TCR_TOSZ | TCR_IRGN0_NM_WBWAC | TCR_ORGN0_NM_WBWAC |
TCR_SH0_IS | TCR_TG0_4KB | TCR_PS_256TB |
TCR_TBI_USED);
}
/* Func : mmu_save_context
* Desc : Save mmu context (registers and ttbr base).
*/
void mmu_save_context(struct mmu_context *mmu_context)
{
assert(mmu_context);
/* Back-up MAIR_ATTRIBUTES */
mmu_context->mair = raw_read_mair();
/* Back-up TCR value */
mmu_context->tcr = raw_read_tcr();
}
/* Func : mmu_restore_context
* Desc : Restore mmu context using input backed-up context
*/
void mmu_restore_context(const struct mmu_context *mmu_context)
{
assert(mmu_context);
/* Restore TTBR */
raw_write_ttbr0((uintptr_t)_ttb);
/* Restore MAIR indices */
raw_write_mair(mmu_context->mair);
/* Restore TCR flags */
raw_write_tcr(mmu_context->tcr);
/* invalidate tlb since ttbr is updated. */
tlb_invalidate_all();
}
void mmu_enable(void)
{
assert_correct_ttb_mapping(_ttb);
assert_correct_ttb_mapping((void *)((uintptr_t)_ettb - 1));
uint32_t sctlr = raw_read_sctlr();
raw_write_sctlr(sctlr | SCTLR_C | SCTLR_M | SCTLR_I);
isb();
}
|