/* inteltool - dump all registers on an Intel CPU + chipset based system */ /* SPDX-License-Identifier: GPL-2.0-only */ #include <stdio.h> #include <stdlib.h> #include <inttypes.h> #include "inteltool.h" /* 320766 */ static const io_register_t nehalem_dmi_registers[] = { { 0x00, 4, "DMIVCH" }, // DMI Virtual Channel Capability Header { 0x04, 4, "DMIVCCAP1" }, // DMI Port VC Capability Register 1 { 0x08, 4, "DMIVCCAP2" }, // DMI Port VC Capability Register 2 { 0x0C, 4, "DMIVCCTL" }, // DMI Port VC Control { 0x10, 4, "DMIVC0RCAP" }, // DMI VC0 Resource Capability { 0x14, 4, "DMIVC0RCTL" }, // DMI VC0 Resource Control /* { 0x18, 2, "RSVD" }, // Reserved */ { 0x1A, 2, "DMIVC0RSTS" }, // DMI VC0 Resource Status { 0x1C, 4, "DMIVC1RCAP" }, // DMI VC1 Resource Capability { 0x20, 4, "DMIVC1RCTL" }, // DMI VC1 Resource Control /* { 0x24, 2, "RSVD" }, // Reserved */ { 0x26, 2, "DMIVC1RSTS" }, // DMI VC1 Resource Status /* ... - Reserved */ { 0x84, 4, "DMILCAP" }, // DMI Link Capabilities { 0x88, 2, "DMILCTL" }, // DMI Link Control { 0x8A, 2, "DMILSTS" }, // DMI Link Status /* ... - Reserved */ }; /* 322812 */ static const io_register_t westmere_dmi_registers[] = { { 0x00, 4, "DMIVCECH" }, // DMI Virtual Channel Enhanced Capability { 0x04, 4, "DMIPVCCAP1" }, // DMI Port VC Capability Register 1 { 0x08, 4, "DMIPVCCAP2" }, // DMI Port VC Capability Register 2 { 0x0C, 2, "DMIPVCCTL" }, // DMI Port VC Control /* { 0x0E, 2, "RSVD" }, // Reserved */ { 0x10, 4, "DMIVC0RCAP" }, // DMI VC0 Resource Capability { 0x14, 4, "DMIVC0RCTL" }, // DMI VC0 Resource Control /* { 0x18, 2, "RSVD" }, // Reserved */ { 0x1A, 2, "DMIVC0RSTS" }, // DMI VC0 Resource Status { 0x1C, 4, "DMIVC1RCAP" }, // DMI VC1 Resource Capability { 0x20, 4, "DMIVC1RCTL1" }, // DMI VC1 Resource Control /* { 0x24, 2, "RSVD" }, // Reserved */ { 0x26, 2, "DMIC1RSTS" }, // DMI VC1 Resource Status /* ... - Reserved */ { 0x84, 4, "DMILCAP" }, // DMI Link Capabilities { 0x88, 2, "DMILCTL" }, // DMI Link Control { 0x8A, 2, "DMILSTS" }, // DMI Link Status /* ... - Reserved */ }; static const io_register_t sandybridge_dmi_registers[] = { { 0x00, 4, "DMI VCECH" }, // DMI Virtual Channel Enhanced Capability { 0x04, 4, "DMI PVCCAP1" }, // DMI Port VC Capability Register 1 { 0x08, 4, "DMI PVVAP2" }, // DMI Port VC Capability Register 2 { 0x0C, 2, "DMI PVCCTL" }, // DMI Port VC Control /* { 0x0E, 2, "RSVD" }, // Reserved */ { 0x10, 4, "DMI VC0RCAP" }, // DMI VC0 Resource Capability { 0x14, 4, "DMI VC0RCTL" }, // DMI VC0 Resource Control /* { 0x18, 2, "RSVD" }, // Reserved */ { 0x1A, 2, "DMI VC0RSTS" }, // DMI VC0 Resource Status { 0x1C, 4, "DMI VC1RCAP" }, // DMI VC1 Resource Capability { 0x20, 4, "DMI VC1RCTL" }, // DMI VC1 Resource Control /* { 0x24, 2, "RSVD" }, // Reserved */ { 0x26, 2, "DMI VC1RSTS" }, // DMI VC1 Resource Status { 0x28, 4, "DMI VCPRCAP" }, // DMI VCp Resource Capability { 0x2C, 4, "DMI VCPRCTL" }, // DMI VCp Resource Control /* { 0x30, 2, "RSVD" }, // Reserved */ { 0x32, 2, "DMI VCPRSTS" }, // DMI VCp Resource Status { 0x34, 4, "DMI VCMRCAP" }, // DMI VCm Resource Capability { 0x38, 4, "DMI VCMRCTL" }, // DMI VCm Resource Control /* { 0x3C, 2, "RSVD" }, // Reserved */ { 0x3E, 2, "DMI VCMRSTS" }, // DMI VCm Resource Status /* { 0x40, 4, "RSVD" }, // Reserved */ { 0x44, 4, "DMI ESC" }, // DMI Element Self Description /* { 0x48, 8, "RSVD" }, // Reserved */ { 0x50, 4, "DMI LE1D" }, // DMI Link Entry 1 Description /* { 0x54, 4, "RSVD" }, // Reserved */ { 0x58, 4, "DMI LE1A" }, // DMI Link Entry 1 Address { 0x5C, 4, "DMI LUE1A" }, // DMI Link Upper Entry 1 Address { 0x60, 4, "DMI LE2D" }, // DMI Link Entry 2 Description /* { 0x64, 4, "RSVD" }, // Reserved */ { 0x68, 4, "DMI LE2A" }, // DMI Link Entry 2 Address /* { 0x6C, 4, "RSVD" }, // Reserved { 0x70, 8, "RSVD" }, // Reserved { 0x78, 8, "RSVD" }, // Reserved { 0x80, 4, "RSVD" }, // Reserved */ { 0x84, 4, "LCAP" }, // Link Capabilities { 0x88, 2, "LCTL" }, // Link Control { 0x8A, 2, "LSTS" }, // Link Status /* { 0x8C, 4, "RSVD" }, // Reserved { 0x90, 4, "RSVD" }, // Reserved { 0x94, 4, "RSVD" }, // Reserved */ { 0x98, 2, "LCTL2" }, // Link Control 2 { 0x9A, 2, "LSTS2" }, // Link Status 2 /* ... - Reserved */ { 0xBC0, 4, "AFE_BMUF0" }, // AFE BMU Configuration Function 0 { 0xBC4, 4, "RSVD" }, // Reserved { 0xBC8, 4, "RSVD" }, // Reserved { 0xBCC, 4, "AFE_BMUT0" }, // AFE BMU Configuration Test 0 /* ... - Reserved */ }; /* * All Haswell DMI Registers per * * Mobile 4th Generation Intel Core TM Processor Family, Mobile Intel Pentium Processor Family, * and Mobile Intel Celeron Processor Family * Datasheet Volume 2 * 329002-002 */ static const io_register_t haswell_ult_dmi_registers[] = { { 0x00, 4, "DMIVCECH" }, // DMI Virtual Channel Enhanced Capability { 0x04, 4, "DMIPVCCAP1" }, // DMI Port VC Capability Register 1 { 0x08, 4, "DMIPVCCAP2" }, // DMI Port VC Capability Register 2 { 0x0C, 2, "DMI PVCCTL" }, // DMI Port VC Control /* { 0x0E, 2, "RSVD" }, // Reserved */ { 0x10, 4, "DMIVC0RCAP" }, // DMI VC0 Resource Capability { 0x14, 4, "DMIVC0RCTL" }, // DMI VC0 Resource Control /* { 0x18, 2, "RSVD" }, // Reserved */ { 0x1A, 2, "DMIVC0RSTS" }, // DMI VC0 Resource Status { 0x1C, 4, "DMIVC1RCAP" }, // DMI VC1 Resource Capability { 0x20, 4, "DMIVC1RCTL" }, // DMI VC1 Resource Control /* { 0x24, 2, "RSVD" }, // Reserved */ { 0x26, 2, "DMIVC1RSTS" }, // DMI VC1 Resource Status { 0x28, 4, "DMIVCPRCAP" }, // DMI VCp Resource Capability { 0x2C, 4, "DMIVCPRCTL" }, // DMI VCp Resource Control /* { 0x30, 2, "RSVD" }, // Reserved */ { 0x32, 2, "DMIVCPRSTS" }, // DMI VCp Resource Status { 0x34, 4, "DMIVCMRCAP" }, // DMI VCm Resource Capability { 0x38, 4, "DMIVCMRCTL" }, // DMI VCm Resource Control /* { 0x3C, 2, "RSVD" }, // Reserved */ { 0x3E, 2, "DMIVCMRSTS" }, // DMI VCm Resource Status { 0x40, 4, "DMIRCLDECH" }, // DMI Root Complex Link Declaration */ { 0x44, 4, "DMIESD" }, // DMI Element Self Description /* { 0x48, 4, "RSVD" }, // Reserved */ /* { 0x4C, 4, "RSVD" }, // Reserved */ { 0x50, 4, "DMILE1D" }, // DMI Link Entry 1 Description /* { 0x54, 4, "RSVD" }, // Reserved */ { 0x58, 4, "DMILE1A" }, // DMI Link Entry 1 Address { 0x5C, 4, "DMILUE1A" }, // DMI Link Upper Entry 1 Address { 0x60, 4, "DMILE2D" }, // DMI Link Entry 2 Description /* { 0x64, 4, "RSVD" }, // Reserved */ { 0x68, 4, "DMILE2A" }, // DMI Link Entry 2 Address /* { 0x6C, 4, "RSVD" }, // Reserved */ /* { 0x70, 4, "RSVD" }, // Reserved */ /* { 0x74, 4, "RSVD" }, // Reserved */ /* { 0x78, 4, "RSVD" }, // Reserved */ /* { 0x7C, 4, "RSVD" }, // Reserved */ /* { 0x80, 4, "RSVD" }, // Reserved */ /* { 0x84, 4, "RSVD" }, // Reserved */ { 0x88, 2, "LCTL" }, // Link Control /* ... - Reserved */ { 0x1C4, 4, "DMIUESTS" }, // DMI Uncorrectable Error Status { 0x1C8, 4, "DMIUEMSK" }, // DMI Uncorrectable Error Mask { 0x1D0, 4, "DMICESTS" }, // DMI Correctable Error Status { 0x1D4, 4, "DMICEMSK" }, // DMI Correctable Error Mask /* ... - Reserved */ }; /* * All Skylake-S/H DMI Registers per * * 6th Generation Intel Processor Families for S-Platform Volume 2 of 2 * Page 117 * 332688-003E * * 6th Generation Intel Processor Families for H-Platform Volume 2 of 2 * Page 117 * 332987-002EN */ static const io_register_t skylake_dmi_registers[] = { { 0x00, 4, "DMIVCECH" }, // DMI Virtual Channel Enhanced Capability { 0x04, 4, "DMIPVCCAP1" }, // DMI Port VC Capability Register 1 { 0x08, 4, "DMIPVCCAP2" }, // DMI Port VC Capability Register 2 { 0x0C, 2, "DMIPVCCTL" }, // DMI Port VC Control { 0x10, 4, "DMIVC0RCAP" }, // DMI VC0 Resource Capability { 0x14, 4, "DMIVC0RCTL" }, // DMI VC0 Resource Control { 0x1A, 2, "DMIVC0RSTS" }, // DMI VC0 Resource Status { 0x1C, 4, "DMIVC1RCAP" }, // DMI VC1 Resource Capability { 0x20, 4, "DMIVC1RCTL" }, // DMI VC1 Resource Control { 0x26, 2, "DMIVC1RSTS" }, // DMI VC1 Resource Status { 0x34, 4, "DMIVCMRCAP" }, // DMI VCm Resource Capability { 0x38, 4, "DMIVCMRCTL" }, // DMI VCm Resource Control { 0x3E, 2, "DMIVCMRSTS" }, // DMI VCm Resource Status { 0x40, 4, "DMIRCLDECH" }, // DMI Root Complex Link Declaration */ { 0x44, 4, "DMIESD" }, // DMI Element Self Description { 0x50, 4, "DMILE1D" }, // DMI Link Entry 1 Description { 0x58, 4, "DMILE1A" }, // DMI Link Entry 1 Address { 0x5C, 4, "DMILUE1A" }, // DMI Link Upper Entry 1 Address { 0x60, 4, "DMILE2D" }, // DMI Link Entry 2 Description { 0x68, 4, "DMILE2A" }, // DMI Link Entry 2 Address { 0x84, 4, "LCAP" }, // Link Capabilities { 0x88, 2, "LCTL" }, // Link Control { 0x8A, 2, "LSTS" }, // DMI Link Status { 0x98, 2, "LCTL2" }, // Link Control 2 { 0x9A, 2, "LSTS2" }, // DMI Link Status 2 { 0x1C4, 4, "DMIUESTS" }, // DMI Uncorrectable Error Status { 0x1C8, 4, "DMIUEMSK" }, // DMI Uncorrectable Error Mask { 0x1CC, 4, "DMIUESEV" }, // DMI Uncorrectable Error Mask { 0x1D0, 4, "DMICESTS" }, // DMI Correctable Error Status { 0x1D4, 4, "DMICEMSK" }, // DMI Correctable Error Mask }; static const io_register_t alderlake_dmi_registers[] = { { 0x00, 4, "DMIVCECH" }, // DMI Virtual Channel Enhanced Capability { 0x04, 4, "DMIPVCCAP1" }, // DMI Port VC Capability Register 1 { 0x08, 4, "DMIPVCCAP2" }, // DMI Port VC Capability Register 2 { 0x0C, 2, "DMIPVCCTL" }, // DMI Port VC Control { 0x10, 4, "DMIVC0RCAP" }, // DMI VC0 Resource Capability { 0x1C, 4, "DMIVC1RCAP" }, // DMI VC1 Resource Capability { 0x26, 2, "DMIVC1RSTS" }, // DMI VC1 Resource Status { 0x34, 4, "DMIVCMRCAP" }, // DMI VCm Resource Capability { 0x38, 4, "DMIVCMRCTL" }, // DMI VCm Resource Control { 0x3E, 2, "DMIVCMRSTS" }, // DMI VCm Resource Status { 0x40, 4, "DMIRCLDECH" }, // DMI Root Complex Link Declaration */ { 0x44, 4, "DMIESD" }, // DMI Element Self Description { 0x50, 4, "DMILE1D" }, // DMI Link Entry 1 Description { 0x5C, 4, "DMILUE1A" }, // DMI Link Upper Entry 1 Address { 0x60, 4, "DMILE2D" }, // DMI Link Entry 2 Description { 0x68, 4, "DMILE2A" }, // DMI Link Entry 2 Address { 0x88, 2, "LCTL" }, // Link Control { 0x1C4, 4, "DMIUESTS" }, // DMI Uncorrectable Error Status { 0x1C8, 4, "DMIUEMSK" }, // DMI Uncorrectable Error Mask { 0x1CC, 4, "DMIUESEV" }, // DMI Uncorrectable Error Mask { 0x1D0, 4, "DMICESTS" }, // DMI Correctable Error Status { 0x1D4, 4, "DMICEMSK" }, // DMI Correctable Error Mask }; /* * Egress Port Root Complex MMIO configuration space */ int print_epbar(struct pci_dev *nb) { int i, size = (4 * 1024); volatile uint8_t *epbar; uint64_t epbar_phys; printf("\n============= EPBAR =============\n\n"); switch (nb->device_id) { case PCI_DEVICE_ID_INTEL_82915: case PCI_DEVICE_ID_INTEL_82945GM: case PCI_DEVICE_ID_INTEL_82945GSE: case PCI_DEVICE_ID_INTEL_82945P: case PCI_DEVICE_ID_INTEL_82946: case PCI_DEVICE_ID_INTEL_82975X: epbar_phys = pci_read_long(nb, 0x40) & 0xfffffffe; break; case PCI_DEVICE_ID_INTEL_82965PM: case PCI_DEVICE_ID_INTEL_82Q965: case PCI_DEVICE_ID_INTEL_82Q35: case PCI_DEVICE_ID_INTEL_82G33: case PCI_DEVICE_ID_INTEL_82Q33: case PCI_DEVICE_ID_INTEL_82X38: case PCI_DEVICE_ID_INTEL_32X0: case PCI_DEVICE_ID_INTEL_82XX4X: case PCI_DEVICE_ID_INTEL_82Q45: case PCI_DEVICE_ID_INTEL_82G45: case PCI_DEVICE_ID_INTEL_82G41: case PCI_DEVICE_ID_INTEL_82B43: case PCI_DEVICE_ID_INTEL_82B43_2: case PCI_DEVICE_ID_INTEL_ATOM_DXXX: case PCI_DEVICE_ID_INTEL_ATOM_NXXX: case PCI_DEVICE_ID_INTEL_CORE_2ND_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_2ND_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_2ND_GEN_E3: case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_E3: case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_015c: case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_E3: case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_U: case PCI_DEVICE_ID_INTEL_CORE_5TH_GEN_U: case PCI_DEVICE_ID_INTEL_CORE_5TH_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_5TH_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_D2: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_U: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_Y: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_WST: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_E: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_U: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_Y: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_U_Q: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_E3: case PCI_DEVICE_ID_INTEL_CORE_8TH_GEN_U_1: case PCI_DEVICE_ID_INTEL_CORE_8TH_GEN_U_2: case PCI_DEVICE_ID_INTEL_CORE_ADL_ID_N_0_8: case PCI_DEVICE_ID_INTEL_CORE_ADL_ID_N_0_4: case PCI_DEVICE_ID_INTEL_CORE_ADL_ID_N_0_4_1: epbar_phys = pci_read_long(nb, 0x40) & 0xfffffffe; epbar_phys |= ((uint64_t)pci_read_long(nb, 0x44)) << 32; break; case PCI_DEVICE_ID_INTEL_82810: case PCI_DEVICE_ID_INTEL_82810_DC: case PCI_DEVICE_ID_INTEL_82810E_DC: case PCI_DEVICE_ID_INTEL_82830M: case PCI_DEVICE_ID_INTEL_82865: printf("This northbridge does not have EPBAR.\n"); return 1; default: printf("Error: Dumping EPBAR on this northbridge is not (yet) supported.\n"); return 1; } epbar = map_physical(epbar_phys, size); if (epbar == NULL) { perror("Error mapping EPBAR"); exit(1); } printf("EPBAR = 0x%08" PRIx64 " (MEM)\n\n", epbar_phys); for (i = 0; i < size; i += 4) { if (read32(epbar + i)) printf("0x%04x: 0x%08x\n", i, read32(epbar+i)); } unmap_physical((void *)epbar, size); return 0; } /* * MCH-ICH Serial Interconnect Ingress Root Complex MMIO configuration space */ int print_dmibar(struct pci_dev *nb) { int i, size = (4 * 1024); volatile uint8_t *dmibar; uint64_t dmibar_phys; const io_register_t *dmi_registers = NULL; printf("\n============= DMIBAR ============\n\n"); switch (nb->device_id) { case PCI_DEVICE_ID_INTEL_82915: case PCI_DEVICE_ID_INTEL_82945GM: case PCI_DEVICE_ID_INTEL_82945GSE: case PCI_DEVICE_ID_INTEL_82945P: case PCI_DEVICE_ID_INTEL_82975X: dmibar_phys = pci_read_long(nb, 0x4c) & 0xfffffffe; break; case PCI_DEVICE_ID_INTEL_82946: case PCI_DEVICE_ID_INTEL_82965PM: case PCI_DEVICE_ID_INTEL_82Q965: case PCI_DEVICE_ID_INTEL_82Q35: case PCI_DEVICE_ID_INTEL_82G33: case PCI_DEVICE_ID_INTEL_82Q33: case PCI_DEVICE_ID_INTEL_82X38: case PCI_DEVICE_ID_INTEL_32X0: case PCI_DEVICE_ID_INTEL_82XX4X: case PCI_DEVICE_ID_INTEL_82Q45: case PCI_DEVICE_ID_INTEL_82G45: case PCI_DEVICE_ID_INTEL_82G41: case PCI_DEVICE_ID_INTEL_82B43: case PCI_DEVICE_ID_INTEL_82B43_2: case PCI_DEVICE_ID_INTEL_ATOM_DXXX: case PCI_DEVICE_ID_INTEL_ATOM_NXXX: dmibar_phys = pci_read_long(nb, 0x68) & 0xfffffffe; dmibar_phys |= ((uint64_t)pci_read_long(nb, 0x6c)) << 32; break; case PCI_DEVICE_ID_INTEL_82810: case PCI_DEVICE_ID_INTEL_82810_DC: case PCI_DEVICE_ID_INTEL_82810E_DC: case PCI_DEVICE_ID_INTEL_82865: printf("This northbridge does not have DMIBAR.\n"); return 1; case PCI_DEVICE_ID_INTEL_82X58: dmibar_phys = pci_read_long(nb, 0x50) & 0xfffff000; break; case PCI_DEVICE_ID_INTEL_CORE_0TH_GEN: /* DMIBAR is called DMIRCBAR in Nehalem */ dmibar_phys = pci_read_long(nb, 0x50) & 0xfffff000; /* 31:12 */ dmi_registers = nehalem_dmi_registers; size = ARRAY_SIZE(nehalem_dmi_registers); break; case PCI_DEVICE_ID_INTEL_CORE_1ST_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_1ST_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_1ST_GEN_0048: dmibar_phys = pci_read_long(nb, 0x68); dmibar_phys |= ((uint64_t)pci_read_long(nb, 0x6c)) << 32; dmibar_phys &= 0x0000000ffffff000UL; /* 35:12 */ dmi_registers = westmere_dmi_registers; size = ARRAY_SIZE(westmere_dmi_registers); break; case PCI_DEVICE_ID_INTEL_CORE_2ND_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_2ND_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_2ND_GEN_E3: dmi_registers = sandybridge_dmi_registers; size = ARRAY_SIZE(sandybridge_dmi_registers); /* fall through */ case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_D: /* pretty printing not implemented yet */ case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_E3: case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_015c: case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_E3: case PCI_DEVICE_ID_INTEL_CORE_5TH_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_5TH_GEN_M: dmibar_phys = pci_read_long(nb, 0x68); dmibar_phys |= ((uint64_t)pci_read_long(nb, 0x6c)) << 32; dmibar_phys &= 0x0000007ffffff000UL; /* 38:12 */ break; case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_U: case PCI_DEVICE_ID_INTEL_CORE_5TH_GEN_U: dmi_registers = haswell_ult_dmi_registers; size = ARRAY_SIZE(haswell_ult_dmi_registers); dmibar_phys = pci_read_long(nb, 0x68); dmibar_phys |= ((uint64_t)pci_read_long(nb, 0x6c)) << 32; dmibar_phys &= 0x0000007ffffff000UL; /* 38:12 */ break; case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_D2: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_U: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_Y: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_WST: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_E: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_U: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_Y: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_U_Q: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_E3: case PCI_DEVICE_ID_INTEL_CORE_8TH_GEN_U_1: case PCI_DEVICE_ID_INTEL_CORE_8TH_GEN_U_2: dmi_registers = skylake_dmi_registers; size = ARRAY_SIZE(skylake_dmi_registers); dmibar_phys = pci_read_long(nb, 0x68); dmibar_phys |= ((uint64_t)pci_read_long(nb, 0x6c)) << 32; dmibar_phys &= 0x0000007ffffff000UL; /* 38:12 */ break; case PCI_DEVICE_ID_INTEL_CORE_ADL_ID_N_0_8: case PCI_DEVICE_ID_INTEL_CORE_ADL_ID_N_0_4: case PCI_DEVICE_ID_INTEL_CORE_ADL_ID_N_0_4_1: dmibar_phys = pci_read_long(nb, 0x68) & 0xfffffffe; dmibar_phys |= ((uint64_t)pci_read_long(nb, 0x6c)) << 32; dmi_registers = alderlake_dmi_registers; size = ARRAY_SIZE(alderlake_dmi_registers); break; default: printf("Error: Dumping DMIBAR on this northbridge is not (yet) supported.\n"); return 1; } dmibar = map_physical(dmibar_phys, size); if (dmibar == NULL) { perror("Error mapping DMIBAR"); exit(1); } printf("DMIBAR = 0x%08" PRIx64 " (MEM)\n\n", dmibar_phys); if (dmi_registers != NULL) { for (i = 0; i < size; i++) { switch (dmi_registers[i].size) { case 4: printf("dmibase+0x%04x: 0x%08x (%s)\n", dmi_registers[i].addr, read32(dmibar+dmi_registers[i].addr), dmi_registers[i].name); break; case 2: printf("dmibase+0x%04x: 0x%04x (%s)\n", dmi_registers[i].addr, read16(dmibar+dmi_registers[i].addr), dmi_registers[i].name); break; case 1: printf("dmibase+0x%04x: 0x%02x (%s)\n", dmi_registers[i].addr, read8(dmibar+dmi_registers[i].addr), dmi_registers[i].name); break; } } } else { for (i = 0; i < size; i += 4) { if (read32(dmibar + i)) printf("0x%04x: 0x%08x\n", i, read32(dmibar+i)); } } unmap_physical((void *)dmibar, size); return 0; } /* * PCIe MMIO configuration space */ int print_pciexbar(struct pci_dev *nb) { uint64_t pciexbar_reg; uint64_t pciexbar_phys; volatile uint8_t *pciexbar; int max_busses, devbase, i; int bus, dev, fn; printf("========= PCIEXBAR ========\n\n"); switch (nb->device_id) { case PCI_DEVICE_ID_INTEL_82915: case PCI_DEVICE_ID_INTEL_82945GM: case PCI_DEVICE_ID_INTEL_82945GSE: case PCI_DEVICE_ID_INTEL_82945P: case PCI_DEVICE_ID_INTEL_82975X: pciexbar_reg = pci_read_long(nb, 0x48); break; case PCI_DEVICE_ID_INTEL_82946: case PCI_DEVICE_ID_INTEL_82965PM: case PCI_DEVICE_ID_INTEL_82Q965: case PCI_DEVICE_ID_INTEL_82Q35: case PCI_DEVICE_ID_INTEL_82G33: case PCI_DEVICE_ID_INTEL_82Q33: case PCI_DEVICE_ID_INTEL_82X38: case PCI_DEVICE_ID_INTEL_32X0: case PCI_DEVICE_ID_INTEL_82XX4X: case PCI_DEVICE_ID_INTEL_82Q45: case PCI_DEVICE_ID_INTEL_82G45: case PCI_DEVICE_ID_INTEL_82G41: case PCI_DEVICE_ID_INTEL_82B43: case PCI_DEVICE_ID_INTEL_82B43_2: case PCI_DEVICE_ID_INTEL_ATOM_DXXX: case PCI_DEVICE_ID_INTEL_ATOM_NXXX: case PCI_DEVICE_ID_INTEL_CORE_2ND_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_2ND_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_2ND_GEN_E3: case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_E3: case PCI_DEVICE_ID_INTEL_CORE_3RD_GEN_015c: case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_E3: case PCI_DEVICE_ID_INTEL_CORE_4TH_GEN_U: case PCI_DEVICE_ID_INTEL_CORE_5TH_GEN_U: case PCI_DEVICE_ID_INTEL_CORE_5TH_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_5TH_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_D2: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_U: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_Y: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_M: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_WST: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_D: case PCI_DEVICE_ID_INTEL_CORE_6TH_GEN_E: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_U: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_Y: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_U_Q: case PCI_DEVICE_ID_INTEL_CORE_7TH_GEN_E3: case PCI_DEVICE_ID_INTEL_CORE_8TH_GEN_U_1: case PCI_DEVICE_ID_INTEL_CORE_8TH_GEN_U_2: case PCI_DEVICE_ID_INTEL_CORE_ADL_ID_N_0_8: case PCI_DEVICE_ID_INTEL_CORE_ADL_ID_N_0_4: case PCI_DEVICE_ID_INTEL_CORE_ADL_ID_N_0_4_1: pciexbar_reg = pci_read_long(nb, 0x60); pciexbar_reg |= ((uint64_t)pci_read_long(nb, 0x64)) << 32; break; case PCI_DEVICE_ID_INTEL_82810: case PCI_DEVICE_ID_INTEL_82810_DC: case PCI_DEVICE_ID_INTEL_82810E_DC: case PCI_DEVICE_ID_INTEL_82865: printf("Error: This northbridge does not have PCIEXBAR.\n"); return 1; default: printf("Error: Dumping PCIEXBAR on this northbridge is not (yet) supported.\n"); return 1; } if (!(pciexbar_reg & (1 << 0))) { printf("PCIEXBAR register is disabled.\n"); return 0; } switch ((pciexbar_reg >> 1) & 3) { case 0: // 256MB pciexbar_phys = pciexbar_reg & (0xffULL << 28); max_busses = 256; break; case 1: // 128M pciexbar_phys = pciexbar_reg & (0x1ffULL << 27); max_busses = 128; break; case 2: // 64M pciexbar_phys = pciexbar_reg & (0x3ffULL << 26); max_busses = 64; break; default: // RSVD printf("Undefined address base. Bailing out.\n"); return 1; } printf("PCIEXBAR: 0x%08" PRIx64 "\n", pciexbar_phys); pciexbar = map_physical(pciexbar_phys, (max_busses * 1024 * 1024)); if (pciexbar == NULL) { perror("Error mapping PCIEXBAR"); exit(1); } for (bus = 0; bus < max_busses; bus++) { for (dev = 0; dev < 32; dev++) { for (fn = 0; fn < 8; fn++) { devbase = (bus * 1024 * 1024) + (dev * 32 * 1024) + (fn * 4 * 1024); if (read16(pciexbar + devbase) == 0xffff) continue; /* This is a heuristics. Anyone got a better check? */ if( (read32(pciexbar + devbase + 256) == 0xffffffff) && (read32(pciexbar + devbase + 512) == 0xffffffff) ) { #if DEBUG printf("Skipped non-PCIe device %02x:%02x.%01x\n", bus, dev, fn); #endif continue; } printf("\nPCIe %02x:%02x.%01x extended config space:", bus, dev, fn); for (i = 0; i < 4096; i++) { if((i % 0x10) == 0) printf("\n%04x:", i); printf(" %02x", *(pciexbar+devbase+i)); } printf("\n"); } } } unmap_physical((void *)pciexbar, (max_busses * 1024 * 1024)); return 0; }