/* sconfig, coreboot device tree compiler */ /* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include /* stat.h needs to be included before commonlib/helpers.h to avoid errors.*/ #include #include #include #include "sconfig.h" #include "sconfig.tab.h" extern int linenum; /* * Maintains list of all the unique chip structures for the board. * This is shared across base and override device trees since we need to * generate headers for all chips added by both the trees. */ static struct chip chip_header; typedef enum { UNSLASH, SPLIT_1ST, TO_LOWER, TO_UPPER, } translate_t; /* * Mainboard is assumed to have a root device whose bus is the parent of all the * devices that are added by parsing the devicetree file. This device has a * mainboard chip instance associated with it. * * * * +------------------------+ +----------------------+ * | Root device | | Mainboard | * +---------+ (base_root_dev) +--------------->+ instance + * | | | chip_instance | (mainboard_instance)| * | +------------------------+ | | * | | +----------------------+ * | | bus | * | parent v | * | +-------------------+ | * | | Root bus | | * +----------->+ (base_root_bus) | | * | | | * +-------------------+ | * | | * | children | chip * v | * X | * (new devices will | * be added here as | * children) | * | * | * | * +-------+----------+ * | | * | Mainboard chip +----------->X (new chips will be * | (mainboard_chip) | added here) * | | * +------------------+ * * */ /* Root device of primary tree. */ static struct device base_root_dev; /* Root device of chipset tree. */ static struct device chipset_root_dev; /* Root device of override tree (if applicable). */ static struct device override_root_dev; static struct chip_instance mainboard_instance; static struct bus base_root_bus = { .dev = &base_root_dev, }; static struct device base_root_dev = { .name = "dev_root", .chip_instance = &mainboard_instance, .path = " .type = DEVICE_PATH_ROOT ", .parent = &base_root_bus, .enabled = 1, .bus = &base_root_bus, }; static struct bus chipset_root_bus = { .dev = &chipset_root_dev, }; static struct device chipset_root_dev = { .name = "chipset_root", .chip_instance = &mainboard_instance, .path = " .type = DEVICE_PATH_ROOT ", .parent = &chipset_root_bus, .enabled = 1, .bus = &chipset_root_bus, }; static struct bus override_root_bus = { .dev = &override_root_dev, }; static struct device override_root_dev = { .name = "override_root", /* * Override tree root device points to the same mainboard chip instance * as the base tree root device. It should not cause any side-effects * since the mainboard chip instance pointer in override tree will just * be ignored. */ .chip_instance = &mainboard_instance, .path = " .type = DEVICE_PATH_ROOT ", .parent = &override_root_bus, .enabled = 1, .bus = &override_root_bus, }; static struct chip mainboard_chip = { .name = "mainboard", .name_underscore = "mainboard", .instance = &mainboard_instance, }; static struct chip_instance mainboard_instance = { .id = 0, .chip = &mainboard_chip, }; /* This is the parent of all devices added by parsing the devicetree file. */ struct bus *root_parent; struct queue_entry { void *data; struct queue_entry *next; struct queue_entry *prev; }; /* Global list of all `struct device_operations` identifiers to declare. */ static struct identifier *device_operations; #define S_ALLOC(_s) s_alloc(__func__, _s) static void *s_alloc(const char *f, size_t s) { void *data = calloc(1, s); if (!data) { fprintf(stderr, "%s: Failed to alloc mem!\n", f); exit(1); } return data; } static struct queue_entry *new_queue_entry(void *data) { struct queue_entry *e = S_ALLOC(sizeof(*e)); e->data = data; e->next = e->prev = e; return e; } static void enqueue_tail(struct queue_entry **q_head, void *data) { struct queue_entry *tmp = new_queue_entry(data); struct queue_entry *q = *q_head; if (!q) { *q_head = tmp; return; } q->prev->next = tmp; tmp->prev = q->prev; q->prev = tmp; tmp->next = q; } static void *dequeue_tail(struct queue_entry **q_head) { struct queue_entry *q = *q_head; struct queue_entry *tmp; void *data; if (!q) return NULL; tmp = q->prev; if (tmp == q) *q_head = NULL; else { tmp->prev->next = q; q->prev = tmp->prev; } data = tmp->data; free(tmp); return data; } static void *dequeue_head(struct queue_entry **q_head) { struct queue_entry *q = *q_head; struct queue_entry *tmp = q; void *data; if (!q) return NULL; if (q->next == q) *q_head = NULL; else { q->next->prev = q->prev; q->prev->next = q->next; *q_head = q->next; } data = tmp->data; free(tmp); return data; } static void *peek_queue_head(struct queue_entry *q_head) { if (!q_head) return NULL; return q_head->data; } static struct queue_entry *chip_q_head; void chip_enqueue_tail(void *data) { enqueue_tail(&chip_q_head, data); } void *chip_dequeue_tail(void) { return dequeue_tail(&chip_q_head); } int yywrap(void) { return 1; } void yyerror(char const *str) { extern char *yytext; fprintf(stderr, "line %d: %s: %s\n", linenum + 1, yytext, str); exit(1); } char *translate_name(const char *str, translate_t mode) { char *b, *c; b = c = strdup(str); while (c && *c) { if ((mode == SPLIT_1ST) && (*c == '/')) { *c = 0; break; } if (*c == '/') *c = '_'; if (*c == '-') *c = '_'; if (mode == TO_UPPER) *c = toupper(*c); if (mode == TO_LOWER) *c = tolower(*c); c++; } return b; } static struct chip *get_chip(char *path) { struct chip *h = &chip_header; while (h->next) { int result = strcmp(path, h->next->name); if (result == 0) return h->next; if (result < 0) break; h = h->next; } struct chip *new_chip = S_ALLOC(sizeof(struct chip)); new_chip->next = h->next; h->next = new_chip; new_chip->chiph_exists = 1; new_chip->name = path; new_chip->name_underscore = translate_name(path, UNSLASH); struct stat st; char *chip_h = S_ALLOC(strlen(path) + 18); sprintf(chip_h, "src/%s", path); if ((stat(chip_h, &st) == -1) && (errno == ENOENT)) { /* root_complex gets away without a separate directory, but * exists on pretty much all AMD chipsets. */ if (!strstr(path, "/root_complex")) { fprintf(stderr, "ERROR: Chip component %s does not exist.\n", path); exit(1); } } sprintf(chip_h, "src/%s/chip.h", path); if ((stat(chip_h, &st) == -1) && (errno == ENOENT)) new_chip->chiph_exists = 0; free(chip_h); return new_chip; } struct chip_instance *new_chip_instance(char *path) { struct chip *chip = get_chip(path); struct chip_instance *instance = S_ALLOC(sizeof(*instance)); instance->chip = chip; instance->next = chip->instance; chip->instance = instance; return instance; } /* List of fw_config fields added during parsing. */ static struct fw_config_field *fw_config_fields; static struct fw_config_option *find_fw_config_option(struct fw_config_field *field, const char *name) { struct fw_config_option *option = field->options; while (option && option->name) { if (!strcmp(option->name, name)) return option; option = option->next; } return NULL; } static struct fw_config_field *find_fw_config_field(const char *name) { struct fw_config_field *field = fw_config_fields; while (field && field->name) { if (!strcmp(field->name, name)) return field; field = field->next; } return NULL; } struct fw_config_field *get_fw_config_field(const char *name) { struct fw_config_field *field = find_fw_config_field(name); /* Fail if the field does not exist, new fields must be added with a mask. */ if (!field) { printf("ERROR: fw_config field not found: %s\n", name); exit(1); } return field; } static void append_fw_config_field(struct fw_config_field *add) { struct fw_config_field *field = fw_config_fields; if (!fw_config_fields) { fw_config_fields = add; } else { while (field && field->next) field = field->next; field->next = add; } } void append_fw_config_bits(struct fw_config_field_bits **bits, unsigned int start_bit, unsigned int end_bit) { struct fw_config_field_bits *new_bits = S_ALLOC(sizeof(*new_bits)); new_bits->start_bit = start_bit; new_bits->end_bit = end_bit; new_bits->next = NULL; if (*bits == NULL) { *bits = new_bits; return; } struct fw_config_field_bits *tmp = *bits; while (tmp->next) tmp = tmp->next; tmp->next = new_bits; } int fw_config_masks_overlap(struct fw_config_field *existing, unsigned int start_bit, unsigned int end_bit) { struct fw_config_field_bits *bits = existing->bits; while (bits) { if (start_bit <= bits->end_bit && end_bit >= bits->start_bit) { printf("ERROR: fw_config field [%u-%u] overlaps %s[%u-%u]\n", start_bit, end_bit, existing->name, bits->start_bit, bits->end_bit); return 1; } bits = bits->next; } return 0; } struct fw_config_field *new_fw_config_field(const char *name, struct fw_config_field_bits *bits) { struct fw_config_field *field = find_fw_config_field(name); struct fw_config_field_bits *tmp; /* Don't allow re-defining a field, only adding new fields. */ if (field) { printf("ERROR: fw_config field %s already exists\n", name); exit(1); } /* Check that each field is within 64 bits. */ tmp = bits; while (tmp) { if (tmp->start_bit > tmp->end_bit || tmp->end_bit > 63) { printf("ERROR: fw_config field %s has invalid range %u-%u\n", name, tmp->start_bit, tmp->end_bit); exit(1); } /* Check for overlap with an existing field. */ struct fw_config_field *existing = fw_config_fields; while (existing) { if (fw_config_masks_overlap(existing, tmp->start_bit, tmp->end_bit)) exit(1); existing = existing->next; } tmp = tmp->next; } field = S_ALLOC(sizeof(*field)); field->name = name; field->bits = bits; append_fw_config_field(field); return field; } static void append_fw_config_option_to_field(struct fw_config_field *field, struct fw_config_option *add) { struct fw_config_option *option = field->options; if (!option) { field->options = add; } else { while (option && option->next) option = option->next; option->next = add; } } static uint64_t calc_max_field_value(const struct fw_config_field *field) { unsigned int bit_count = 0; const struct fw_config_field_bits *bits = field->bits; while (bits) { bit_count += 1 + bits->end_bit - bits->start_bit; bits = bits->next; }; return (1ull << bit_count) - 1ull; } void add_fw_config_option(struct fw_config_field *field, const char *name, uint64_t value) { struct fw_config_option *option; /* Check that option value fits within field mask. */ uint64_t field_max_value = calc_max_field_value(field); if (value > field_max_value) { printf("ERROR: fw_config option %s:%s value %" PRIx64 " larger than field max %" PRIx64 "\n", field->name, name, value, field_max_value); exit(1); } /* Check for existing option with this name or value. */ option = field->options; while (option) { if (!strcmp(option->name, name)) { printf("ERROR: fw_config option name %s:%s already exists\n", field->name, name); exit(1); } /* Compare values. */ if (value == option->value) { printf("ERROR: fw_config option %s:%s[%" PRIx64 "] redefined as %s\n", field->name, option->name, value, name); exit(1); } option = option->next; } option = S_ALLOC(sizeof(*option)); option->name = name; option->value = value; /* Add option to the current field. */ append_fw_config_option_to_field(field, option); } static void append_fw_config_probe_to_dev(struct device *dev, struct fw_config_probe *add) { struct fw_config_probe *probe = dev->probe; if (!probe) { dev->probe = add; } else { while (probe && probe->next) probe = probe->next; probe->next = add; } } static int check_probe_exists(struct fw_config_probe *probe, const char *field, const char *option) { while (probe) { if (!strcmp(probe->field, field) && !strcmp(probe->option, option)) { return 1; } probe = probe->next; } return 0; } void add_fw_config_probe(struct bus *bus, const char *field, const char *option) { struct fw_config_probe *probe; if (check_probe_exists(bus->dev->probe, field, option)) { printf("ERROR: fw_config probe %s:%s already exists\n", field, option); exit(1); } probe = S_ALLOC(sizeof(*probe)); probe->field = field; probe->option = option; append_fw_config_probe_to_dev(bus->dev, probe); } void probe_unprovisioned_fw_config(struct bus *bus) { bus->dev->enable_on_unprovisioned_fw_config = true; } static uint64_t compute_fw_config_mask(const struct fw_config_field_bits *bits) { uint64_t mask = 0; while (bits) { /* Compute mask from start and end bit. */ uint64_t tmp = ((1ull << (1ull + bits->end_bit - bits->start_bit)) - 1ull); tmp <<= bits->start_bit; mask |= tmp; bits = bits->next; } return mask; } static unsigned int bits_width(const struct fw_config_field_bits *bits) { return 1 + bits->end_bit - bits->start_bit; } static uint64_t calc_option_value(const struct fw_config_field *field, const struct fw_config_option *option) { uint64_t value = 0; uint64_t original = option->value; struct fw_config_field_bits *bits = field->bits; while (bits) { const unsigned int width = bits_width(bits); const uint64_t orig_mask = (1ull << width) - 1ull; const uint64_t orig = (original & orig_mask); value |= (orig << bits->start_bit); original >>= width; bits = bits->next; } return value; } static void emit_fw_config(FILE *fil) { struct fw_config_field *field = fw_config_fields; if (!field) return; while (field) { struct fw_config_option *option = field->options; uint64_t mask; fprintf(fil, "#define FW_CONFIG_FIELD_%s_NAME \"%s\"\n", field->name, field->name); mask = compute_fw_config_mask(field->bits); fprintf(fil, "#define FW_CONFIG_FIELD_%s_MASK 0x%" PRIx64 "\n", field->name, mask); while (option) { const uint64_t value = calc_option_value(field, option); fprintf(fil, "#define FW_CONFIG_FIELD_%s_OPTION_%s_NAME \"%s\"\n", field->name, option->name, option->name); fprintf(fil, "#define FW_CONFIG_FIELD_%s_OPTION_%s_VALUE 0x%" PRIx64 "\n", field->name, option->name, value); option = option->next; } field = field->next; } fprintf(fil, "\n"); } static int emit_fw_config_probe(FILE *fil, struct device *dev) { struct fw_config_probe *probe = dev->probe; fprintf(fil, "STORAGE struct fw_config %s_probe_list[] = {\n", dev->name); while (probe) { /* Find matching field. */ struct fw_config_field *field; struct fw_config_option *option; uint64_t mask, value; field = find_fw_config_field(probe->field); if (!field) { printf("ERROR: fw_config_probe field %s not found\n", probe->field); return -1; } option = find_fw_config_option(field, probe->option); if (!option) { printf("ERROR: fw_config_probe field %s option %s not found\n", probe->field, probe->option); return -1; } /* Fill out the probe structure with values from emit_fw_config(). */ fprintf(fil, "\t{\n"); fprintf(fil, "\t\t.field_name = FW_CONFIG_FIELD_%s_NAME,\n", probe->field); fprintf(fil, "\t\t.option_name = FW_CONFIG_FIELD_%s_OPTION_%s_NAME,\n", probe->field, probe->option); fprintf(fil, "\t\t.mask = FW_CONFIG_FIELD_%s_MASK,\n", probe->field); fprintf(fil, "\t\t.value = FW_CONFIG_FIELD_%s_OPTION_%s_VALUE,\n", probe->field, probe->option); fprintf(fil, "\t},\n"); probe = probe->next; } /* Add empty entry to mark end of list. */ fprintf(fil, "\t{ }\n};\n"); return 0; } /* Enqueue identifier to list with head `*it`, if not already present. */ void add_identifier(struct identifier **it, const char *id) { for (; *it != NULL; it = &(*it)->next) { if (!strcmp((*it)->id, id)) return; } *it = S_ALLOC(sizeof(**it)); (*it)->id = id; } void add_device_ops(struct bus *bus, char *ops_id) { if (bus->dev->ops_id) { printf("ERROR: Device operations may only be specified once,\n" " found '%s', '%s'.\n", bus->dev->ops_id, ops_id); exit(1); } add_identifier(&device_operations, ops_id); bus->dev->ops_id = ops_id; } /* Allocate a new bus for the provided device. */ static void alloc_bus(struct device *dev) { struct bus *bus = S_ALLOC(sizeof(*bus)); bus->dev = dev; dev->bus = bus; } /* * Allocate a new device under the given parent. This function allocates a new * device structure under the provided parent bus and allocates a bus structure * under the newly allocated device. */ static struct device *alloc_dev(struct bus *parent) { struct device *dev = S_ALLOC(sizeof(*dev)); dev->parent = parent; dev->subsystem_vendor = -1; dev->subsystem_device = -1; alloc_bus(dev); return dev; } /* * This function scans the children of given bus to see if any device matches * the new device that is requested. * * Returns pointer to the node if found, else NULL. */ static struct device *get_dev(struct bus *parent, int path_a, int path_b, int bustype, struct chip_instance *chip_instance) { struct device *child = parent->children; while (child) { if ((child->path_a == path_a) && (child->path_b == path_b) && (child->bustype == bustype) && (child->chip_instance == chip_instance)) return child; child = child->sibling; } return NULL; } /* * Add given node as child of the provided parent. If this is the first child of * the parent, update parent->children pointer as well. */ static void set_new_child(struct bus *parent, struct device *child) { struct device *c = parent->children; if (c) { while (c->sibling) c = c->sibling; c->sibling = child; } else parent->children = child; child->sibling = NULL; child->parent = parent; } static const struct device *find_alias(const struct device *const parent, const char *const alias) { if (parent->alias && !strcmp(parent->alias, alias)) return parent; const struct bus *bus = parent->bus; if (!bus) return NULL; const struct device *child; for (child = bus->children; child; child = child->sibling) { const struct device *const ret = find_alias(child, alias); if (ret) return ret; } return NULL; } static struct device *new_device_with_path(struct bus *parent, struct chip_instance *chip_instance, const int bustype, int path_a, int path_b, char *alias, int status) { struct device *new_d; /* We don't allow duplicate devices in devicetree. */ new_d = get_dev(parent, path_a, path_b, bustype, chip_instance); if (new_d) { printf("ERROR: Duplicate device! %s\n", new_d->name); exit(1); } new_d = alloc_dev(parent); new_d->bustype = bustype; new_d->path_a = path_a; new_d->path_b = path_b; new_d->alias = alias; new_d->enabled = status & 0x01; new_d->hidden = (status >> 1) & 0x01; new_d->mandatory = (status >> 2) & 0x01; new_d->chip_instance = chip_instance; set_new_child(parent, new_d); switch (bustype) { case PCI: new_d->path = ".type=DEVICE_PATH_PCI,{.pci={ .devfn = PCI_DEVFN(0x%x,%d)}}"; break; case PNP: new_d->path = ".type=DEVICE_PATH_PNP,{.pnp={ .port = 0x%x, .device = 0x%x }}"; break; case I2C: new_d->path = ".type=DEVICE_PATH_I2C,{.i2c={ .device = 0x%x, .mode_10bit = %d }}"; break; case CPU_CLUSTER: new_d->path = ".type=DEVICE_PATH_CPU_CLUSTER,{.cpu_cluster={ .cluster = 0x%x }}"; break; case CPU: new_d->path = ".type=DEVICE_PATH_CPU,{.cpu={ .id = 0x%x }}"; break; case DOMAIN: new_d->path = ".type=DEVICE_PATH_DOMAIN,{.domain={ .domain_id = 0x%x }}"; break; case GENERIC: new_d->path = ".type=DEVICE_PATH_GENERIC,{.generic={ .id = 0x%x, .subid = 0x%x }}"; break; case SPI: new_d->path = ".type=DEVICE_PATH_SPI,{.spi={ .cs = 0x%x }}"; break; case USB: new_d->path = ".type=DEVICE_PATH_USB,{.usb={ .port_type = %d, .port_id = %d }}"; break; case MMIO: new_d->path = ".type=DEVICE_PATH_MMIO,{.mmio={ .addr = 0x%x }}"; break; case GPIO: new_d->path = ".type=DEVICE_PATH_GPIO,{.gpio={ .id = 0x%x }}"; break; case MDIO: new_d->path = ".type=DEVICE_PATH_MDIO,{.mdio={ .addr = 0x%x }}"; break; } return new_d; } struct device *new_device_reference(struct bus *parent, struct chip_instance *chip_instance, const char *reference, int status) { const struct device *dev = find_alias(&base_root_dev, reference); if (!dev) { printf("ERROR: Unable to find device reference %s\n", reference); exit(1); } return new_device_with_path(parent, chip_instance, dev->bustype, dev->path_a, dev->path_b, NULL, status); } struct device *new_device_raw(struct bus *parent, struct chip_instance *chip_instance, const int bustype, const char *devnum, char *alias, int status) { char *tmp; int path_a; int path_b = 0; /* Check for alias name conflicts. */ if (alias && find_alias(root_parent->dev, alias)) { printf("ERROR: Alias already exists: %s\n", alias); exit(1); } path_a = strtol(devnum, &tmp, 16); if (*tmp == '.') { tmp++; path_b = strtol(tmp, NULL, 16); } return new_device_with_path(parent, chip_instance, bustype, path_a, path_b, alias, status); } static void new_resource(struct device *dev, int type, int index, int base) { struct resource *r = S_ALLOC(sizeof(struct resource)); r->type = type; r->index = index; r->base = base; if (dev->res) { struct resource *head = dev->res; while (head->next) head = head->next; head->next = r; } else { dev->res = r; } } void add_resource(struct bus *bus, int type, int index, int base) { new_resource(bus->dev, type, index, base); } static void add_reg(struct reg **const head, char *const name, char *const val) { struct reg *const r = S_ALLOC(sizeof(struct reg)); struct reg *prev = NULL; struct reg *cur; r->key = name; r->value = val; for (cur = *head; cur != NULL; prev = cur, cur = cur->next) { const int sort = strcmp(r->key, cur->key); if (sort == 0) { printf("ERROR: duplicate 'register' key '%s'.\n", r->key); exit(1); } if (sort < 0) break; } r->next = cur; if (prev) prev->next = r; else *head = r; } void add_register(struct chip_instance *chip_instance, char *name, char *val) { add_reg(&chip_instance->reg, name, val); } void add_reference(struct chip_instance *const chip_instance, char *const name, char *const alias) { add_reg(&chip_instance->ref, name, alias); } static void set_reference(struct chip_instance *const chip_instance, char *const name, char *const alias) { const struct device *const dev = find_alias(&base_root_dev, alias); if (!dev) { printf("ERROR: Cannot find device alias '%s'.\n", alias); exit(1); } char *const ref_name = S_ALLOC(strlen(dev->name) + 2); sprintf(ref_name, "&%s", dev->name); add_register(chip_instance, name, ref_name); } static void update_references(FILE *file, FILE *head, struct device *dev, struct device *next) { struct reg *ref; for (ref = dev->chip_instance->ref; ref; ref = ref->next) set_reference(dev->chip_instance, ref->key, ref->value); } void add_slot_desc(struct bus *bus, char *type, char *length, char *designation, char *data_width) { struct device *dev = bus->dev; if (dev->bustype != PCI && dev->bustype != DOMAIN) { printf("ERROR: 'slot_type' only allowed for PCI devices\n"); exit(1); } dev->smbios_slot_type = type; dev->smbios_slot_length = length; dev->smbios_slot_data_width = data_width; dev->smbios_slot_designation = designation; } void add_smbios_dev_info(struct bus *bus, long instance_id, const char *refdes) { struct device *dev = bus->dev; if (dev->bustype != PCI && dev->bustype != DOMAIN) { printf("ERROR: 'dev_info' only allowed for PCI devices\n"); exit(1); } if (instance_id < 0 || instance_id > UINT8_MAX) { printf("ERROR: SMBIOS dev info instance ID '%ld' out of range\n", instance_id); exit(1); } dev->smbios_instance_id_valid = 1; dev->smbios_instance_id = (unsigned int)instance_id; dev->smbios_refdes = refdes; } void add_pci_subsystem_ids(struct bus *bus, int vendor, int device, int inherit) { struct device *dev = bus->dev; if (dev->bustype != PCI && dev->bustype != DOMAIN) { printf("ERROR: 'subsystem' only allowed for PCI devices\n"); exit(1); } dev->subsystem_vendor = vendor; dev->subsystem_device = device; dev->inherit_subsystem = inherit; } static int dev_has_children(struct device *dev) { struct bus *bus = dev->bus; if (bus && bus->children) return 1; return 0; } static void pass0(FILE *fil, FILE *head, struct device *ptr, struct device *next) { static int dev_id; if (ptr == &base_root_dev) { fprintf(fil, "STORAGE struct bus %s_bus;\n", ptr->name); return; } char *name; if (ptr->alias) { name = S_ALLOC(6 + strlen(ptr->alias)); sprintf(name, "_dev_%s", ptr->alias); } else { name = S_ALLOC(11); sprintf(name, "_dev_%d", dev_id++); } ptr->name = name; fprintf(fil, "STORAGE struct device %s;\n", ptr->name); if (ptr->res) fprintf(fil, "STORAGE struct resource %s_res[];\n", ptr->name); if (dev_has_children(ptr)) fprintf(fil, "STORAGE struct bus %s_bus;\n", ptr->name); if (next) return; fprintf(fil, "DEVTREE_CONST struct device * DEVTREE_CONST last_dev = &%s;\n", ptr->name); } static void emit_smbios_data(FILE *fil, struct device *ptr) { fprintf(fil, "#if !DEVTREE_EARLY\n"); fprintf(fil, "#if CONFIG(GENERATE_SMBIOS_TABLES)\n"); /* SMBIOS types start at 1, if zero it hasn't been set */ if (ptr->smbios_slot_type) fprintf(fil, "\t.smbios_slot_type = %s,\n", ptr->smbios_slot_type); if (ptr->smbios_slot_data_width) fprintf(fil, "\t.smbios_slot_data_width = %s,\n", ptr->smbios_slot_data_width); if (ptr->smbios_slot_designation) fprintf(fil, "\t.smbios_slot_designation = \"%s\",\n", ptr->smbios_slot_designation); if (ptr->smbios_slot_length) fprintf(fil, "\t.smbios_slot_length = %s,\n", ptr->smbios_slot_length); /* Fill in SMBIOS type41 fields */ if (ptr->smbios_instance_id_valid) { fprintf(fil, "\t.smbios_instance_id_valid = true,\n"); fprintf(fil, "\t.smbios_instance_id = %u,\n", ptr->smbios_instance_id); if (ptr->smbios_refdes) fprintf(fil, "\t.smbios_refdes = \"%s\",\n", ptr->smbios_refdes); } fprintf(fil, "#endif\n"); fprintf(fil, "#endif\n"); } static void emit_resources(FILE *fil, struct device *ptr) { if (ptr->res == NULL) return; int i = 1; fprintf(fil, "STORAGE struct resource %s_res[] = {\n", ptr->name); struct resource *r = ptr->res; while (r) { fprintf(fil, "\t\t{ .flags=IORESOURCE_FIXED | IORESOURCE_ASSIGNED | IORESOURCE_"); if (r->type == IRQ) fprintf(fil, "IRQ"); if (r->type == DRQ) fprintf(fil, "DRQ"); if (r->type == IO) fprintf(fil, "IO"); fprintf(fil, ", .index=0x%x, .base=0x%x,", r->index, r->base); if (r->next) fprintf(fil, ".next=&%s_res[%d]},\n", ptr->name, i++); else fprintf(fil, ".next=NULL },\n"); r = r->next; } fprintf(fil, "\t };\n"); } static void emit_dev_bus(FILE *fil, struct device *ptr) { fprintf(fil, "STORAGE struct bus %s_bus = {\n", ptr->name); assert(ptr->bus && ptr->bus->children); struct bus *bus = ptr->bus; fprintf(fil, "\t.dev = &%s,\n", bus->dev->name); fprintf(fil, "\t.children = &%s,\n", bus->children->name); fprintf(fil, "};\n"); } static struct chip_instance *get_chip_instance(const struct device *dev) { struct chip_instance *chip_ins = dev->chip_instance; /* * If the chip instance of device has base_chip_instance pointer set, then follow that * to update the chip instance for current device. */ if (chip_ins->base_chip_instance) chip_ins = chip_ins->base_chip_instance; return chip_ins; } static void pass1(FILE *fil, FILE *head, struct device *ptr, struct device *next) { struct chip_instance *chip_ins = get_chip_instance(ptr); int has_children = dev_has_children(ptr); /* Emit probe structures. */ if (ptr->probe && (emit_fw_config_probe(fil, ptr) < 0)) { if (head) fclose(head); fclose(fil); exit(1); } if (ptr == &base_root_dev) fprintf(fil, "DEVTREE_CONST struct device %s = {\n", ptr->name); else fprintf(fil, "STORAGE struct device %s = {\n", ptr->name); fprintf(fil, "#if !DEVTREE_EARLY\n"); /* * ops field can be set in the devicetree. If unspecified, it is set * to default_dev_ops_root only for the root device, other devices * get it set by the driver at runtime. */ if (ptr->ops_id) fprintf(fil, "\t.ops = &%s,\n", ptr->ops_id); else if (ptr == &base_root_dev) fprintf(fil, "\t.ops = &default_dev_ops_root,\n"); else fprintf(fil, "\t.ops = NULL,\n"); fprintf(fil, "#endif\n"); fprintf(fil, "\t.upstream = &%s_bus,\n", ptr->parent->dev->name); fprintf(fil, "\t.path = {"); fprintf(fil, ptr->path, ptr->path_a, ptr->path_b); fprintf(fil, "},\n"); fprintf(fil, "\t.enabled = %d,\n", ptr->enabled); fprintf(fil, "\t.hidden = %d,\n", ptr->hidden); fprintf(fil, "\t.mandatory = %d,\n", ptr->mandatory); fprintf(fil, "\t.on_mainboard = 1,\n"); if (ptr->subsystem_vendor > 0) fprintf(fil, "\t.subsystem_vendor = 0x%04x,\n", ptr->subsystem_vendor); if (ptr->subsystem_device > 0) fprintf(fil, "\t.subsystem_device = 0x%04x,\n", ptr->subsystem_device); if (ptr->res) { fprintf(fil, "\t.resource_list = &%s_res[0],\n", ptr->name); } if (has_children) fprintf(fil, "\t.downstream = &%s_bus,\n", ptr->name); else fprintf(fil, "\t.downstream = NULL,\n"); if (ptr->sibling) fprintf(fil, "\t.sibling = &%s,\n", ptr->sibling->name); else fprintf(fil, "\t.sibling = NULL,\n"); if (ptr->probe) fprintf(fil, "\t.probe_list = %s_probe_list,\n", ptr->name); fprintf(fil, "\t.enable_on_unprovisioned_fw_config = %d,\n", ptr->enable_on_unprovisioned_fw_config); fprintf(fil, "#if !DEVTREE_EARLY\n"); fprintf(fil, "\t.chip_ops = &%s_ops,\n", chip_ins->chip->name_underscore); if (chip_ins == &mainboard_instance) fprintf(fil, "\t.name = mainboard_name,\n"); fprintf(fil, "#endif\n"); if (chip_ins->chip->chiph_exists) fprintf(fil, "\t.chip_info = &%s_info_%d,\n", chip_ins->chip->name_underscore, chip_ins->id); if (next) fprintf(fil, "\t.next=&%s,\n", next->name); emit_smbios_data(fil, ptr); fprintf(fil, "};\n"); emit_resources(fil, ptr); if (has_children) emit_dev_bus(fil, ptr); } static void expose_device_names(FILE *fil, FILE *head, struct device *ptr, struct device *next) { struct chip_instance *chip_ins = get_chip_instance(ptr); /* Only devices on root bus here. */ if (ptr->bustype == PCI && ptr->parent->dev->bustype == DOMAIN) { if (ptr->alias) { fprintf(head, "static const pci_devfn_t _sdev_%s = PCI_DEV(%d, %d, %d);\n", ptr->alias, ptr->parent->dev->path_a, ptr->path_a, ptr->path_b); } fprintf(head, "extern DEVTREE_CONST struct device *const __pci_%d_%02x_%d;\n", ptr->parent->dev->path_a, ptr->path_a, ptr->path_b); fprintf(fil, "DEVTREE_CONST struct device *const __pci_%d_%02x_%d = &%s;\n", ptr->parent->dev->path_a, ptr->path_a, ptr->path_b, ptr->name); if (chip_ins->chip->chiph_exists) { fprintf(head, "extern DEVTREE_CONST void *const __pci_%d_%02x_%d_config;\n", ptr->parent->dev->path_a, ptr->path_a, ptr->path_b); fprintf(fil, "DEVTREE_CONST void *const __pci_%d_%02x_%d_config = &%s_info_%d;\n", ptr->parent->dev->path_a, ptr->path_a, ptr->path_b, chip_ins->chip->name_underscore, chip_ins->id); } } if (ptr->bustype == PNP) { if (ptr->alias) { fprintf(head, "static const pnp_devfn_t _sdev_%s = PNP_DEV(0x%02x, 0x%04x);\n", ptr->alias, ptr->path_a, ptr->path_b); } fprintf(head, "extern DEVTREE_CONST struct device *const __pnp_%04x_%02x;\n", ptr->path_a, ptr->path_b); fprintf(fil, "DEVTREE_CONST struct device *const __pnp_%04x_%02x = &%s;\n", ptr->path_a, ptr->path_b, ptr->name); } if (ptr->alias) { fprintf(head, "extern DEVTREE_CONST struct device *const %s_ptr;\n", ptr->name); fprintf(fil, "DEVTREE_CONST struct device *const %s_ptr = &%s;\n", ptr->name, ptr->name); } } static void add_siblings_to_queue(struct queue_entry **bfs_q_head, struct device *d) { while (d) { enqueue_tail(bfs_q_head, d); d = d->sibling; } } static void add_children_to_queue(struct queue_entry **bfs_q_head, struct device *d) { struct bus *bus = d->bus; if (dev_has_children(d)) add_siblings_to_queue(bfs_q_head, bus->children); } static void walk_device_tree(FILE *fil, FILE *head, struct device *ptr, void (*func)(FILE *, FILE *, struct device *, struct device *)) { struct queue_entry *bfs_q_head = NULL; enqueue_tail(&bfs_q_head, ptr); while ((ptr = dequeue_head(&bfs_q_head))) { add_children_to_queue(&bfs_q_head, ptr); func(fil, head, ptr, peek_queue_head(bfs_q_head)); } } static void emit_chip_headers(FILE *fil, struct chip *chip) { struct chip *tmp = chip; while (chip) { if (chip->chiph_exists) fprintf(fil, "#include \"%s/chip.h\"\n", chip->name); chip = chip->next; } fprintf(fil, "\n#if !DEVTREE_EARLY\n"); fprintf(fil, "__attribute__((weak)) struct chip_operations mainboard_ops = {};\n"); chip = tmp; while (chip) { /* A lot of cpus do not define chip_operations at all, and the ones that do only initialise .name. */ if (strstr(chip->name_underscore, "cpu_") == chip->name_underscore) { fprintf(fil, "__attribute__((weak)) struct chip_operations %s_ops = {};\n", chip->name_underscore); } else { fprintf(fil, "extern struct chip_operations %s_ops;\n", chip->name_underscore); } chip = chip->next; } fprintf(fil, "#endif\n"); } static void emit_chip_instance(FILE *fil, struct chip_instance *instance) { fprintf(fil, "STORAGE struct %s_config %s_info_%d = {", instance->chip->name_underscore, instance->chip->name_underscore, instance->id); if (instance->reg) { fprintf(fil, "\n"); struct reg *r = instance->reg; while (r) { fprintf(fil, "\t.%s = %s,\n", r->key, r->value); r = r->next; } } fprintf(fil, "};\n\n"); } static void emit_chip_configs(FILE *fil) { struct chip *chip = chip_header.next; struct chip_instance *instance; int chip_id; for (; chip; chip = chip->next) { if (!chip->chiph_exists) continue; chip_id = 1; instance = chip->instance; while (instance) { /* * Emit this chip instance only if there is no forwarding pointer to the * base tree chip instance. */ if (instance->base_chip_instance == NULL) { instance->id = chip_id++; emit_chip_instance(fil, instance); } instance = instance->next; } } } static void emit_identifiers(FILE *fil, const char *decl, const struct identifier *it) { for (; it != NULL; it = it->next) fprintf(fil, "extern %s %s;\n", decl, it->id); } static void inherit_subsystem_ids(FILE *file, FILE *head, struct device *dev, struct device *next) { struct device *p; if (dev->subsystem_vendor != -1 && dev->subsystem_device != -1) { /* user already gave us a subsystem vendor/device */ return; } for (p = dev; p && p->parent->dev != p; p = p->parent->dev) { if (p->bustype != PCI && p->bustype != DOMAIN) continue; if (p->inherit_subsystem) { dev->subsystem_vendor = p->subsystem_vendor; dev->subsystem_device = p->subsystem_device; break; } } } static void parse_devicetree(const char *file, struct bus *parent) { FILE *filec = fopen(file, "r"); if (!filec) { perror(NULL); exit(1); } yyrestart(filec); root_parent = parent; linenum = 0; yyparse(); fclose(filec); } static int device_probe_count(struct fw_config_probe *probe) { int count = 0; while (probe) { probe = probe->next; count++; } return count; } /* * When overriding devices, use the following rules: * 1. If probe count matches and: * a. Entire probe list matches for both devices -> Same device, override. * b. No probe entries match -> Different devices, do not override. * c. Partial list matches -> Bad device tree entries, fail build. * * 2. If probe counts do not match and: * a. No probe entries match -> Different devices, do not override. * b. Partial list matches -> Bad device tree entries, fail build. */ static int device_probes_match(struct device *a, struct device *b) { struct fw_config_probe *a_probe = a->probe; struct fw_config_probe *b_probe = b->probe; int a_probe_count = device_probe_count(a_probe); int b_probe_count = device_probe_count(b_probe); int match_count = 0; while (a_probe) { if (check_probe_exists(b_probe, a_probe->field, a_probe->option)) match_count++; a_probe = a_probe->next; } if ((a_probe_count == b_probe_count) && (a_probe_count == match_count)) return 1; if (match_count) { printf("ERROR: devices with overlapping probes: "); printf(a->path, a->path_a, a->path_b); printf(b->path, b->path_a, b->path_b); printf("\n"); exit(1); } return 0; } /* * Match device nodes from base and override tree to see if they are the same * node. */ static int device_match(struct device *a, struct device *b) { return ((a->path_a == b->path_a) && (a->path_b == b->path_b) && (a->bustype == b->bustype) && (a->chip_instance->chip == b->chip_instance->chip)); } /* * Match resource nodes from base and override tree to see if they are the same * node. */ static int res_match(struct resource *a, struct resource *b) { return ((a->type == b->type) && (a->index == b->index)); } /* * Add resource to device. If resource is already present, then update its base * and index. If not, then add a new resource to the device. */ static void update_resource(struct device *dev, struct resource *res) { struct resource *base_res = dev->res; while (base_res) { if (res_match(base_res, res)) { base_res->base = res->base; return; } base_res = base_res->next; } new_resource(dev, res->type, res->index, res->base); } /* * Add register to chip instance. If register is already present, then update * its value. If not, then add a new register to the chip instance. */ static void update_register(struct reg **const head, struct reg *reg) { struct reg *base_reg = *head; while (base_reg) { if (!strcmp(base_reg->key, reg->key)) { base_reg->value = reg->value; return; } base_reg = base_reg->next; } add_reg(head, reg->key, reg->value); } static void override_devicetree(struct bus *base_parent, struct bus *override_parent); /* * Update the base device properties using the properties of override device. In * addition to that, call override_devicetree for all the buses under the * override device. * * Override Rules: * +--------------------+--------------------------------------------+ * | | | * |struct device member| Rule | * | | | * +-----------------------------------------------------------------+ * | | | * | id | Unchanged. This is used to generate device | * | | structure name in static.c. So, no need to | * | | override. | * | | | * +-----------------------------------------------------------------+ * | | | * | enabled | Copy enabled state from override device. | * | | This allows variants to override device | * | | state. | * | | | * +-----------------------------------------------------------------+ * | | | * | subsystem_vendor | Copy from override device only if any one | * | subsystem_device | of the ids is non-zero. | * | | | * +-----------------------------------------------------------------+ * | | | * | inherit_subsystem | Copy from override device only if it is | * | | non-zero. This allows variant to only | * | | enable inherit flag for a device. | * | | | * +-----------------------------------------------------------------+ * | | | * | path | Unchanged since these are same for both | * | path_a | base and override device (Used for | * | path_b | matching devices). | * | | | * +-----------------------------------------------------------------+ * | | | * | bustype | Unchanged since this is same for both base | * | | and override device (User for matching | * | | devices). | * | | | * +-----------------------------------------------------------------+ * | | | * | pci_irq_info | Unchanged. | * | | | * +-----------------------------------------------------------------+ * | | | * | parent | Unchanged. This is meaningful only within | * | sibling | the parse tree, hence not being copied. | * | | | * +-----------------------------------------------------------------+ * | | | * | res | Each resource that is present in override | * | | device is copied over to base device: | * | | 1. If resource of same type and index is | * | | present in base device, then base of | * | | the resource is copied. | * | | 2. If not, then a new resource is allocated| * | | under the base device using type, index | * | | and base from override res. | * | | | * +-----------------------------------------------------------------+ * | | | * | ref | Each reference that is present in override | * | | device is copied over to base device with | * | | the same rules as registers. | * | | | * +-----------------------------------------------------------------+ * | | | * | alias | Base device alias is copied to override. | * | | Override devices cannot change/remove an | * | | existing alias, but they can add an alias | * | | if one does not exist. | * | | | * +-----------------------------------------------------------------+ * | | | * | smbios_slot info | Copy SMBIOS slot information from override.| * | | This allows variants to override PCI(e) | * | | slot information in SMBIOS tables. | * | | | * +-----------------------------------------------------------------+ * | | | * | chip_instance | Each register of chip_instance is copied | * | | over from override device to base device: | * | | 1. If register with same key is present in | * | | base device, then value of the register | * | | is copied. | * | | 2. If not, then a new register is allocated| * | | under the base chip_instance using key | * | | and value from override register. | * | | | * +-----------------------------------------------------------------+ * | | | * | bus | Recursively call override_devicetree on | * | | each bus of override device. It is assumed | * | | that bus with id X under base device | * | | to bus with id X under override device. | * | | | * +-----------------------------------------------------------------+ */ static void update_device(struct device *base_dev, struct device *override_dev) { /* * Copy the enabled state of override device to base device. This allows * override tree to enable or disable a particular device. */ base_dev->enabled = override_dev->enabled; /* * Copy the hidden state of override device to base device. This allows * override tree to hide or unhide a particular device. */ base_dev->hidden = override_dev->hidden; /* * Copy subsystem vendor and device ids from override device to base * device only if the ids are non-zero in override device. Else, honor * the values in base device. */ if (override_dev->subsystem_vendor || override_dev->subsystem_device) { base_dev->subsystem_vendor = override_dev->subsystem_vendor; base_dev->subsystem_device = override_dev->subsystem_device; } /* * Copy value of inherity_subsystem from override device to base device * only if it is non-zero in override device. This allows override * tree to only enable inhert flag for a device. */ if (override_dev->inherit_subsystem) base_dev->inherit_subsystem = override_dev->inherit_subsystem; /* * Copy resources of override device to base device. * 1. If resource is already present in base device, then index and base * of the resource will be copied over. * 2. If resource is not already present in base device, a new resource * will be allocated. */ struct resource *res = override_dev->res; while (res) { update_resource(base_dev, res); res = res->next; } /* * Copy registers of override chip instance to base chip instance. * 1. If register key is already present in base chip instance, then * value for the register is copied over. * 2. If register key is not already present in base chip instance, then * a new register will be allocated. */ struct reg *reg = override_dev->chip_instance->reg; while (reg) { update_register(&base_dev->chip_instance->reg, reg); reg = reg->next; } /* Copy references just as with registers. */ reg = override_dev->chip_instance->ref; while (reg) { update_register(&base_dev->chip_instance->ref, reg); reg = reg->next; } /* Check for alias name conflicts. */ if (override_dev->alias && find_alias(&base_root_dev, override_dev->alias)) { printf("ERROR: alias already exists: %s\n", override_dev->alias); exit(1); } /* * Copy alias from base device. * * Override devices cannot change/remove an existing alias, * but they can add an alias to a device if one does not exist yet. */ if (base_dev->alias) override_dev->alias = base_dev->alias; else base_dev->alias = override_dev->alias; /* * Use probe list from override device in place of base device, in order * to allow an override to remove a probe from the base device. */ base_dev->probe = override_dev->probe; base_dev->enable_on_unprovisioned_fw_config = override_dev->enable_on_unprovisioned_fw_config; /* Copy SMBIOS slot information from base device */ base_dev->smbios_slot_type = override_dev->smbios_slot_type; base_dev->smbios_slot_length = override_dev->smbios_slot_length; base_dev->smbios_slot_data_width = override_dev->smbios_slot_data_width; base_dev->smbios_slot_designation = override_dev->smbios_slot_designation; /* * Update base_chip_instance member in chip instance of override tree to forward it to * the chip instance in base tree. */ override_dev->chip_instance->base_chip_instance = get_chip_instance(base_dev); /* Allow to override the ops of a device */ if (override_dev->ops_id) base_dev->ops_id = override_dev->ops_id; /* * Now that the device properties are all copied over, look at each bus * of the override device and run override_devicetree in a recursive * manner. If base device has no bus but the override tree has, then a new * bus is allocated for it. */ struct bus *override_bus = override_dev->bus; struct bus *base_bus = base_dev->bus; /* * If we have more buses in override tree device, then allocate * a new bus for the base tree device as well. */ if (!base_bus) alloc_bus(base_dev); override_devicetree(base_dev->bus, override_dev->bus); } /* * Perform copy of device and properties from override parent to base parent. * This function walks through the override tree in a depth-first manner * performing following actions: * 1. If matching device is found in base tree, then copy the properties of * override device to base tree device. Call override_devicetree recursively on * the bus of override device. * 2. If matching device is not found in base tree, then set override tree * device as new child of base_parent and update the chip pointers in override * device subtree to ensure the nodes do not point to override tree chip * instance. */ static void override_devicetree(struct bus *base_parent, struct bus *override_parent) { struct device *base_child; struct device *override_child = override_parent->children; struct device *next_child; while (override_child) { /* Look for a matching device in base tree. */ for (base_child = base_parent->children; base_child; base_child = base_child->sibling) { if (!device_match(base_child, override_child)) continue; /* If base device has no probe statement, nothing else to compare. */ if (base_child->probe == NULL) break; /* * If base device has probe statements, ensure that all probe conditions * match for base and override device. */ if (device_probes_match(base_child, override_child)) break; } next_child = override_child->sibling; /* * If matching device is found, copy properties of * override_child to base_child. */ if (base_child) update_device(base_child, override_child); else { /* * If matching device is not found, set override_child * as a new child of base_parent. */ set_new_child(base_parent, override_child); } override_child = next_child; } } static void parse_override_devicetree(const char *file, struct device *dev) { parse_devicetree(file, dev->bus); if (!dev_has_children(dev)) { fprintf(stderr, "ERROR: Override tree needs at least one device!\n"); exit(1); } override_devicetree(&base_root_bus, dev->bus); } static void generate_outputh(FILE *f, const char *fw_conf_header, const char *device_header) { fprintf(f, "#ifndef __STATIC_DEVICE_TREE_H\n"); fprintf(f, "#define __STATIC_DEVICE_TREE_H\n\n"); fprintf(f, "#include <%s>\n", fw_conf_header); fprintf(f, "#include <%s>\n\n", device_header); fprintf(f, "/* Returns pointer to config structure of root device (B:D:F = 0:00:0) */\n"); fprintf(f, "#define config_of_soc() __pci_0_00_0_config\n\n"); fprintf(f, "/* Macro to generate `struct device *` name that points to a device with the given alias. */\n"); fprintf(f, "#define DEV_PTR(_alias) \t_dev_##_alias##_ptr\n\n"); fprintf(f, "/* Macro to generate weak `struct device *` definition that points to a device with the given\n"); fprintf(f, " alias. */\n"); fprintf(f, "#define WEAK_DEV_PTR(_alias)\t\t\t\\\n"); fprintf(f, "\t__weak DEVTREE_CONST struct device *const DEV_PTR(_alias)\n"); fprintf(f, "\n#endif /* __STATIC_DEVICE_TREE_H */\n"); } static void generate_outputc(FILE *f, const char *static_header) { fprintf(f, "#include \n"); fprintf(f, "#include \n"); fprintf(f, "#include \n"); fprintf(f, "#include \n"); fprintf(f, "#include \n"); fprintf(f, "#include <%s>\n", static_header); emit_chip_headers(f, chip_header.next); emit_identifiers(f, "struct device_operations", device_operations); fprintf(f, "\n#define STORAGE static __maybe_unused DEVTREE_CONST\n\n"); walk_device_tree(NULL, NULL, &base_root_dev, inherit_subsystem_ids); fprintf(f, "\n/* pass 0 */\n"); walk_device_tree(f, NULL, &base_root_dev, pass0); walk_device_tree(NULL, NULL, &base_root_dev, update_references); fprintf(f, "\n/* chip configs */\n"); emit_chip_configs(f); fprintf(f, "\n/* pass 1 */\n"); walk_device_tree(f, NULL, &base_root_dev, pass1); } static void generate_outputd(FILE *gen, FILE *dev) { fprintf(dev, "#ifndef __STATIC_DEVICES_H\n"); fprintf(dev, "#define __STATIC_DEVICES_H\n\n"); fprintf(dev, "#include \n"); fprintf(dev, "#include \n"); fprintf(dev, "#include \n\n"); fprintf(dev, "/* expose_device_names */\n"); walk_device_tree(gen, dev, &base_root_dev, expose_device_names); fprintf(dev, "\n#endif /* __STATIC_DEVICE_NAMES_H */\n"); } static void generate_outputf(FILE *f) { fprintf(f, "#ifndef __STATIC_FW_CONFIG_H\n"); fprintf(f, "#define __STATIC_FW_CONFIG_H\n\n"); emit_fw_config(f); fprintf(f, "\n#endif /* __STATIC_FW_CONFIG_H */\n"); } static void usage(void) { printf("Usage: sconfig \n"); printf(" -c | --output_c : Path to output static.c file (required)\n"); printf(" -r | --output_h : Path to header static.h file (required)\n"); printf(" -d | --output_d : Path to header static_devices.h file (required)\n"); printf(" -f | --output_f : Path to header static_fw_config.h file (required)\n"); printf(" -m | --mainboard_devtree : Path to mainboard devicetree file (required)\n"); printf(" -o | --override_devtree : Path to override devicetree file (optional)\n"); printf(" -p | --chipset_devtree : Path to chipset/SOC devicetree file (optional)\n"); exit(1); } int main(int argc, char **argv) { static const struct option long_options[] = { { "mainboard_devtree", required_argument, NULL, 'm' }, { "override_devtree", required_argument, NULL, 'o' }, { "chipset_devtree", required_argument, NULL, 'p' }, { "output_c", required_argument, NULL, 'c' }, { "output_h", required_argument, NULL, 'r' }, { "output_d", required_argument, NULL, 'd' }, { "output_f", required_argument, NULL, 'f' }, { "help", no_argument, NULL, 'h' }, { } }; const char *override_devtree = NULL; const char *base_devtree = NULL; const char *chipset_devtree = NULL; const char *outputc = NULL; const char *outputh = NULL; const char *outputd = NULL; const char *outputf = NULL; int opt, option_index; while ((opt = getopt_long(argc, argv, "m:o:p:c:r:d:f:h", long_options, &option_index)) != EOF) { switch (opt) { case 'm': base_devtree = optarg; break; case 'o': override_devtree = optarg; break; case 'p': chipset_devtree = optarg; break; case 'c': outputc = optarg; break; case 'r': outputh = optarg; break; case 'd': outputd = optarg; break; case 'f': outputf = optarg; break; case 'h': default: usage(); } } if (!base_devtree || !outputc || !outputh || !outputd || !outputf) usage(); if (chipset_devtree) { /* Use the chipset devicetree as the base, then override with the mainboard "base" devicetree. */ parse_devicetree(chipset_devtree, &base_root_bus); parse_override_devicetree(base_devtree, &chipset_root_dev); } else { parse_devicetree(base_devtree, &base_root_bus); } if (override_devtree) parse_override_devicetree(override_devtree, &override_root_dev); FILE *autogen = fopen(outputc, "w"); if (!autogen) { fprintf(stderr, "Could not open file '%s' for writing: ", outputc); perror(NULL); exit(1); } FILE *autohead = fopen(outputh, "w"); if (!autohead) { fprintf(stderr, "Could not open file '%s' for writing: ", outputh); perror(NULL); fclose(autogen); exit(1); } FILE *autodev = fopen(outputd, "w"); if (!autodev) { fprintf(stderr, "Could not open file '%s' for writing: ", outputd); perror(NULL); fclose(autogen); fclose(autohead); exit(1); } FILE *autofwconf = fopen(outputf, "w"); if (!autofwconf) { fprintf(stderr, "Could not open file '%s' for writing: ", outputf); perror(NULL); fclose(autogen); fclose(autohead); fclose(autodev); exit(1); } char *f = strdup(outputf); assert(f); char *d = strdup(outputd); assert(d); char *h = strdup(outputh); assert(h); const char *fw_conf_header = basename(f); const char *device_header = basename(d); const char *static_header = basename(h); generate_outputh(autohead, fw_conf_header, device_header); generate_outputc(autogen, static_header); generate_outputd(autogen, autodev); generate_outputf(autofwconf); fclose(autohead); fclose(autogen); fclose(autodev); fclose(autofwconf); free(f); free(d); free(h); return 0; }