/****************************************************************************** * Copyright (c) 2004, 2008 IBM Corporation * Copyright (c) 2009 Pattrick Hueper <phueper@hueper.net> * All rights reserved. * This program and the accompanying materials * are made available under the terms of the BSD License * which accompanies this distribution, and is available at * http://www.opensource.org/licenses/bsd-license.php * * Contributors: * IBM Corporation - initial implementation *****************************************************************************/ #include <types.h> #ifdef CONFIG_COREBOOT_V2 #include "compat/rtas.h" #include "compat/time.h" #else #include <cpu.h> #include "rtas.h" #include <time.h> #endif #include "device.h" #include "debug.h" #include <x86emu/x86emu.h> #ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL #include <device/pci.h> #include <device/pci_ops.h> #endif // those are defined in net-snk/oflib/pci.c extern unsigned int read_io(void *, size_t); extern int write_io(void *, unsigned int, size_t); //defined in net-snk/kernel/timer.c extern u64 get_time(void); #ifdef COREBOOT_V2 #include <arch/io.h> #else // these are not used, only needed for linking, must be overridden using X86emu_setupPioFuncs // with the functions and struct below void outb(u8 val, u16 port) { printf("WARNING: outb not implemented!\n"); HALT_SYS(); } void outw(u16 val, u16 port) { printf("WARNING: outw not implemented!\n"); HALT_SYS(); } void outl(u32 val, u16 port) { printf("WARNING: outl not implemented!\n"); HALT_SYS(); } u8 inb(u16 port) { printf("WARNING: inb not implemented!\n"); HALT_SYS(); return 0; } u16 inw(u16 port) { printf("WARNING: inw not implemented!\n"); HALT_SYS(); return 0; } u32 inl(u16 port) { printf("WARNING: inl not implemented!\n"); HALT_SYS(); return 0; } #endif u32 pci_cfg_read(X86EMU_pioAddr addr, u8 size); void pci_cfg_write(X86EMU_pioAddr addr, u32 val, u8 size); u8 handle_port_61h(void); u8 my_inb(X86EMU_pioAddr addr) { u8 rval = 0xFF; unsigned long translated_addr = addr; u8 translated = biosemu_dev_translate_address(&translated_addr); if (translated != 0) { //translation successfull, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __func__, addr); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr); rval = read_io((void *)translated_addr, 1); DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %02x\n", __func__, addr, rval); return rval; } else { switch (addr) { case 0x61: //8254 KB Controller / Timer Port // rval = handle_port_61h(); rval = inb(0x61); //DEBUG_PRINTF_IO("%s(%04x) KB / Timer Port B --> %02x\n", __func__, addr, rval); return rval; break; case 0xCFC: case 0xCFD: case 0xCFE: case 0xCFF: // PCI Config Mechanism 1 Ports return (u8) pci_cfg_read(addr, 1); break; case 0x0a: CHECK_DBG(DEBUG_INTR) { X86EMU_trace_on(); } M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F; //HALT_SYS(); // no break, intentional fall-through to default!! default: DEBUG_PRINTF_IO ("%s(%04x) reading from bios_device.io_buffer\n", __func__, addr); rval = *((u8 *) (bios_device.io_buffer + addr)); DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %02x\n", __func__, addr, rval); return rval; break; } } } u16 my_inw(X86EMU_pioAddr addr) { unsigned long translated_addr = addr; u8 translated = biosemu_dev_translate_address(&translated_addr); if (translated != 0) { //translation successfull, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __func__, addr); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr); u16 rval; if ((translated_addr & (u64) 0x1) == 0) { // 16 bit aligned access... u16 tempval = read_io((void *)translated_addr, 2); //little endian conversion rval = in16le((void *) &tempval); } else { // unaligned access, read single bytes, little-endian rval = (read_io((void *)translated_addr, 1) << 8) | (read_io((void *)(translated_addr + 1), 1)); } DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %04x\n", __func__, addr, rval); return rval; } else { switch (addr) { case 0xCFC: case 0xCFE: //PCI Config Mechanism 1 return (u16) pci_cfg_read(addr, 2); break; default: DEBUG_PRINTF_IO ("%s(%04x) reading from bios_device.io_buffer\n", __func__, addr); u16 rval = in16le((void *) bios_device.io_buffer + addr); DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %04x\n", __func__, addr, rval); return rval; break; } } } u32 my_inl(X86EMU_pioAddr addr) { unsigned long translated_addr = addr; u8 translated = biosemu_dev_translate_address(&translated_addr); if (translated != 0) { //translation successfull, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x): access to Device I/O\n", __func__, addr); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr); u32 rval; if ((translated_addr & (u64) 0x3) == 0) { // 32 bit aligned access... u32 tempval = read_io((void *) translated_addr, 4); //little endian conversion rval = in32le((void *) &tempval); } else { // unaligned access, read single bytes, little-endian rval = (read_io((void *)(translated_addr), 1) << 24) | (read_io((void *)(translated_addr + 1), 1) << 16) | (read_io((void *)(translated_addr + 2), 1) << 8) | (read_io((void *)(translated_addr + 3), 1)); } DEBUG_PRINTF_IO("%s(%04x) Device I/O --> %08x\n", __func__, addr, rval); return rval; } else { switch (addr) { case 0xCFC: //PCI Config Mechanism 1 return pci_cfg_read(addr, 4); break; default: DEBUG_PRINTF_IO ("%s(%04x) reading from bios_device.io_buffer\n", __func__, addr); u32 rval = in32le((void *) bios_device.io_buffer + addr); DEBUG_PRINTF_IO("%s(%04x) I/O Buffer --> %08x\n", __func__, addr, rval); return rval; break; } } } void my_outb(X86EMU_pioAddr addr, u8 val) { unsigned long translated_addr = addr; u8 translated = biosemu_dev_translate_address(&translated_addr); if (translated != 0) { //translation successfull, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n", __func__, addr, val); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr); write_io((void *) translated_addr, val, 1); DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %02x\n", __func__, addr, val); } else { switch (addr) { case 0xCFC: case 0xCFD: case 0xCFE: case 0xCFF: // PCI Config Mechanism 1 Ports pci_cfg_write(addr, val, 1); break; default: DEBUG_PRINTF_IO ("%s(%04x,%02x) writing to bios_device.io_buffer\n", __func__, addr, val); *((u8 *) (bios_device.io_buffer + addr)) = val; break; } } } void my_outw(X86EMU_pioAddr addr, u16 val) { unsigned long translated_addr = addr; u8 translated = biosemu_dev_translate_address(&translated_addr); if (translated != 0) { //translation successfull, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n", __func__, addr, val); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr); if ((translated_addr & (u64) 0x1) == 0) { // little-endian conversion u16 tempval = in16le((void *) &val); // 16 bit aligned access... write_io((void *) translated_addr, tempval, 2); } else { // unaligned access, write single bytes, little-endian write_io(((void *) (translated_addr + 1)), (u8) ((val & 0xFF00) >> 8), 1); write_io(((void *) translated_addr), (u8) (val & 0x00FF), 1); } DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %04x\n", __func__, addr, val); } else { switch (addr) { case 0xCFC: case 0xCFE: // PCI Config Mechanism 1 Ports pci_cfg_write(addr, val, 2); break; default: DEBUG_PRINTF_IO ("%s(%04x,%04x) writing to bios_device.io_buffer\n", __func__, addr, val); out16le((void *) bios_device.io_buffer + addr, val); break; } } } void my_outl(X86EMU_pioAddr addr, u32 val) { unsigned long translated_addr = addr; u8 translated = biosemu_dev_translate_address(&translated_addr); if (translated != 0) { //translation successfull, access Device I/O (BAR or Legacy...) DEBUG_PRINTF_IO("%s(%x, %x): access to Device I/O\n", __func__, addr, val); //DEBUG_PRINTF_IO("%s(%04x): translated_addr: %llx\n", __func__, addr, translated_addr); if ((translated_addr & (u64) 0x3) == 0) { // little-endian conversion u32 tempval = in32le((void *) &val); // 32 bit aligned access... write_io((void *) translated_addr, tempval, 4); } else { // unaligned access, write single bytes, little-endian write_io(((void *) translated_addr + 3), (u8) ((val & 0xFF000000) >> 24), 1); write_io(((void *) translated_addr + 2), (u8) ((val & 0x00FF0000) >> 16), 1); write_io(((void *) translated_addr + 1), (u8) ((val & 0x0000FF00) >> 8), 1); write_io(((void *) translated_addr), (u8) (val & 0x000000FF), 1); } DEBUG_PRINTF_IO("%s(%04x) Device I/O <-- %08x\n", __func__, addr, val); } else { switch (addr) { case 0xCFC: // PCI Config Mechanism 1 Ports pci_cfg_write(addr, val, 4); break; default: DEBUG_PRINTF_IO ("%s(%04x,%08x) writing to bios_device.io_buffer\n", __func__, addr, val); out32le((void *) bios_device.io_buffer + addr, val); break; } } } u32 pci_cfg_read(X86EMU_pioAddr addr, u8 size) { u32 rval = 0xFFFFFFFF; struct device * dev; if ((addr >= 0xCFC) && ((addr + size) <= 0xD00)) { // PCI Configuration Mechanism 1 step 1 // write to 0xCF8, sets bus, device, function and Config Space offset // later read from 0xCFC-0xCFF returns the value... u8 bus, devfn, offs; u32 port_cf8_val = my_inl(0xCF8); if ((port_cf8_val & 0x80000000) != 0) { //highest bit enables config space mapping bus = (port_cf8_val & 0x00FF0000) >> 16; devfn = (port_cf8_val & 0x0000FF00) >> 8; offs = (port_cf8_val & 0x000000FF); offs += (addr - 0xCFC); // if addr is not 0xcfc, the offset is moved accordingly DEBUG_PRINTF_INTR("%s(): PCI Config Read from device: bus: %02x, devfn: %02x, offset: %02x\n", __func__, bus, devfn, offs); #if defined(CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES) && CONFIG_YABEL_PCI_ACCESS_OTHER_DEVICES==1 dev = dev_find_slot(bus, devfn); DEBUG_PRINTF_INTR("%s(): dev_find_slot() returned: %s\n", __func__, dev_path(dev)); if (dev == 0) { // fail accesses to non-existent devices... #else dev = bios_device.dev; if ((bus != bios_device.bus) || (devfn != bios_device.devfn)) { // fail accesses to any device but ours... #endif printf ("%s(): Config read access invalid device! bus: %02x (%02x), devfn: %02x (%02x), offs: %02x\n", __func__, bus, bios_device.bus, devfn, bios_device.devfn, offs); SET_FLAG(F_CF); HALT_SYS(); return 0; } else { #ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL switch (size) { case 1: rval = pci_read_config8(dev, offs); break; case 2: rval = pci_read_config16(dev, offs); break; case 4: rval = pci_read_config32(dev, offs); break; } #else rval = (u32) rtas_pci_config_read(bios_device. puid, size, bus, devfn, offs); #endif DEBUG_PRINTF_IO ("%s(%04x) PCI Config Read @%02x, size: %d --> 0x%08x\n", __func__, addr, offs, size, rval); } } } return rval; } void pci_cfg_write(X86EMU_pioAddr addr, u32 val, u8 size) { if ((addr >= 0xCFC) && ((addr + size) <= 0xD00)) { // PCI Configuration Mechanism 1 step 1 // write to 0xCF8, sets bus, device, function and Config Space offset // later write to 0xCFC-0xCFF sets the value... u8 bus, devfn, offs; u32 port_cf8_val = my_inl(0xCF8); if ((port_cf8_val & 0x80000000) != 0) { //highest bit enables config space mapping bus = (port_cf8_val & 0x00FF0000) >> 16; devfn = (port_cf8_val & 0x0000FF00) >> 8; offs = (port_cf8_val & 0x000000FF); offs += (addr - 0xCFC); // if addr is not 0xcfc, the offset is moved accordingly if ((bus != bios_device.bus) || (devfn != bios_device.devfn)) { // fail accesses to any device but ours... printf ("Config write access invalid! PCI device %x:%x.%x, offs: %x\n", bus, devfn >> 3, devfn & 7, offs); HALT_SYS(); } else { #ifdef CONFIG_PCI_OPTION_ROM_RUN_YABEL switch (size) { case 1: pci_write_config8(bios_device.dev, offs, val); break; case 2: pci_write_config16(bios_device.dev, offs, val); break; case 4: pci_write_config32(bios_device.dev, offs, val); break; } #else rtas_pci_config_write(bios_device.puid, size, bus, devfn, offs, val); #endif DEBUG_PRINTF_IO ("%s(%04x) PCI Config Write @%02x, size: %d <-- 0x%08x\n", __func__, addr, offs, size, val); } } } } u8 handle_port_61h(void) { static u64 last_time = 0; u64 curr_time = get_time(); u64 time_diff; // time since last call u32 period_ticks; // length of a period in ticks u32 nr_periods; //number of periods passed since last call // bit 4 should toggle with every (DRAM) refresh cycle... (66kHz??) time_diff = curr_time - last_time; // at 66kHz a period is ~ 15 ns long, converted to ticks: (tb_freq is ticks/second) // TODO: as long as the frequency does not change, we should not calculate this every time period_ticks = (15 * tb_freq) / 1000000; nr_periods = time_diff / period_ticks; // if the number if ticks passed since last call is odd, we toggle bit 4 if ((nr_periods % 2) != 0) { *((u8 *) (bios_device.io_buffer + 0x61)) ^= 0x10; } //finally read the value from the io_buffer return *((u8 *) (bios_device.io_buffer + 0x61)); }