/* * sconfig, coreboot device tree compiler * * Copyright (C) 2010 coresystems GmbH * written by Patrick Georgi <patrick@georgi-clan.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <ctype.h> /* stat.h needs to be included before commonlib/helpers.h to avoid errors.*/ #include <sys/stat.h> #include <commonlib/helpers.h> #include "sconfig.h" #include "sconfig.tab.h" extern int linenum; /* * Maintains list of all the unique chip structures for the board. * This is shared across base and override device trees since we need to * generate headers for all chips added by both the trees. */ static struct chip chip_header; /* * This is intentionally shared between chip and device structure ids because it * is easier to track the order of parsing for chip and device. */ static int count = 0; typedef enum { UNSLASH, SPLIT_1ST, TO_LOWER, TO_UPPER, } translate_t; /* * Mainboard is assumed to have a root device whose bus is the parent of all the * devices that are added by parsing the devicetree file. This device has a * mainboard chip instance associated with it. * * * * +------------------------+ +----------------------+ * | Root device | | Mainboard | * +---------+ (base_root_dev) +--------------->+ instance + * | | | chip_instance | (mainboard_instance)| * | +------------------------+ | | * | | +----------------------+ * | | bus | * | parent v | * | +-------------------+ | * | | Root bus | | * +----------->+ (base_root_bus) | | * | | | * +-------------------+ | * | | * | children | chip * v | * X | * (new devices will | * be added here as | * children) | * | * | * | * +-------+----------+ * | | * | Mainboard chip +----------->X (new chips will be * | (mainboard_chip) | added here) * | | * +------------------+ * * */ /* Root device of primary tree. */ static struct device base_root_dev; /* Root device of override tree (if applicable). */ static struct device override_root_dev; static struct chip_instance mainboard_instance; static struct bus base_root_bus = { .id = 0, .dev = &base_root_dev, }; static struct device base_root_dev = { .name = "dev_root", .id = 0, .chip_instance = &mainboard_instance, .path = " .type = DEVICE_PATH_ROOT ", .parent = &base_root_bus, .enabled = 1, .bus = &base_root_bus, }; static struct bus override_root_bus = { .id = 0, .dev = &override_root_dev, }; static struct device override_root_dev = { .name = "override_root", .id = 0, /* * Override tree root device points to the same mainboard chip instance * as the base tree root device. It should not cause any side-effects * since the mainboard chip instance pointer in override tree will just * be ignored. */ .chip_instance = &mainboard_instance, .path = " .type = DEVICE_PATH_ROOT ", .parent = &override_root_bus, .enabled = 1, .bus = &override_root_bus, }; static struct chip mainboard_chip = { .name = "mainboard", .name_underscore = "mainboard", .instance = &mainboard_instance, }; static struct chip_instance mainboard_instance = { .id = 0, .chip = &mainboard_chip, .ref_count = 2, }; /* This is the parent of all devices added by parsing the devicetree file. */ struct bus *root_parent; struct queue_entry { void *data; struct queue_entry *next; struct queue_entry *prev; }; #define S_ALLOC(_s) s_alloc(__func__, _s) static void *s_alloc(const char *f, size_t s) { void *data = calloc(1, s); if (!data) { fprintf(stderr, "%s: Failed to alloc mem!\n", f); exit(1); } return data; } static struct queue_entry *new_queue_entry(void *data) { struct queue_entry *e = S_ALLOC(sizeof(*e)); e->data = data; e->next = e->prev = e; return e; } static void enqueue_tail(struct queue_entry **q_head, void *data) { struct queue_entry *tmp = new_queue_entry(data); struct queue_entry *q = *q_head; if (!q) { *q_head = tmp; return; } q->prev->next = tmp; tmp->prev = q->prev; q->prev = tmp; tmp->next = q; } static void *dequeue_tail(struct queue_entry **q_head) { struct queue_entry *q = *q_head; struct queue_entry *tmp; void *data; if (!q) return NULL; tmp = q->prev; if (tmp == q) *q_head = NULL; else { tmp->prev->next = q; q->prev = tmp->prev; } data = tmp->data; free(tmp); return data; } static void *dequeue_head(struct queue_entry **q_head) { struct queue_entry *q = *q_head; struct queue_entry *tmp = q; void *data; if (!q) return NULL; if (q->next == q) *q_head = NULL; else { q->next->prev = q->prev; q->prev->next = q->next; *q_head = q->next; } data = tmp->data; free(tmp); return data; } static void *peek_queue_head(struct queue_entry *q_head) { if (!q_head) return NULL; return q_head->data; } static struct queue_entry *chip_q_head; void chip_enqueue_tail(void *data) { enqueue_tail(&chip_q_head, data); } void *chip_dequeue_tail(void) { return dequeue_tail(&chip_q_head); } int yywrap(void) { return 1; } void yyerror(char const *str) { extern char *yytext; fprintf(stderr, "line %d: %s: %s\n", linenum + 1, yytext, str); exit(1); } char *translate_name(const char *str, translate_t mode) { char *b, *c; b = c = strdup(str); while (c && *c) { if ((mode == SPLIT_1ST) && (*c == '/')) { *c = 0; break; } if (*c == '/') *c = '_'; if (*c == '-') *c = '_'; if (mode == TO_UPPER) *c = toupper(*c); if (mode == TO_LOWER) *c = tolower(*c); c++; } return b; } static struct chip *get_chip(char *path) { struct chip *h = &chip_header; while (h->next) { int result = strcmp(path, h->next->name); if (result == 0) return h->next; if (result < 0) break; h = h->next; } struct chip *new_chip = S_ALLOC(sizeof(struct chip)); new_chip->next = h->next; h->next = new_chip; new_chip->chiph_exists = 1; new_chip->name = path; new_chip->name_underscore = translate_name(path, UNSLASH); struct stat st; char *chip_h = S_ALLOC(strlen(path) + 18); sprintf(chip_h, "src/%s", path); if ((stat(chip_h, &st) == -1) && (errno == ENOENT)) { /* root_complex gets away without a separate directory, but * exists on on pretty much all AMD chipsets. */ if (!strstr(path, "/root_complex")) { fprintf(stderr, "ERROR: Chip component %s does not exist.\n", path); exit(1); } } sprintf(chip_h, "src/%s/chip.h", path); if ((stat(chip_h, &st) == -1) && (errno == ENOENT)) new_chip->chiph_exists = 0; free(chip_h); return new_chip; } struct chip_instance *new_chip_instance(char *path) { struct chip *chip = get_chip(path); struct chip_instance *instance = S_ALLOC(sizeof(*instance)); instance->id = ++count; instance->chip = chip; instance->next = chip->instance; chip->instance = instance; return instance; } static void delete_chip_instance(struct chip_instance *ins) { if (ins->ref_count == 0) { printf("ERROR: ref count for chip instance is zero!!\n"); exit(1); } if (--ins->ref_count) return; struct chip *c = ins->chip; /* Get pointer to first instance of the chip. */ struct chip_instance *i = c->instance; /* * If chip instance to be deleted is the first instance, then update * instance pointer of the chip as well. */ if (i == ins) { c->instance = ins->next; free(ins); return; } /* * Loop through the instances list of the chip to find and remove the * given instance. */ while (1) { if (i == NULL) { printf("ERROR: chip instance not found!\n"); exit(1); } if (i->next != ins) { i = i->next; continue; } i->next = ins->next; break; } free(ins); } /* * Allocate a new bus for the provided device. * - If this is the first bus being allocated under this device, then its id * is set to 0 and bus and last_bus are pointed to the newly allocated bus. * - If this is not the first bus under this device, then its id is set to 1 * plus the id of last bus and newly allocated bus is added to the list of * buses under the device. last_bus is updated to point to the newly * allocated bus. */ static void alloc_bus(struct device *dev) { struct bus *bus = S_ALLOC(sizeof(*bus)); bus->dev = dev; if (dev->last_bus == NULL) { bus->id = 0; dev->bus = bus; } else { bus->id = dev->last_bus->id + 1; dev->last_bus->next_bus = bus; } dev->last_bus = bus; } /* * Allocate a new device under the given parent. This function allocates a new * device structure under the provided parent bus and allocates a bus structure * under the newly allocated device. */ static struct device *alloc_dev(struct bus *parent) { struct device *dev = S_ALLOC(sizeof(*dev)); dev->id = ++count; dev->parent = parent; dev->subsystem_vendor = -1; dev->subsystem_device = -1; alloc_bus(dev); return dev; } /* * This function scans the children of given bus to see if any device matches * the new device that is requested. * * Returns pointer to the node if found, else NULL. */ static struct device *get_dev(struct bus *parent, int path_a, int path_b, int bustype, struct chip_instance *chip_instance) { struct device *child = parent->children; while (child) { if ((child->path_a == path_a) && (child->path_b == path_b) && (child->bustype == bustype) && (child->chip_instance == chip_instance)) return child; child = child->sibling; } return NULL; } /* * Add given node as child of the provided parent. If this is the first child of * the parent, update parent->children pointer as well. */ static void set_new_child(struct bus *parent, struct device *child) { struct device *c = parent->children; if (c) { while (c->sibling) c = c->sibling; c->sibling = child; } else parent->children = child; child->sibling = NULL; child->parent = parent; } struct device *new_device(struct bus *parent, struct chip_instance *chip_instance, const int bustype, const char *devnum, int status) { char *tmp; int path_a; int path_b = 0; struct device *new_d; path_a = strtol(devnum, &tmp, 16); if (*tmp == '.') { tmp++; path_b = strtol(tmp, NULL, 16); } /* If device is found under parent, no need to allocate new device. */ new_d = get_dev(parent, path_a, path_b, bustype, chip_instance); if (new_d) { alloc_bus(new_d); return new_d; } new_d = alloc_dev(parent); new_d->bustype = bustype; new_d->path_a = path_a; new_d->path_b = path_b; char *name = S_ALLOC(10); sprintf(name, "_dev%d", new_d->id); new_d->name = name; new_d->enabled = status & 0x01; new_d->hidden = (status >> 1) & 0x01; new_d->mandatory = (status >> 2) & 0x01; new_d->chip_instance = chip_instance; chip_instance->ref_count++; set_new_child(parent, new_d); switch (bustype) { case PCI: new_d->path = ".type=DEVICE_PATH_PCI,{.pci={ .devfn = PCI_DEVFN(0x%x,%d)}}"; break; case PNP: new_d->path = ".type=DEVICE_PATH_PNP,{.pnp={ .port = 0x%x, .device = 0x%x }}"; break; case I2C: new_d->path = ".type=DEVICE_PATH_I2C,{.i2c={ .device = 0x%x, .mode_10bit = %d }}"; break; case APIC: new_d->path = ".type=DEVICE_PATH_APIC,{.apic={ .apic_id = 0x%x }}"; break; case CPU_CLUSTER: new_d->path = ".type=DEVICE_PATH_CPU_CLUSTER,{.cpu_cluster={ .cluster = 0x%x }}"; break; case CPU: new_d->path = ".type=DEVICE_PATH_CPU,{.cpu={ .id = 0x%x }}"; break; case DOMAIN: new_d->path = ".type=DEVICE_PATH_DOMAIN,{.domain={ .domain = 0x%x }}"; break; case IOAPIC: new_d->path = ".type=DEVICE_PATH_IOAPIC,{.ioapic={ .ioapic_id = 0x%x }}"; break; case GENERIC: new_d->path = ".type=DEVICE_PATH_GENERIC,{.generic={ .id = 0x%x, .subid = 0x%x }}"; break; case SPI: new_d->path = ".type=DEVICE_PATH_SPI,{.spi={ .cs = 0x%x }}"; break; case USB: new_d->path = ".type=DEVICE_PATH_USB,{.usb={ .port_type = %d, .port_id = %d }}"; break; case MMIO: new_d->path = ".type=DEVICE_PATH_MMIO,{.mmio={ .addr = 0x%x }}"; break; } return new_d; } static void new_resource(struct device *dev, int type, int index, int base) { struct resource *r = S_ALLOC(sizeof(struct resource)); r->type = type; r->index = index; r->base = base; if (dev->res) { struct resource *head = dev->res; while (head->next) head = head->next; head->next = r; } else { dev->res = r; } } void add_resource(struct bus *bus, int type, int index, int base) { new_resource(bus->dev, type, index, base); } void add_register(struct chip_instance *chip_instance, char *name, char *val) { struct reg *r = S_ALLOC(sizeof(struct reg)); r->key = name; r->value = val; if (chip_instance->reg) { struct reg *head = chip_instance->reg; // sorting to be equal to sconfig's behaviour int sort = strcmp(r->key, head->key); if (sort == 0) { printf("ERROR: duplicate 'register' key.\n"); exit(1); } if (sort < 0) { r->next = head; chip_instance->reg = r; } else { while ((head->next) && (strcmp(head->next->key, r->key) < 0)) head = head->next; r->next = head->next; head->next = r; } } else { chip_instance->reg = r; } } void add_slot_desc(struct bus *bus, char *type, char *length, char *designation, char *data_width) { struct device *dev = bus->dev; if (dev->bustype != PCI && dev->bustype != DOMAIN) { printf("ERROR: 'slot_type' only allowed for PCI devices\n"); exit(1); } dev->smbios_slot_type = type; dev->smbios_slot_length = length; dev->smbios_slot_data_width = data_width; dev->smbios_slot_designation = designation; } void add_pci_subsystem_ids(struct bus *bus, int vendor, int device, int inherit) { struct device *dev = bus->dev; if (dev->bustype != PCI && dev->bustype != DOMAIN) { printf("ERROR: 'subsystem' only allowed for PCI devices\n"); exit(1); } dev->subsystem_vendor = vendor; dev->subsystem_device = device; dev->inherit_subsystem = inherit; } void add_ioapic_info(struct bus *bus, int apicid, const char *_srcpin, int irqpin) { int srcpin; struct device *dev = bus->dev; if (!_srcpin || strlen(_srcpin) < 4 || strncasecmp(_srcpin, "INT", 3) || _srcpin[3] < 'A' || _srcpin[3] > 'D') { printf("ERROR: malformed ioapic_irq args: %s\n", _srcpin); exit(1); } srcpin = _srcpin[3] - 'A'; if (dev->bustype != PCI && dev->bustype != DOMAIN) { printf("ERROR: ioapic config only allowed for PCI devices\n"); exit(1); } if (srcpin > 3) { printf("ERROR: srcpin '%d' invalid\n", srcpin); exit(1); } dev->pci_irq_info[srcpin].ioapic_irq_pin = irqpin; dev->pci_irq_info[srcpin].ioapic_dst_id = apicid; } static int dev_has_children(struct device *dev) { struct bus *bus = dev->bus; while (bus) { if (bus->children) return 1; bus = bus->next_bus; } return 0; } static void pass0(FILE *fil, FILE *head, struct device *ptr, struct device *next) { if (ptr == &base_root_dev) { fprintf(fil, "STORAGE struct bus %s_links[];\n", ptr->name); return; } fprintf(fil, "STORAGE struct device %s;\n", ptr->name); if (ptr->res) fprintf(fil, "STORAGE struct resource %s_res[];\n", ptr->name); if (dev_has_children(ptr)) fprintf(fil, "STORAGE struct bus %s_links[];\n", ptr->name); if (next) return; fprintf(fil, "DEVTREE_CONST struct device * DEVTREE_CONST last_dev = &%s;\n", ptr->name); } static void emit_resources(FILE *fil, struct device *ptr) { if (ptr->res == NULL) return; int i = 1; fprintf(fil, "STORAGE struct resource %s_res[] = {\n", ptr->name); struct resource *r = ptr->res; while (r) { fprintf(fil, "\t\t{ .flags=IORESOURCE_FIXED | IORESOURCE_ASSIGNED | IORESOURCE_"); if (r->type == IRQ) fprintf(fil, "IRQ"); if (r->type == DRQ) fprintf(fil, "DRQ"); if (r->type == IO) fprintf(fil, "IO"); fprintf(fil, ", .index=0x%x, .base=0x%x,", r->index, r->base); if (r->next) fprintf(fil, ".next=&%s_res[%d]},\n", ptr->name, i++); else fprintf(fil, ".next=NULL },\n"); r = r->next; } fprintf(fil, "\t };\n"); } static void emit_bus(FILE *fil, struct bus *bus) { fprintf(fil, "\t\t[%d] = {\n", bus->id); fprintf(fil, "\t\t\t.link_num = %d,\n", bus->id); fprintf(fil, "\t\t\t.dev = &%s,\n", bus->dev->name); if (bus->children) fprintf(fil, "\t\t\t.children = &%s,\n", bus->children->name); if (bus->next_bus) fprintf(fil, "\t\t\t.next=&%s_links[%d],\n", bus->dev->name, bus->id + 1); else fprintf(fil, "\t\t\t.next = NULL,\n"); fprintf(fil, "\t\t},\n"); } static void emit_dev_links(FILE *fil, struct device *ptr) { fprintf(fil, "STORAGE struct bus %s_links[] = {\n", ptr->name); struct bus *bus = ptr->bus; while (bus) { emit_bus(fil, bus); bus = bus->next_bus; } fprintf(fil, "\t};\n"); } static void pass1(FILE *fil, FILE *head, struct device *ptr, struct device *next) { int pin; struct chip_instance *chip_ins = ptr->chip_instance; int has_children = dev_has_children(ptr); if (ptr == &base_root_dev) fprintf(fil, "DEVTREE_CONST struct device %s = {\n", ptr->name); else fprintf(fil, "STORAGE struct device %s = {\n", ptr->name); fprintf(fil, "#if !DEVTREE_EARLY\n"); /* * ops field is set to default_dev_ops_root only for the root * device. For all other devices, it is set by the driver at runtime. */ if (ptr == &base_root_dev) fprintf(fil, "\t.ops = &default_dev_ops_root,\n"); else fprintf(fil, "\t.ops = NULL,\n"); fprintf(fil, "#endif\n"); fprintf(fil, "\t.bus = &%s_links[%d],\n", ptr->parent->dev->name, ptr->parent->id); fprintf(fil, "\t.path = {"); fprintf(fil, ptr->path, ptr->path_a, ptr->path_b); fprintf(fil, "},\n"); fprintf(fil, "\t.enabled = %d,\n", ptr->enabled); fprintf(fil, "\t.hidden = %d,\n", ptr->hidden); fprintf(fil, "\t.mandatory = %d,\n", ptr->mandatory); fprintf(fil, "\t.on_mainboard = 1,\n"); if (ptr->subsystem_vendor > 0) fprintf(fil, "\t.subsystem_vendor = 0x%04x,\n", ptr->subsystem_vendor); if (ptr->subsystem_device > 0) fprintf(fil, "\t.subsystem_device = 0x%04x,\n", ptr->subsystem_device); if (ptr->res) { fprintf(fil, "\t.resource_list = &%s_res[0],\n", ptr->name); } if (has_children) fprintf(fil, "\t.link_list = &%s_links[0],\n", ptr->name); else fprintf(fil, "\t.link_list = NULL,\n"); if (ptr->sibling) fprintf(fil, "\t.sibling = &%s,\n", ptr->sibling->name); else fprintf(fil, "\t.sibling = NULL,\n"); fprintf(fil, "#if !DEVTREE_EARLY\n"); for (pin = 0; pin < 4; pin++) { if (ptr->pci_irq_info[pin].ioapic_irq_pin > 0) fprintf(fil, "\t.pci_irq_info[%d].ioapic_irq_pin = %d,\n", pin, ptr->pci_irq_info[pin].ioapic_irq_pin); if (ptr->pci_irq_info[pin].ioapic_dst_id > 0) fprintf(fil, "\t.pci_irq_info[%d].ioapic_dst_id = %d,\n", pin, ptr->pci_irq_info[pin].ioapic_dst_id); } fprintf(fil, "\t.chip_ops = &%s_ops,\n", chip_ins->chip->name_underscore); if (chip_ins == &mainboard_instance) fprintf(fil, "\t.name = mainboard_name,\n"); fprintf(fil, "#endif\n"); if (chip_ins->chip->chiph_exists) fprintf(fil, "\t.chip_info = &%s_info_%d,\n", chip_ins->chip->name_underscore, chip_ins->id); if (next) fprintf(fil, "\t.next=&%s,\n", next->name); if (ptr->smbios_slot_type || ptr->smbios_slot_data_width || ptr->smbios_slot_designation || ptr->smbios_slot_length) { fprintf(fil, "#if !DEVTREE_EARLY\n"); fprintf(fil, "#if CONFIG(GENERATE_SMBIOS_TABLES)\n"); } /* SMBIOS types start at 1, if zero it hasn't been set */ if (ptr->smbios_slot_type) fprintf(fil, "\t.smbios_slot_type = %s,\n", ptr->smbios_slot_type); if (ptr->smbios_slot_data_width) fprintf(fil, "\t.smbios_slot_data_width = %s,\n", ptr->smbios_slot_data_width); if (ptr->smbios_slot_designation) fprintf(fil, "\t.smbios_slot_designation = \"%s\",\n", ptr->smbios_slot_designation); if (ptr->smbios_slot_length) fprintf(fil, "\t.smbios_slot_length = %s,\n", ptr->smbios_slot_length); if (ptr->smbios_slot_type || ptr->smbios_slot_data_width || ptr->smbios_slot_designation || ptr->smbios_slot_length) { fprintf(fil, "#endif\n"); fprintf(fil, "#endif\n"); } fprintf(fil, "};\n"); emit_resources(fil, ptr); if (has_children) emit_dev_links(fil, ptr); } static void expose_device_names(FILE *fil, FILE *head, struct device *ptr, struct device *next) { /* Only devices on root bus here. */ if (ptr->bustype == PCI && ptr->parent->dev->bustype == DOMAIN) { fprintf(head, "extern DEVTREE_CONST struct device *DEVTREE_CONST __pci_0_%02x_%d;\n", ptr->path_a, ptr->path_b); fprintf(fil, "DEVTREE_CONST struct device *DEVTREE_CONST __pci_0_%02x_%d = &%s;\n", ptr->path_a, ptr->path_b, ptr->name); } if (ptr->bustype == PNP) { fprintf(head, "extern DEVTREE_CONST struct device *DEVTREE_CONST __pnp_%04x_%02x;\n", ptr->path_a, ptr->path_b); fprintf(fil, "DEVTREE_CONST struct device *DEVTREE_CONST __pnp_%04x_%02x = &%s;\n", ptr->path_a, ptr->path_b, ptr->name); } } static void add_siblings_to_queue(struct queue_entry **bfs_q_head, struct device *d) { while (d) { enqueue_tail(bfs_q_head, d); d = d->sibling; } } static void add_children_to_queue(struct queue_entry **bfs_q_head, struct device *d) { struct bus *bus = d->bus; while (bus) { if (bus->children) add_siblings_to_queue(bfs_q_head, bus->children); bus = bus->next_bus; } } static void walk_device_tree(FILE *fil, FILE *head, struct device *ptr, void (*func)(FILE *, FILE *, struct device *, struct device *)) { struct queue_entry *bfs_q_head = NULL; enqueue_tail(&bfs_q_head, ptr); while ((ptr = dequeue_head(&bfs_q_head))) { add_children_to_queue(&bfs_q_head, ptr); func(fil, head, ptr, peek_queue_head(bfs_q_head)); } } static void emit_chip_headers(FILE *fil, struct chip *chip) { struct chip *tmp = chip; fprintf(fil, "#include <device/device.h>\n"); fprintf(fil, "#include <device/pci.h>\n"); while (chip) { if (chip->chiph_exists) fprintf(fil, "#include \"%s/chip.h\"\n", chip->name); chip = chip->next; } fprintf(fil, "\n#if !DEVTREE_EARLY\n"); fprintf(fil, "__attribute__((weak)) struct chip_operations mainboard_ops = {};\n"); chip = tmp; while (chip) { fprintf(fil, "__attribute__((weak)) struct chip_operations %s_ops = {};\n", chip->name_underscore); chip = chip->next; } fprintf(fil, "#endif\n"); } static void emit_chip_instance(FILE *fil, struct chip_instance *instance) { fprintf(fil, "STORAGE struct %s_config %s_info_%d = {", instance->chip->name_underscore, instance->chip->name_underscore, instance->id); if (instance->reg) { fprintf(fil, "\n"); struct reg *r = instance->reg; while (r) { fprintf(fil, "\t.%s = %s,\n", r->key, r->value); r = r->next; } } fprintf(fil, "};\n\n"); } static void emit_chips(FILE *fil) { struct chip *chip = chip_header.next; struct chip_instance *instance; emit_chip_headers(fil, chip); fprintf(fil, "\n#define STORAGE static __unused DEVTREE_CONST\n\n"); for (; chip; chip = chip->next) { if (!chip->chiph_exists) continue; instance = chip->instance; while (instance) { emit_chip_instance(fil, instance); instance = instance->next; } } } static void inherit_subsystem_ids(FILE *file, FILE *head, struct device *dev, struct device *next) { struct device *p; if (dev->subsystem_vendor != -1 && dev->subsystem_device != -1) { /* user already gave us a subsystem vendor/device */ return; } for (p = dev; p && p->parent->dev != p; p = p->parent->dev) { if (p->bustype != PCI && p->bustype != DOMAIN) continue; if (p->inherit_subsystem) { dev->subsystem_vendor = p->subsystem_vendor; dev->subsystem_device = p->subsystem_device; break; } } } static void usage(void) { printf("usage: sconfig devicetree_file output_file header_file [override_devicetree_file]\n"); exit(1); } enum { DEVICEFILE_ARG = 1, OUTPUTFILE_ARG, HEADERFILE_ARG, OVERRIDE_DEVICEFILE_ARG, }; #define MANDATORY_ARG_COUNT 4 #define OPTIONAL_ARG_COUNT 1 #define TOTAL_ARG_COUNT (MANDATORY_ARG_COUNT + OPTIONAL_ARG_COUNT) static void parse_devicetree(const char *file, struct bus *parent) { FILE *filec = fopen(file, "r"); if (!filec) { perror(NULL); exit(1); } yyrestart(filec); root_parent = parent; linenum = 0; yyparse(); fclose(filec); } /* * Match device nodes from base and override tree to see if they are the same * node. */ static int device_match(struct device *a, struct device *b) { return ((a->path_a == b->path_a) && (a->path_b == b->path_b) && (a->bustype == b->bustype) && (a->chip_instance->chip == b->chip_instance->chip)); } /* * Match resource nodes from base and override tree to see if they are the same * node. */ static int res_match(struct resource *a, struct resource *b) { return ((a->type == b->type) && (a->index == b->index)); } /* * Walk through the override subtree in breadth-first manner starting at node to * see if chip_instance pointer of the node is same as chip_instance pointer of * override parent that is passed into the function. If yes, then update the * chip_instance pointer of the node to chip_instance pointer of the base * parent. */ static void update_chip_pointers(struct device *node, struct chip_instance *base_parent_ci, struct chip_instance *override_parent_ci) { struct queue_entry *q_head = NULL; enqueue_tail(&q_head, node); while ((node = dequeue_head(&q_head))) { if (node->chip_instance != override_parent_ci) continue; node->chip_instance = base_parent_ci; add_children_to_queue(&q_head, node); } } /* * Add resource to device. If resource is already present, then update its base * and index. If not, then add a new resource to the device. */ static void update_resource(struct device *dev, struct resource *res) { struct resource *base_res = dev->res; while (base_res) { if (res_match(base_res, res)) { base_res->base = res->base; return; } base_res = base_res->next; } new_resource(dev, res->type, res->index, res->base); } /* * Add register to chip instance. If register is already present, then update * its value. If not, then add a new register to the chip instance. */ static void update_register(struct chip_instance *c, struct reg *reg) { struct reg *base_reg = c->reg; while (base_reg) { if (!strcmp(base_reg->key, reg->key)) { base_reg->value = reg->value; return; } base_reg = base_reg->next; } add_register(c, reg->key, reg->value); } static void override_devicetree(struct bus *base_parent, struct bus *override_parent); /* * Update the base device properties using the properties of override device. In * addition to that, call override_devicetree for all the buses under the * override device. * * Override Rules: * +--------------------+--------------------------------------------+ * | | | * |struct device member| Rule | * | | | * +-----------------------------------------------------------------+ * | | | * | id | Unchanged. This is used to generate device | * | | structure name in static.c. So, no need to | * | | override. | * | | | * +-----------------------------------------------------------------+ * | | | * | enabled | Copy enabled state from override device. | * | | This allows variants to override device | * | | state. | * | | | * +-----------------------------------------------------------------+ * | | | * | subsystem_vendor | Copy from override device only if any one | * | subsystem_device | of the ids is non-zero. | * | | | * +-----------------------------------------------------------------+ * | | | * | inherit_subsystem | Copy from override device only if it is | * | | non-zero. This allows variant to only | * | | enable inherit flag for a device. | * | | | * +-----------------------------------------------------------------+ * | | | * | path | Unchanged since these are same for both | * | path_a | base and override device (Used for | * | path_b | matching devices). | * | | | * +-----------------------------------------------------------------+ * | | | * | bustype | Unchanged since this is same for both base | * | | and override device (User for matching | * | | devices). | * | | | * +-----------------------------------------------------------------+ * | | | * | pci_irq_info | Unchanged. | * | | | * +-----------------------------------------------------------------+ * | | | * | parent | Unchanged. This is meaningful only within | * | sibling | the parse tree, hence not being copied. | * | | | * +-----------------------------------------------------------------+ * | | | * | res | Each resource that is present in override | * | | device is copied over to base device: | * | | 1. If resource of same type and index is | * | | present in base device, then base of | * | | the resource is copied. | * | | 2. If not, then a new resource is allocated| * | | under the base device using type, index | * | | and base from override res. | * | | | * +-----------------------------------------------------------------+ * | | | * | chip_instance | Each register of chip_instance is copied | * | | over from override device to base device: | * | | 1. If register with same key is present in | * | | base device, then value of the register | * | | is copied. | * | | 2. If not, then a new register is allocated| * | | under the base chip_instance using key | * | | and value from override register. | * | | | * +-----------------------------------------------------------------+ * | | | * | bus | Recursively call override_devicetree on | * | last_bus | each bus of override device. It is assumed | * | | that bus with id X under base device | * | | to bus with id X under override device. If | * | | override device has more buses than base | * | | device, then new buses are allocated under | * | | base device. | * | | | * +-----------------------------------------------------------------+ */ static void update_device(struct device *base_dev, struct device *override_dev) { /* * Copy the enabled state of override device to base device. This allows * override tree to enable or disable a particular device. */ base_dev->enabled = override_dev->enabled; /* * Copy subsystem vendor and device ids from override device to base * device only if the ids are non-zero in override device. Else, honor * the values in base device. */ if (override_dev->subsystem_vendor || override_dev->subsystem_device) { base_dev->subsystem_vendor = override_dev->subsystem_vendor; base_dev->subsystem_device = override_dev->subsystem_device; } /* * Copy value of inherity_subsystem from override device to base device * only if it is non-zero in override device. This allows override * tree to only enable inhert flag for a device. */ if (override_dev->inherit_subsystem) base_dev->inherit_subsystem = override_dev->inherit_subsystem; /* * Copy resources of override device to base device. * 1. If resource is already present in base device, then index and base * of the resource will be copied over. * 2. If resource is not already present in base device, a new resource * will be allocated. */ struct resource *res = override_dev->res; while (res) { update_resource(base_dev, res); res = res->next; } /* * Copy registers of override chip instance to base chip instance. * 1. If register key is already present in base chip instance, then * value for the register is copied over. * 2. If register key is not already present in base chip instance, then * a new register will be allocated. */ struct reg *reg = override_dev->chip_instance->reg; while (reg) { update_register(base_dev->chip_instance, reg); reg = reg->next; } /* * Now that the device properties are all copied over, look at each bus * of the override device and run override_devicetree in a recursive * manner. The assumption here is that first bus of override device * corresponds to first bus of base device and so on. If base device has * lesser buses than override tree, then new buses are allocated for it. */ struct bus *override_bus = override_dev->bus; struct bus *base_bus = base_dev->bus; while (override_bus) { /* * If we have more buses in override tree device, then allocate * a new bus for the base tree device as well. */ if (!base_bus) { alloc_bus(base_dev); base_bus = base_dev->last_bus; } override_devicetree(base_dev->bus, override_dev->bus); override_bus = override_bus->next_bus; base_bus = base_bus->next_bus; } delete_chip_instance(override_dev->chip_instance); override_dev->chip_instance = NULL; } /* * Perform copy of device and properties from override parent to base parent. * This function walks through the override tree in a depth-first manner * performing following actions: * 1. If matching device is found in base tree, then copy the properties of * override device to base tree device. Call override_devicetree recursively on * the bus of override device. * 2. If matching device is not found in base tree, then set override tree * device as new child of base_parent and update the chip pointers in override * device subtree to ensure the nodes do not point to override tree chip * instance. */ static void override_devicetree(struct bus *base_parent, struct bus *override_parent) { struct device *base_child; struct device *override_child = override_parent->children; struct device *next_child; while (override_child) { /* Look for a matching device in base tree. */ for (base_child = base_parent->children; base_child; base_child = base_child->sibling) { if (device_match(base_child, override_child)) break; } next_child = override_child->sibling; /* * If matching device is found, copy properties of * override_child to base_child. */ if (base_child) update_device(base_child, override_child); else { /* * If matching device is not found, set override_child * as a new child of base_parent. */ set_new_child(base_parent, override_child); /* * Ensure all nodes in override tree pointing to * override parent chip_instance now point to base * parent chip_instance. */ update_chip_pointers(override_child, base_parent->dev->chip_instance, override_parent->dev->chip_instance); } override_child = next_child; } } int main(int argc, char **argv) { if ((argc < MANDATORY_ARG_COUNT) || (argc > TOTAL_ARG_COUNT)) usage(); const char *base_devtree = argv[DEVICEFILE_ARG]; const char *outputc = argv[OUTPUTFILE_ARG]; const char *outputh = argv[HEADERFILE_ARG]; const char *override_devtree; parse_devicetree(base_devtree, &base_root_bus); if (argc == TOTAL_ARG_COUNT) { override_devtree = argv[OVERRIDE_DEVICEFILE_ARG]; parse_devicetree(override_devtree, &override_root_bus); if (!dev_has_children(&override_root_dev)) { fprintf(stderr, "ERROR: Override tree needs at least one device!\n"); exit(1); } override_devicetree(&base_root_bus, &override_root_bus); } FILE *autogen = fopen(outputc, "w"); if (!autogen) { fprintf(stderr, "Could not open file '%s' for writing: ", outputc); perror(NULL); exit(1); } FILE *autohead = fopen(outputh, "w"); if (!autohead) { fprintf(stderr, "Could not open file '%s' for writing: ", outputh); perror(NULL); fclose(autogen); exit(1); } fprintf(autohead, "#ifndef __STATIC_DEVICE_TREE_H\n"); fprintf(autohead, "#define __STATIC_DEVICE_TREE_H\n\n"); fprintf(autohead, "#include <device/device.h>\n\n"); emit_chips(autogen); walk_device_tree(autogen, autohead, &base_root_dev, inherit_subsystem_ids); fprintf(autogen, "\n/* pass 0 */\n"); walk_device_tree(autogen, autohead, &base_root_dev, pass0); fprintf(autogen, "\n/* pass 1 */\n"); walk_device_tree(autogen, autohead, &base_root_dev, pass1); /* Expose static devicenames to global namespace. */ fprintf(autogen, "\n/* expose_device_names */\n"); walk_device_tree(autogen, autohead, &base_root_dev, expose_device_names); fprintf(autohead, "\n#endif /* __STATIC_DEVICE_TREE_H */\n"); fclose(autohead); fclose(autogen); return 0; }