/* ifdtool - dump Intel Firmware Descriptor information */ /* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include #include "ifdtool.h" #ifndef O_BINARY #define O_BINARY 0 #endif /** * PTR_IN_RANGE - examine whether a pointer falls in [base, base + limit) * @param ptr: the non-void* pointer to a single arbitrary-sized object. * @param base: base address represented with char* type. * @param limit: upper limit of the legal address. * */ #define PTR_IN_RANGE(ptr, base, limit) \ ((const char *)(ptr) >= (base) && \ (const char *)&(ptr)[1] <= (base) + (limit)) static int ifd_version; static int chipset; static unsigned int max_regions = 0; static int selected_chip = 0; static int platform = -1; static const struct region_name region_names[MAX_REGIONS] = { { "Flash Descriptor", "fd", "flashregion_0_flashdescriptor.bin", "SI_DESC" }, { "BIOS", "bios", "flashregion_1_bios.bin", "SI_BIOS" }, { "Intel ME", "me", "flashregion_2_intel_me.bin", "SI_ME" }, { "GbE", "gbe", "flashregion_3_gbe.bin", "SI_GBE" }, { "Platform Data", "pd", "flashregion_4_platform_data.bin", "SI_PDR" }, { "Reserved", "res1", "flashregion_5_reserved.bin", NULL }, { "Reserved", "res2", "flashregion_6_reserved.bin", NULL }, { "Reserved", "res3", "flashregion_7_reserved.bin", NULL }, { "EC", "ec", "flashregion_8_ec.bin", "SI_EC" }, }; /* port from flashrom */ static const char *const ich_chipset_names[] = { "Unknown ICH", "ICH", "ICH2345", "ICH6", "SCH U", "Atom E6xx", "Atom S1220 S1240 S1260", "ICH7", "ICH8", "ICH9", "ICH10", "Unknown PCH", "5 series Ibex Peak", "6 series Cougar Point", "7 series Panther Point", "8 series Lynx Point", "Baytrail", "8 series Lynx Point LP", "8 series Wellsburg", "9 series Wildcat Point", "9 series Wildcat Point LP", "Gemini Lake: N5xxx, J5xxx, N4xxx, J4xxx", "100/200 series Sunrise Point", "300 series Cannon Point/ 400 series Ice Point", "500 series Tiger Point/ 600 series Alder Point", "C620 series Lewisburg", NULL }; static fdbar_t *find_fd(char *image, int size) { int i, found = 0; /* Scan for FD signature */ for (i = 0; i < (size - 4); i += 4) { if (*(uint32_t *) (image + i) == 0x0FF0A55A) { found = 1; break; // signature found. } } if (!found) { printf("No Flash Descriptor found in this image\n"); return NULL; } fdbar_t *fdb = (fdbar_t *) (image + i); return PTR_IN_RANGE(fdb, image, size) ? fdb : NULL; } static char *find_flumap(char *image, int size) { /* The upper map is located in the word before the 256B-long OEM section * at the end of the 4kB-long flash descriptor. In the official * documentation this is defined as FDBAR + 0xEFC. However, starting * with B-Step of Ibex Peak (5 series) the signature (and thus FDBAR) * has moved 16 bytes back to offset 0x10 of the image. Although * official documentation still maintains the offset relative to FDBAR * this is wrong and a simple fixed offset from the start of the image * works. */ char *flumap = image + 4096 - 256 - 4; return PTR_IN_RANGE(flumap, image, size) ? flumap : NULL; } static fcba_t *find_fcba(char *image, int size) { fdbar_t *fdb = find_fd(image, size); if (!fdb) return NULL; fcba_t *fcba = (fcba_t *) (image + ((fdb->flmap0 & 0xff) << 4)); return PTR_IN_RANGE(fcba, image, size) ? fcba : NULL; } static fmba_t *find_fmba(char *image, int size) { fdbar_t *fdb = find_fd(image, size); if (!fdb) return NULL; fmba_t *fmba = (fmba_t *) (image + ((fdb->flmap1 & 0xff) << 4)); return PTR_IN_RANGE(fmba, image, size) ? fmba : NULL; } static frba_t *find_frba(char *image, int size) { fdbar_t *fdb = find_fd(image, size); if (!fdb) return NULL; frba_t *frba = (frba_t *) (image + (((fdb->flmap0 >> 16) & 0xff) << 4)); return PTR_IN_RANGE(frba, image, size) ? frba : NULL; } static fpsba_t *find_fpsba(char *image, int size) { fdbar_t *fdb = find_fd(image, size); if (!fdb) return NULL; fpsba_t *fpsba = (fpsba_t *) (image + (((fdb->flmap1 >> 16) & 0xff) << 4)); int SSL = ((fdb->flmap1 >> 24) & 0xff) * sizeof(uint32_t); if ((((char *)fpsba) + SSL) >= (image + size)) return NULL; return fpsba; } static fmsba_t *find_fmsba(char *image, int size) { fdbar_t *fdb = find_fd(image, size); if (!fdb) return NULL; fmsba_t *fmsba = (fmsba_t *) (image + ((fdb->flmap2 & 0xff) << 4)); return PTR_IN_RANGE(fmsba, image, size) ? fmsba : NULL; } static enum ich_chipset guess_ifd_2_chipset(const fpsba_t *fpsba) { uint32_t pchstrp_22 = fpsba->pchstrp[22]; uint32_t pchstrp_23 = fpsba->pchstrp[23]; /* Offset 0x5B is the last PCH descriptor record */ if (pchstrp_23 == 0xFFFFFFFF) return CHIPSET_N_J_SERIES; /* Offset 0x58 is PCH descriptor record is reserved */ if (pchstrp_22 == 0x0) return CHIPSET_300_400_SERIES_CANNON_ICE_POINT; /* Offset 0x58 bit [2:0] is reserved 0x4 and 0x5a bit [7:0] is reserved 0x58 */ if (((pchstrp_22 & 0x07) == 0x4) && ((pchstrp_22 & 0xFF0000) >> 16 == 0x58)) return CHIPSET_500_600_SERIES_TIGER_ALDER_POINT; return CHIPSET_PCH_UNKNOWN; } /* port from flashrom */ static enum ich_chipset guess_ich_chipset(const fdbar_t *fdb, const fpsba_t *fpsba) { uint32_t iccriba = (fdb->flmap2 >> 16) & 0xff; uint32_t msl = (fdb->flmap2 >> 8) & 0xff; uint32_t isl = (fdb->flmap1 >> 24); uint32_t nm = (fdb->flmap1 >> 8) & 0x7; int temp_chipset; /* Check for IFD2 chipset type */ temp_chipset = guess_ifd_2_chipset(fpsba); if (temp_chipset != CHIPSET_PCH_UNKNOWN) return temp_chipset; /* Rest for IFD1 chipset type */ if (iccriba == 0x00) { if (msl == 0 && isl <= 2) return CHIPSET_ICH8; else if (isl <= 2) return CHIPSET_ICH9; else if (isl <= 10) return CHIPSET_ICH10; else if (isl <= 16) return CHIPSET_5_SERIES_IBEX_PEAK; printf("Peculiar firmware descriptor, assuming Ibex Peak compatibility.\n"); return CHIPSET_5_SERIES_IBEX_PEAK; } else if (iccriba < 0x31 && (fdb->flmap2 & 0xff) < 0x30) { if (msl == 0 && isl <= 17) return CHIPSET_BAYTRAIL; else if (msl <= 1 && isl <= 18) return CHIPSET_6_SERIES_COUGAR_POINT; else if (msl <= 1 && isl <= 21) return CHIPSET_8_SERIES_LYNX_POINT; printf("Peculiar firmware descriptor, assuming Wildcat Point compatibility.\n"); return CHIPSET_9_SERIES_WILDCAT_POINT; } else if (nm == 6) { return CHIPSET_C620_SERIES_LEWISBURG; } else { return CHIPSET_100_200_SERIES_SUNRISE_POINT; } } /* * Some newer platforms have re-defined the FCBA field that was used to * distinguish IFD v1 v/s v2. Define a list of platforms that we know do not * have the required FCBA field, but are IFD v2 and return true if current * platform is one of them. */ static int is_platform_ifd_2(void) { static const int ifd_2_platforms[] = { PLATFORM_GLK, PLATFORM_CNL, PLATFORM_ICL, PLATFORM_TGL, PLATFORM_JSL, PLATFORM_EHL, PLATFORM_ADL, }; unsigned int i; for (i = 0; i < ARRAY_SIZE(ifd_2_platforms); i++) { if (platform == ifd_2_platforms[i]) return 1; } return 0; } /* * There is no version field in the descriptor so to determine * if this is a new descriptor format we check the hardcoded SPI * read frequency to see if it is fixed at 20MHz or 17MHz. */ static int get_ifd_version_from_fcba(char *image, int size) { int read_freq; const fcba_t *fcba = find_fcba(image, size); const fdbar_t *fdb = find_fd(image, size); const fpsba_t *fpsba = find_fpsba(image, size); if (!fcba || !fdb || !fpsba) exit(EXIT_FAILURE); chipset = guess_ich_chipset(fdb, fpsba); /* TODO: port ifd_version and max_regions * against guess_ich_chipset() */ read_freq = (fcba->flcomp >> 17) & 7; switch (read_freq) { case SPI_FREQUENCY_20MHZ: return IFD_VERSION_1; case SPI_FREQUENCY_17MHZ: case SPI_FREQUENCY_50MHZ_30MHZ: return IFD_VERSION_2; default: fprintf(stderr, "Unknown descriptor version: %d\n", read_freq); exit(EXIT_FAILURE); } } static void check_ifd_version(char *image, int size) { if (is_platform_ifd_2()) ifd_version = IFD_VERSION_2; else ifd_version = get_ifd_version_from_fcba(image, size); if (ifd_version == IFD_VERSION_1) max_regions = MAX_REGIONS_OLD; else max_regions = MAX_REGIONS; } static region_t get_region(const frba_t *frba, unsigned int region_type) { int base_mask; int limit_mask; uint32_t flreg; region_t region; if (ifd_version >= IFD_VERSION_2) base_mask = 0x7fff; else base_mask = 0xfff; limit_mask = base_mask << 16; if (region_type >= max_regions) { fprintf(stderr, "Invalid region type %d.\n", region_type); exit (EXIT_FAILURE); } flreg = frba->flreg[region_type]; region.base = (flreg & base_mask) << 12; region.limit = ((flreg & limit_mask) >> 4) | 0xfff; region.size = region.limit - region.base + 1; if (region.size < 0) region.size = 0; return region; } static void set_region(frba_t *frba, unsigned int region_type, const region_t *region) { if (region_type >= max_regions) { fprintf(stderr, "Invalid region type %u.\n", region_type); exit (EXIT_FAILURE); } frba->flreg[region_type] = (((region->limit >> 12) & 0x7fff) << 16) | ((region->base >> 12) & 0x7fff); } static const char *region_name(unsigned int region_type) { if (region_type >= max_regions) { fprintf(stderr, "Invalid region type.\n"); exit (EXIT_FAILURE); } return region_names[region_type].pretty; } static const char *region_name_short(unsigned int region_type) { if (region_type >= max_regions) { fprintf(stderr, "Invalid region type.\n"); exit (EXIT_FAILURE); } return region_names[region_type].terse; } static int region_num(const char *name) { unsigned int i; for (i = 0; i < max_regions; i++) { if (strcasecmp(name, region_names[i].pretty) == 0) return i; if (strcasecmp(name, region_names[i].terse) == 0) return i; } return -1; } static const char *region_filename(unsigned int region_type) { if (region_type >= max_regions) { fprintf(stderr, "Invalid region type %d.\n", region_type); exit (EXIT_FAILURE); } return region_names[region_type].filename; } static void dump_region(unsigned int num, const frba_t *frba) { region_t region = get_region(frba, num); printf(" Flash Region %d (%s): %08x - %08x %s\n", num, region_name(num), region.base, region.limit, region.size < 1 ? "(unused)" : ""); } static void dump_region_layout(char *buf, size_t bufsize, unsigned int num, const frba_t *frba) { region_t region = get_region(frba, num); snprintf(buf, bufsize, "%08x:%08x %s\n", region.base, region.limit, region_name_short(num)); } static void dump_frba(const frba_t *frba) { unsigned int i; region_t region; printf("Found Region Section\n"); for (i = 0; i < max_regions; i++) { region = get_region(frba, i); /* Skip unused & reserved Flash Region */ if (region.size < 1 && !strcmp(region_name(i), "Reserved")) continue; printf("FLREG%u: 0x%08x\n", i, frba->flreg[i]); dump_region(i, frba); } } static void dump_frba_layout(const frba_t *frba, const char *layout_fname) { char buf[LAYOUT_LINELEN]; size_t bufsize = LAYOUT_LINELEN; unsigned int i; int layout_fd = open(layout_fname, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); if (layout_fd == -1) { perror("Could not open file"); exit(EXIT_FAILURE); } for (i = 0; i < max_regions; i++) { region_t region = get_region(frba, i); /* is region invalid? */ if (region.size < 1) continue; dump_region_layout(buf, bufsize, i, frba); if (write(layout_fd, buf, strlen(buf)) < 0) { perror("Could not write to file"); exit(EXIT_FAILURE); } } close(layout_fd); printf("Wrote layout to %s\n", layout_fname); } static void _decode_spi_frequency(unsigned int freq) { switch (freq) { case SPI_FREQUENCY_20MHZ: printf("20MHz"); break; case SPI_FREQUENCY_33MHZ: printf("33MHz"); break; case SPI_FREQUENCY_48MHZ: printf("48MHz"); break; case SPI_FREQUENCY_50MHZ_30MHZ: switch (ifd_version) { case IFD_VERSION_1: printf("50MHz"); break; case IFD_VERSION_2: printf("30MHz"); break; } break; case SPI_FREQUENCY_17MHZ: printf("17MHz"); break; default: printf("unknown<%x>MHz", freq); } } static void _decode_spi_frequency_500_series(unsigned int freq) { switch (freq) { case SPI_FREQUENCY_100MHZ: printf("100MHz"); break; case SPI_FREQUENCY_50MHZ: printf("50MHz"); break; case SPI_FREQUENCY_500SERIES_33MHZ: printf("33MHz"); break; case SPI_FREQUENCY_25MHZ: printf("25MHz"); break; case SPI_FREQUENCY_14MHZ: printf("14MHz"); break; default: printf("unknown<%x>MHz", freq); } } static void decode_spi_frequency(unsigned int freq) { if (chipset == CHIPSET_500_600_SERIES_TIGER_ALDER_POINT) _decode_spi_frequency_500_series(freq); else _decode_spi_frequency(freq); } static void _decode_espi_frequency(unsigned int freq) { switch (freq) { case ESPI_FREQUENCY_20MHZ: printf("20MHz"); break; case ESPI_FREQUENCY_24MHZ: printf("24MHz"); break; case ESPI_FREQUENCY_30MHZ: printf("30MHz"); break; case ESPI_FREQUENCY_48MHZ: printf("48MHz"); break; case ESPI_FREQUENCY_60MHZ: printf("60MHz"); break; case ESPI_FREQUENCY_17MHZ: printf("17MHz"); break; default: printf("unknown<%x>MHz", freq); } } static void _decode_espi_frequency_500_series(unsigned int freq) { switch (freq) { case ESPI_FREQUENCY_500SERIES_20MHZ: printf("20MHz"); break; case ESPI_FREQUENCY_500SERIES_24MHZ: printf("24MHz"); break; case ESPI_FREQUENCY_500SERIES_25MHZ: printf("25MHz"); break; case ESPI_FREQUENCY_500SERIES_48MHZ: printf("48MHz"); break; case ESPI_FREQUENCY_500SERIES_60MHZ: printf("60MHz"); break; default: printf("unknown<%x>MHz", freq); } } static void decode_espi_frequency(unsigned int freq) { if (chipset == CHIPSET_500_600_SERIES_TIGER_ALDER_POINT) _decode_espi_frequency_500_series(freq); else _decode_espi_frequency(freq); } static void decode_component_density(unsigned int density) { switch (density) { case COMPONENT_DENSITY_512KB: printf("512KB"); break; case COMPONENT_DENSITY_1MB: printf("1MB"); break; case COMPONENT_DENSITY_2MB: printf("2MB"); break; case COMPONENT_DENSITY_4MB: printf("4MB"); break; case COMPONENT_DENSITY_8MB: printf("8MB"); break; case COMPONENT_DENSITY_16MB: printf("16MB"); break; case COMPONENT_DENSITY_32MB: printf("32MB"); break; case COMPONENT_DENSITY_64MB: printf("64MB"); break; case COMPONENT_DENSITY_UNUSED: printf("UNUSED"); break; default: printf("unknown<%x>MB", density); } } static int is_platform_with_pch(void) { if (chipset >= CHIPSET_5_SERIES_IBEX_PEAK) return 1; return 0; } /* FLMAP0 register bit 24 onwards are reserved from SPT PCH */ static int is_platform_with_100x_series_pch(void) { if (chipset >= CHIPSET_100_200_SERIES_SUNRISE_POINT && chipset <= CHIPSET_500_600_SERIES_TIGER_ALDER_POINT) return 1; return 0; } static void dump_fcba(const fcba_t *fcba, const fpsba_t *fpsba) { unsigned int freq; printf("\nFound Component Section\n"); printf("FLCOMP 0x%08x\n", fcba->flcomp); printf(" Dual Output Fast Read Support: %ssupported\n", (fcba->flcomp & (1 << 30))?"":"not "); printf(" Read ID/Read Status Clock Frequency: "); decode_spi_frequency((fcba->flcomp >> 27) & 7); printf("\n Write/Erase Clock Frequency: "); decode_spi_frequency((fcba->flcomp >> 24) & 7); printf("\n Fast Read Clock Frequency: "); decode_spi_frequency((fcba->flcomp >> 21) & 7); printf("\n Fast Read Support: %ssupported", (fcba->flcomp & (1 << 20))?"":"not "); if (is_platform_with_100x_series_pch() && chipset != CHIPSET_100_200_SERIES_SUNRISE_POINT) { printf("\n Read eSPI/EC Bus Frequency: "); if (chipset == CHIPSET_500_600_SERIES_TIGER_ALDER_POINT) freq = (fpsba->pchstrp[22] & 0x38) >> 3; else freq = (fcba->flcomp >> 17) & 7; decode_espi_frequency(freq); } else { printf("\n Read Clock Frequency: "); decode_spi_frequency((fcba->flcomp >> 17) & 7); } switch (ifd_version) { case IFD_VERSION_1: printf("\n Component 2 Density: "); decode_component_density((fcba->flcomp >> 3) & 7); printf("\n Component 1 Density: "); decode_component_density(fcba->flcomp & 7); break; case IFD_VERSION_2: printf("\n Component 2 Density: "); decode_component_density((fcba->flcomp >> 4) & 0xf); printf("\n Component 1 Density: "); decode_component_density(fcba->flcomp & 0xf); break; } printf("\n"); printf("FLILL 0x%08x\n", fcba->flill); printf(" Invalid Instruction 3: 0x%02x\n", (fcba->flill >> 24) & 0xff); printf(" Invalid Instruction 2: 0x%02x\n", (fcba->flill >> 16) & 0xff); printf(" Invalid Instruction 1: 0x%02x\n", (fcba->flill >> 8) & 0xff); printf(" Invalid Instruction 0: 0x%02x\n", fcba->flill & 0xff); if (is_platform_with_100x_series_pch()) { printf("FLILL1 0x%08x\n", fcba->flpb); printf(" Invalid Instruction 7: 0x%02x\n", (fcba->flpb >> 24) & 0xff); printf(" Invalid Instruction 6: 0x%02x\n", (fcba->flpb >> 16) & 0xff); printf(" Invalid Instruction 5: 0x%02x\n", (fcba->flpb >> 8) & 0xff); printf(" Invalid Instruction 4: 0x%02x\n", fcba->flpb & 0xff); } else { printf("FLPB 0x%08x\n", fcba->flpb); printf(" Flash Partition Boundary Address: 0x%06x\n\n", (fcba->flpb & 0xfff) << 12); } } static void dump_fpsba(const fdbar_t *fdb, const fpsba_t *fpsba) { unsigned int i; /* SoC Strap Length, aka PSL, aka ISL */ unsigned int SSL = ((fdb->flmap1 >> 24) & 0xff) * sizeof(uint32_t); printf("Found PCH Strap Section\n"); for (i = 0; i < SSL; i++) printf("PCHSTRP%-3u: 0x%08x\n", i, fpsba->pchstrp[i]); if (ifd_version >= IFD_VERSION_2) { printf("HAP bit is %sset\n", fpsba->pchstrp[0] & (1 << 16) ? "" : "not "); } else if (chipset >= CHIPSET_ICH8 && chipset <= CHIPSET_ICH10) { printf("ICH_MeDisable bit is %sset\n", fpsba->pchstrp[0] & 1 ? "" : "not "); } else { printf("AltMeDisable bit is %sset\n", fpsba->pchstrp[10] & (1 << 7) ? "" : "not "); } printf("\n"); } static void decode_flmstr(uint32_t flmstr) { int wr_shift, rd_shift; if (ifd_version >= IFD_VERSION_2) { wr_shift = FLMSTR_WR_SHIFT_V2; rd_shift = FLMSTR_RD_SHIFT_V2; } else { wr_shift = FLMSTR_WR_SHIFT_V1; rd_shift = FLMSTR_RD_SHIFT_V1; } /* EC region access only available on v2+ */ if (ifd_version >= IFD_VERSION_2) printf(" EC Region Write Access: %s\n", (flmstr & (1 << (wr_shift + 8))) ? "enabled" : "disabled"); printf(" Platform Data Region Write Access: %s\n", (flmstr & (1 << (wr_shift + 4))) ? "enabled" : "disabled"); printf(" GbE Region Write Access: %s\n", (flmstr & (1 << (wr_shift + 3))) ? "enabled" : "disabled"); printf(" Intel ME Region Write Access: %s\n", (flmstr & (1 << (wr_shift + 2))) ? "enabled" : "disabled"); printf(" Host CPU/BIOS Region Write Access: %s\n", (flmstr & (1 << (wr_shift + 1))) ? "enabled" : "disabled"); printf(" Flash Descriptor Write Access: %s\n", (flmstr & (1 << wr_shift)) ? "enabled" : "disabled"); if (ifd_version >= IFD_VERSION_2) printf(" EC Region Read Access: %s\n", (flmstr & (1 << (rd_shift + 8))) ? "enabled" : "disabled"); printf(" Platform Data Region Read Access: %s\n", (flmstr & (1 << (rd_shift + 4))) ? "enabled" : "disabled"); printf(" GbE Region Read Access: %s\n", (flmstr & (1 << (rd_shift + 3))) ? "enabled" : "disabled"); printf(" Intel ME Region Read Access: %s\n", (flmstr & (1 << (rd_shift + 2))) ? "enabled" : "disabled"); printf(" Host CPU/BIOS Region Read Access: %s\n", (flmstr & (1 << (rd_shift + 1))) ? "enabled" : "disabled"); printf(" Flash Descriptor Read Access: %s\n", (flmstr & (1 << rd_shift)) ? "enabled" : "disabled"); /* Requestor ID doesn't exist for ifd 2 */ if (ifd_version < IFD_VERSION_2) printf(" Requester ID: 0x%04x\n\n", flmstr & 0xffff); } static void dump_fmba(const fmba_t *fmba) { printf("Found Master Section\n"); printf("FLMSTR1: 0x%08x (Host CPU/BIOS)\n", fmba->flmstr1); decode_flmstr(fmba->flmstr1); printf("FLMSTR2: 0x%08x (Intel ME)\n", fmba->flmstr2); decode_flmstr(fmba->flmstr2); printf("FLMSTR3: 0x%08x (GbE)\n", fmba->flmstr3); decode_flmstr(fmba->flmstr3); if (ifd_version >= IFD_VERSION_2) { printf("FLMSTR5: 0x%08x (EC)\n", fmba->flmstr5); decode_flmstr(fmba->flmstr5); } } static void dump_fmsba(const fmsba_t *fmsba) { unsigned int i; printf("Found Processor Strap Section\n"); for (i = 0; i < ARRAY_SIZE(fmsba->data); i++) printf("????: 0x%08x\n", fmsba->data[i]); if (chipset >= CHIPSET_ICH8 && chipset <= CHIPSET_ICH10) { printf("MCH_MeDisable bit is %sset\n", fmsba->data[0] & 1 ? "" : "not "); printf("MCH_AltMeDisable bit is %sset\n", fmsba->data[0] & (1 << 7) ? "" : "not "); } } static void dump_jid(uint32_t jid) { printf(" SPI Component Vendor ID: 0x%02x\n", jid & 0xff); printf(" SPI Component Device ID 0: 0x%02x\n", (jid >> 8) & 0xff); printf(" SPI Component Device ID 1: 0x%02x\n", (jid >> 16) & 0xff); } static void dump_vscc(uint32_t vscc) { printf(" Lower Erase Opcode: 0x%02x\n", vscc >> 24); printf(" Lower Write Enable on Write Status: 0x%02x\n", vscc & (1 << 20) ? 0x06 : 0x50); printf(" Lower Write Status Required: %s\n", vscc & (1 << 19) ? "Yes" : "No"); printf(" Lower Write Granularity: %d bytes\n", vscc & (1 << 18) ? 64 : 1); printf(" Lower Block / Sector Erase Size: "); switch ((vscc >> 16) & 0x3) { case 0: printf("256 Byte\n"); break; case 1: printf("4KB\n"); break; case 2: printf("8KB\n"); break; case 3: printf("64KB\n"); break; } printf(" Upper Erase Opcode: 0x%02x\n", (vscc >> 8) & 0xff); printf(" Upper Write Enable on Write Status: 0x%02x\n", vscc & (1 << 4) ? 0x06 : 0x50); printf(" Upper Write Status Required: %s\n", vscc & (1 << 3) ? "Yes" : "No"); printf(" Upper Write Granularity: %d bytes\n", vscc & (1 << 2) ? 64 : 1); printf(" Upper Block / Sector Erase Size: "); switch (vscc & 0x3) { case 0: printf("256 Byte\n"); break; case 1: printf("4KB\n"); break; case 2: printf("8KB\n"); break; case 3: printf("64KB\n"); break; } } static void dump_vtba(const vtba_t *vtba, int vtl) { int i; int max_len = sizeof(vtba_t)/sizeof(vscc_t); int num = (vtl >> 1) < max_len ? (vtl >> 1) : max_len; printf("ME VSCC table:\n"); for (i = 0; i < num; i++) { printf(" JID%d: 0x%08x\n", i, vtba->entry[i].jid); dump_jid(vtba->entry[i].jid); printf(" VSCC%d: 0x%08x\n", i, vtba->entry[i].vscc); dump_vscc(vtba->entry[i].vscc); } printf("\n"); } static void dump_oem(const uint8_t *oem) { int i, j; printf("OEM Section:\n"); for (i = 0; i < 4; i++) { printf("%02x:", i << 4); for (j = 0; j < 16; j++) printf(" %02x", oem[(i<<4)+j]); printf ("\n"); } printf ("\n"); } static void dump_fd(char *image, int size) { const fdbar_t *fdb = find_fd(image, size); if (!fdb) exit(EXIT_FAILURE); printf("%s", is_platform_with_pch() ? "PCH" : "ICH"); printf(" Revision: %s\n", ich_chipset_names[chipset]); printf("FLMAP0: 0x%08x\n", fdb->flmap0); if (!is_platform_with_100x_series_pch()) printf(" NR: %d\n", (fdb->flmap0 >> 24) & 7); printf(" FRBA: 0x%x\n", ((fdb->flmap0 >> 16) & 0xff) << 4); printf(" NC: %d\n", ((fdb->flmap0 >> 8) & 3) + 1); printf(" FCBA: 0x%x\n", ((fdb->flmap0) & 0xff) << 4); printf("FLMAP1: 0x%08x\n", fdb->flmap1); printf(" %s: ", is_platform_with_100x_series_pch() ? "PSL" : "ISL"); printf("0x%02x\n", (fdb->flmap1 >> 24) & 0xff); printf(" FPSBA: 0x%x\n", ((fdb->flmap1 >> 16) & 0xff) << 4); printf(" NM: %d\n", (fdb->flmap1 >> 8) & 3); printf(" FMBA: 0x%x\n", ((fdb->flmap1) & 0xff) << 4); if (!is_platform_with_100x_series_pch()) { printf("FLMAP2: 0x%08x\n", fdb->flmap2); printf(" PSL: 0x%04x\n", (fdb->flmap2 >> 8) & 0xffff); printf(" FMSBA: 0x%x\n", ((fdb->flmap2) & 0xff) << 4); } if (chipset == CHIPSET_500_600_SERIES_TIGER_ALDER_POINT) { printf("FLMAP3: 0x%08x\n", fdb->flmap3); printf(" Minor Revision ID: 0x%04x\n", (fdb->flmap3 >> 14) & 0x7f); printf(" Major Revision ID: 0x%04x\n", (fdb->flmap3 >> 21) & 0x7ff); } char *flumap = find_flumap(image, size); uint32_t flumap1 = *(uint32_t *)flumap; printf("FLUMAP1: 0x%08x\n", flumap1); printf(" Intel ME VSCC Table Length (VTL): %d\n", (flumap1 >> 8) & 0xff); printf(" Intel ME VSCC Table Base Address (VTBA): 0x%06x\n\n", (flumap1 & 0xff) << 4); dump_vtba((vtba_t *) (image + ((flumap1 & 0xff) << 4)), (flumap1 >> 8) & 0xff); dump_oem((const uint8_t *)image + 0xf00); const frba_t *frba = find_frba(image, size); const fcba_t *fcba = find_fcba(image, size); const fpsba_t *fpsba = find_fpsba(image, size); const fmba_t *fmba = find_fmba(image, size); const fmsba_t *fmsba = find_fmsba(image, size); if (frba && fcba && fpsba && fmba && fmsba) { dump_frba(frba); dump_fcba(fcba, fpsba); dump_fpsba(fdb, fpsba); dump_fmba(fmba); dump_fmsba(fmsba); } else { printf("FD is corrupted!\n"); } } static void dump_layout(char *image, int size, const char *layout_fname) { const frba_t *frba = find_frba(image, size); if (!frba) exit(EXIT_FAILURE); dump_frba_layout(frba, layout_fname); } static void write_regions(char *image, int size) { unsigned int i; const frba_t *frba = find_frba(image, size); if (!frba) exit(EXIT_FAILURE); for (i = 0; i < max_regions; i++) { region_t region = get_region(frba, i); dump_region(i, frba); if (region.size > 0) { int region_fd; region_fd = open(region_filename(i), O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); if (region_fd < 0) { perror("Error while trying to open file"); exit(EXIT_FAILURE); } if (write(region_fd, image + region.base, region.size) != region.size) perror("Error while writing"); close(region_fd); } } } static void validate_layout(char *image, int size) { uint i, errors = 0; struct fmap *fmap; long int fmap_loc = fmap_find((uint8_t *)image, size); const frba_t *frba = find_frba(image, size); if (fmap_loc < 0 || !frba) exit(EXIT_FAILURE); fmap = (struct fmap *)(image + fmap_loc); for (i = 0; i < max_regions; i++) { if (region_names[i].fmapname == NULL) continue; region_t region = get_region(frba, i); if (region.size == 0) continue; const struct fmap_area *area = fmap_find_area(fmap, region_names[i].fmapname); if (!area) continue; if ((uint)region.base != area->offset || (uint)region.size != area->size) { printf("Region mismatch between %s and %s\n", region_names[i].terse, area->name); printf(" Descriptor region %s:\n", region_names[i].terse); printf(" offset: 0x%08x\n", region.base); printf(" length: 0x%08x\n", region.size); printf(" FMAP area %s:\n", area->name); printf(" offset: 0x%08x\n", area->offset); printf(" length: 0x%08x\n", area->size); errors++; } } if (errors > 0) exit(EXIT_FAILURE); } static void write_image(const char *filename, char *image, int size) { int new_fd; printf("Writing new image to %s\n", filename); // Now write out new image new_fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); if (new_fd < 0) { perror("Error while trying to open file"); exit(EXIT_FAILURE); } if (write(new_fd, image, size) != size) perror("Error while writing"); close(new_fd); } static void set_spi_frequency(const char *filename, char *image, int size, enum spi_frequency freq) { fcba_t *fcba = find_fcba(image, size); if (!fcba) exit(EXIT_FAILURE); /* clear bits 21-29 */ fcba->flcomp &= ~0x3fe00000; /* Read ID and Read Status Clock Frequency */ fcba->flcomp |= freq << 27; /* Write and Erase Clock Frequency */ fcba->flcomp |= freq << 24; /* Fast Read Clock Frequency */ fcba->flcomp |= freq << 21; write_image(filename, image, size); } static void set_em100_mode(const char *filename, char *image, int size) { fcba_t *fcba = find_fcba(image, size); if (!fcba) exit(EXIT_FAILURE); int freq; switch (ifd_version) { case IFD_VERSION_1: freq = SPI_FREQUENCY_20MHZ; break; case IFD_VERSION_2: freq = SPI_FREQUENCY_17MHZ; break; default: freq = SPI_FREQUENCY_17MHZ; break; } fcba->flcomp &= ~(1 << 30); set_spi_frequency(filename, image, size, freq); } static void set_chipdensity(const char *filename, char *image, int size, unsigned int density) { fcba_t *fcba = find_fcba(image, size); uint8_t mask, chip2_offset; if (!fcba) exit(EXIT_FAILURE); printf("Setting chip density to "); decode_component_density(density); printf("\n"); switch (ifd_version) { case IFD_VERSION_1: /* fail if selected density is not supported by this version */ if ( (density == COMPONENT_DENSITY_32MB) || (density == COMPONENT_DENSITY_64MB) || (density == COMPONENT_DENSITY_UNUSED) ) { printf("error: Selected density not supported in IFD version 1.\n"); exit(EXIT_FAILURE); } mask = 0x7; chip2_offset = 3; break; case IFD_VERSION_2: mask = 0xf; chip2_offset = 4; break; default: printf("error: Unknown IFD version\n"); exit(EXIT_FAILURE); break; } /* clear chip density for corresponding chip */ switch (selected_chip) { case 1: fcba->flcomp &= ~mask; break; case 2: fcba->flcomp &= ~(mask << chip2_offset); break; default: /*both chips*/ fcba->flcomp &= ~(mask | (mask << chip2_offset)); break; } /* set the new density */ if (selected_chip == 1 || selected_chip == 0) fcba->flcomp |= (density); /* first chip */ if (selected_chip == 2 || selected_chip == 0) fcba->flcomp |= (density << chip2_offset); /* second chip */ write_image(filename, image, size); } static int check_region(const frba_t *frba, unsigned int region_type) { region_t region; if (!frba) return 0; region = get_region(frba, region_type); return !!((region.base < region.limit) && (region.size > 0)); } static void lock_descriptor(const char *filename, char *image, int size) { int wr_shift, rd_shift; fmba_t *fmba = find_fmba(image, size); const frba_t *frba = find_frba(image, size); if (!fmba) exit(EXIT_FAILURE); if (ifd_version >= IFD_VERSION_2) { wr_shift = FLMSTR_WR_SHIFT_V2; rd_shift = FLMSTR_RD_SHIFT_V2; /* Clear non-reserved bits */ fmba->flmstr1 &= 0xff; fmba->flmstr2 &= 0xff; fmba->flmstr3 &= 0xff; fmba->flmstr5 &= 0xff; } else { wr_shift = FLMSTR_WR_SHIFT_V1; rd_shift = FLMSTR_RD_SHIFT_V1; fmba->flmstr1 = 0; fmba->flmstr2 = 0; /* Requestor ID */ fmba->flmstr3 = 0x118; } switch (platform) { case PLATFORM_APL: case PLATFORM_GLK: /* CPU/BIOS can read descriptor and BIOS */ fmba->flmstr1 |= 0x3 << rd_shift; /* CPU/BIOS can write BIOS */ fmba->flmstr1 |= 0x2 << wr_shift; /* TXE can read descriptor, BIOS and Device Expansion */ fmba->flmstr2 |= 0x23 << rd_shift; /* TXE can only write Device Expansion */ fmba->flmstr2 |= 0x20 << wr_shift; break; case PLATFORM_CNL: case PLATFORM_ICL: case PLATFORM_SKLKBL: case PLATFORM_TGL: case PLATFORM_JSL: case PLATFORM_EHL: case PLATFORM_ADL: /* CPU/BIOS can read descriptor and BIOS. */ fmba->flmstr1 |= (1 << REGION_DESC) << rd_shift; fmba->flmstr1 |= (1 << REGION_BIOS) << rd_shift; /* CPU/BIOS can write BIOS. */ fmba->flmstr1 |= (1 << REGION_BIOS) << wr_shift; /* ME can read descriptor and ME. */ fmba->flmstr2 |= (1 << REGION_DESC) << rd_shift; fmba->flmstr2 |= (1 << REGION_ME) << rd_shift; /* ME can write ME. */ fmba->flmstr2 |= (1 << REGION_ME) << wr_shift; if (check_region(frba, REGION_GBE)) { /* BIOS can read/write GbE. */ fmba->flmstr1 |= (1 << REGION_GBE) << rd_shift; fmba->flmstr1 |= (1 << REGION_GBE) << wr_shift; /* ME can read GbE. */ fmba->flmstr2 |= (1 << REGION_GBE) << rd_shift; /* GbE can read descriptor and read/write GbE.. */ fmba->flmstr3 |= (1 << REGION_DESC) << rd_shift; fmba->flmstr3 |= (1 << REGION_GBE) << rd_shift; fmba->flmstr3 |= (1 << REGION_GBE) << wr_shift; } if (check_region(frba, REGION_PDR)) { /* BIOS can read/write PDR. */ fmba->flmstr1 |= (1 << REGION_PDR) << rd_shift; fmba->flmstr1 |= (1 << REGION_PDR) << wr_shift; } if (check_region(frba, REGION_EC)) { /* BIOS can read EC. */ fmba->flmstr1 |= (1 << REGION_EC) << rd_shift; /* EC can read descriptor and read/write EC. */ fmba->flmstr5 |= (1 << REGION_DESC) << rd_shift; fmba->flmstr5 |= (1 << REGION_EC) << rd_shift; fmba->flmstr5 |= (1 << REGION_EC) << wr_shift; } break; default: /* CPU/BIOS can read descriptor and BIOS. */ fmba->flmstr1 |= (1 << REGION_DESC) << rd_shift; fmba->flmstr1 |= (1 << REGION_BIOS) << rd_shift; /* CPU/BIOS can write BIOS. */ fmba->flmstr1 |= (1 << REGION_BIOS) << wr_shift; /* ME can read descriptor and ME. */ fmba->flmstr2 |= (1 << REGION_DESC) << rd_shift; fmba->flmstr2 |= (1 << REGION_ME) << rd_shift; /* ME can write ME. */ fmba->flmstr2 |= (1 << REGION_ME) << wr_shift; if (check_region(frba, REGION_GBE)) { /* BIOS can read GbE. */ fmba->flmstr1 |= (1 << REGION_GBE) << rd_shift; /* BIOS can write GbE. */ fmba->flmstr1 |= (1 << REGION_GBE) << wr_shift; /* ME can read GbE. */ fmba->flmstr2 |= (1 << REGION_GBE) << rd_shift; /* ME can write GbE. */ fmba->flmstr2 |= (1 << REGION_GBE) << wr_shift; /* GbE can write GbE. */ fmba->flmstr3 |= (1 << REGION_GBE) << rd_shift; /* GbE can read GbE. */ fmba->flmstr3 |= (1 << REGION_GBE) << wr_shift; } break; } write_image(filename, image, size); } static void enable_cpu_read_me(const char *filename, char *image, int size) { int rd_shift; fmba_t *fmba = find_fmba(image, size); if (!fmba) exit(EXIT_FAILURE); if (ifd_version >= IFD_VERSION_2) rd_shift = FLMSTR_RD_SHIFT_V2; else rd_shift = FLMSTR_RD_SHIFT_V1; /* CPU/BIOS can read ME. */ fmba->flmstr1 |= (1 << REGION_ME) << rd_shift; write_image(filename, image, size); } static void unlock_descriptor(const char *filename, char *image, int size) { fmba_t *fmba = find_fmba(image, size); if (!fmba) exit(EXIT_FAILURE); if (ifd_version >= IFD_VERSION_2) { /* Access bits for each region are read: 19:8 write: 31:20 */ fmba->flmstr1 = 0xffffff00 | (fmba->flmstr1 & 0xff); fmba->flmstr2 = 0xffffff00 | (fmba->flmstr2 & 0xff); fmba->flmstr3 = 0xffffff00 | (fmba->flmstr3 & 0xff); fmba->flmstr5 = 0xffffff00 | (fmba->flmstr5 & 0xff); } else { fmba->flmstr1 = 0xffff0000; fmba->flmstr2 = 0xffff0000; /* Keep chipset specific Requester ID */ fmba->flmstr3 = 0x08080000 | (fmba->flmstr3 & 0xffff); } write_image(filename, image, size); } static void set_pchstrap(fpsba_t *fpsba, const fdbar_t *fdb, const int strap, const unsigned int value) { if (!fpsba || !fdb) { fprintf(stderr, "Internal error\n"); exit(EXIT_FAILURE); } /* SoC Strap Length, aka PSL, aka ISL */ int SSL = ((fdb->flmap1 >> 24) & 0xff) * sizeof(uint32_t); if (strap >= SSL) { fprintf(stderr, "Strap index %d out of range (max: %d)\n", strap, SSL); exit(EXIT_FAILURE); } fpsba->pchstrp[strap] = value; } /* Set the AltMeDisable (or HAP for >= IFD_VERSION_2) */ static void fpsba_set_altmedisable(fpsba_t *fpsba, fmsba_t *fmsba, bool altmedisable) { if (ifd_version >= IFD_VERSION_2) { printf("%sting the HAP bit to %s Intel ME...\n", altmedisable?"Set":"Unset", altmedisable?"disable":"enable"); if (altmedisable) fpsba->pchstrp[0] |= (1 << 16); else fpsba->pchstrp[0] &= ~(1 << 16); } else { if (chipset >= CHIPSET_ICH8 && chipset <= CHIPSET_ICH10) { printf("%sting the ICH_MeDisable, MCH_MeDisable, " "and MCH_AltMeDisable to %s Intel ME...\n", altmedisable?"Set":"Unset", altmedisable?"disable":"enable"); if (altmedisable) { /* MCH_MeDisable */ fmsba->data[0] |= 1; /* MCH_AltMeDisable */ fmsba->data[0] |= (1 << 7); /* ICH_MeDisable */ fpsba->pchstrp[0] |= 1; } else { fmsba->data[0] &= ~1; fmsba->data[0] &= ~(1 << 7); fpsba->pchstrp[0] &= ~1; } } else { printf("%sting the AltMeDisable to %s Intel ME...\n", altmedisable?"Set":"Unset", altmedisable?"disable":"enable"); if (altmedisable) fpsba->pchstrp[10] |= (1 << 7); else fpsba->pchstrp[10] &= ~(1 << 7); } } } static void inject_region(const char *filename, char *image, int size, unsigned int region_type, const char *region_fname) { frba_t *frba = find_frba(image, size); if (!frba) exit(EXIT_FAILURE); region_t region = get_region(frba, region_type); if (region.size <= 0xfff) { fprintf(stderr, "Region %s is disabled in target. Not injecting.\n", region_name(region_type)); exit(EXIT_FAILURE); } int region_fd = open(region_fname, O_RDONLY | O_BINARY); if (region_fd == -1) { perror("Could not open file"); exit(EXIT_FAILURE); } struct stat buf; if (fstat(region_fd, &buf) == -1) { perror("Could not stat file"); exit(EXIT_FAILURE); } int region_size = buf.st_size; printf("File %s is %d bytes\n", region_fname, region_size); if ( (region_size > region.size) || ((region_type != 1) && (region_size > region.size))) { fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x)" " bytes. Not injecting.\n", region_name(region_type), region.size, region.size, region_size, region_size); exit(EXIT_FAILURE); } int offset = 0; if ((region_type == 1) && (region_size < region.size)) { fprintf(stderr, "Region %s is %d(0x%x) bytes. File is %d(0x%x)" " bytes. Padding before injecting.\n", region_name(region_type), region.size, region.size, region_size, region_size); offset = region.size - region_size; memset(image + region.base, 0xff, offset); } if (size < region.base + offset + region_size) { fprintf(stderr, "Output file is too small. (%d < %d)\n", size, region.base + offset + region_size); exit(EXIT_FAILURE); } if (read(region_fd, image + region.base + offset, region_size) != region_size) { perror("Could not read file"); exit(EXIT_FAILURE); } close(region_fd); printf("Adding %s as the %s section of %s\n", region_fname, region_name(region_type), filename); write_image(filename, image, size); } static unsigned int next_pow2(unsigned int x) { unsigned int y = 1; if (x == 0) return 0; while (y <= x) y = y << 1; return y; } /** * Determine if two memory regions overlap. * * @param r1, r2 Memory regions to compare. * @return 0 if the two regions are separate * @return 1 if the two regions overlap */ static int regions_collide(const region_t *r1, const region_t *r2) { if ((r1->size == 0) || (r2->size == 0)) return 0; /* r1 should be either completely below or completely above r2 */ return !(r1->limit < r2->base || r1->base > r2->limit); } static void new_layout(const char *filename, char *image, int size, const char *layout_fname) { FILE *romlayout; char tempstr[256]; char layout_region_name[256]; unsigned int i, j; int region_number; region_t current_regions[MAX_REGIONS]; region_t new_regions[MAX_REGIONS]; int new_extent = 0; char *new_image; /* load current descriptor map and regions */ frba_t *frba = find_frba(image, size); if (!frba) exit(EXIT_FAILURE); for (i = 0; i < max_regions; i++) { current_regions[i] = get_region(frba, i); new_regions[i] = get_region(frba, i); } /* read new layout */ romlayout = fopen(layout_fname, "r"); if (!romlayout) { perror("Could not read layout file.\n"); exit(EXIT_FAILURE); } while (!feof(romlayout)) { char *tstr1, *tstr2; if (2 != fscanf(romlayout, "%255s %255s\n", tempstr, layout_region_name)) continue; region_number = region_num(layout_region_name); if (region_number < 0) continue; tstr1 = strtok(tempstr, ":"); tstr2 = strtok(NULL, ":"); if (!tstr1 || !tstr2) { fprintf(stderr, "Could not parse layout file.\n"); exit(EXIT_FAILURE); } new_regions[region_number].base = strtol(tstr1, (char **)NULL, 16); new_regions[region_number].limit = strtol(tstr2, (char **)NULL, 16); new_regions[region_number].size = new_regions[region_number].limit - new_regions[region_number].base + 1; if (new_regions[region_number].size < 0) new_regions[region_number].size = 0; } fclose(romlayout); /* check new layout */ for (i = 0; i < max_regions; i++) { if (new_regions[i].size == 0) continue; if (new_regions[i].size < current_regions[i].size) { printf("DANGER: Region %s is shrinking.\n", region_name(i)); printf(" The region will be truncated to fit.\n"); printf(" This may result in an unusable image.\n"); } for (j = i + 1; j < max_regions; j++) { if (regions_collide(&new_regions[i], &new_regions[j])) { fprintf(stderr, "Regions would overlap.\n"); exit(EXIT_FAILURE); } } /* detect if the image size should grow */ if (new_extent < new_regions[i].limit) new_extent = new_regions[i].limit; } /* check if the image is actually a Flash Descriptor region */ if (size == new_regions[0].size) { printf("The image is a single Flash Descriptor:\n"); printf(" Only the descriptor will be modified\n"); new_extent = size; } else { new_extent = next_pow2(new_extent - 1); if (new_extent != size) { printf("The image has changed in size.\n"); printf("The old image is %d bytes.\n", size); printf("The new image is %d bytes.\n", new_extent); } } /* copy regions to a new image */ new_image = malloc(new_extent); memset(new_image, 0xff, new_extent); for (i = 0; i < max_regions; i++) { int copy_size = new_regions[i].size; int offset_current = 0, offset_new = 0; const region_t *current = ¤t_regions[i]; const region_t *new = &new_regions[i]; if (new->size == 0) continue; if (new->size > current->size) { /* copy from the end of the current region */ copy_size = current->size; if (i == REGION_BIOS) offset_new = new->size - current->size; } if ((i == REGION_BIOS) && (new->size < current->size)) { /* copy BIOS region to the end of the new region */ offset_current = current->size - new->size; } if (size < current->base + offset_current + copy_size) { printf("Skip descriptor %d (%s) (region missing in the old image)\n", i, region_name(i)); continue; }; printf("Copy Descriptor %d (%s) (%d bytes)\n", i, region_name(i), copy_size); printf(" from %08x+%08x:%08x (%10d)\n", current->base, offset_current, current->limit, current->size); printf(" to %08x+%08x:%08x (%10d)\n", new->base, offset_new, new->limit, new->size); memcpy(new_image + new->base + offset_new, image + current->base + offset_current, copy_size); } /* update new descriptor regions */ frba = find_frba(new_image, new_extent); if (!frba) exit(EXIT_FAILURE); printf("Modify Flash Descriptor regions\n"); for (i = 1; i < max_regions; i++) set_region(frba, i, &new_regions[i]); write_image(filename, new_image, new_extent); free(new_image); } static void print_version(void) { printf("ifdtool v%s -- ", IFDTOOL_VERSION); printf("Copyright (C) 2011 Google Inc.\n\n"); printf ("This program is free software: you can redistribute it and/or modify\n" "it under the terms of the GNU General Public License as published by\n" "the Free Software Foundation, version 2 of the License.\n\n" "This program is distributed in the hope that it will be useful,\n" "but WITHOUT ANY WARRANTY; without even the implied warranty of\n" "MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n" "GNU General Public License for more details.\n\n"); } static void print_usage(const char *name) { printf("usage: %s [-vhdix?] \n", name); printf("\n" " -d | --dump: dump intel firmware descriptor\n" " -f | --layout dump regions into a flashrom layout file\n" " -t | --validate Validate that the firmware descriptor layout matches the fmap layout\n" " -x | --extract: extract intel fd modules\n" " -i | --inject : inject file into region \n" " -n | --newlayout update regions using a flashrom layout file\n" " -O | --output output filename\n" " -s | --spifreq <17|20|30|33|48|50> set the SPI frequency\n" " -D | --density <512|1|2|4|8|16|32|64> set chip density (512 in KByte, others in MByte)\n" " -C | --chip <0|1|2> select spi chip on which to operate\n" " can only be used once per run:\n" " 0 - both chips (default), 1 - first chip, 2 - second chip\n" " -e | --em100 set SPI frequency to 20MHz and disable\n" " Dual Output Fast Read Support\n" " -l | --lock Lock firmware descriptor and ME region\n" " -r | --read Enable CPU/BIOS read access for ME region\n" " -u | --unlock Unlock firmware descriptor and ME region\n" " -M | --altmedisable <0|1> Set the MeDisable and AltMeDisable (or HAP for skylake or newer platform)\n" " bits to disable ME\n" " -p | --platform Add platform-specific quirks\n" " adl - Alder Lake\n" " aplk - Apollo Lake\n" " cnl - Cannon Lake\n" " ehl - Elkhart Lake\n" " glk - Gemini Lake\n" " icl - Ice Lake\n" " jsl - Jasper Lake\n" " sklkbl - Sky Lake/Kaby Lake\n" " tgl - Tiger Lake\n" " -S | --setpchstrap Write a PCH strap\n" " -V | --newvalue The new value to write into PCH strap specified by -S\n" " -v | --version: print the version\n" " -h | --help: print this help\n\n" " is one of Descriptor, BIOS, ME, GbE, Platform, res1, res2, res3\n" "\n"); } int main(int argc, char *argv[]) { int opt, option_index = 0; int mode_dump = 0, mode_extract = 0, mode_inject = 0, mode_spifreq = 0; int mode_em100 = 0, mode_locked = 0, mode_unlocked = 0, mode_validate = 0; int mode_layout = 0, mode_newlayout = 0, mode_density = 0, mode_setstrap = 0; int mode_read = 0, mode_altmedisable = 0, altmedisable = 0; char *region_type_string = NULL, *region_fname = NULL; const char *layout_fname = NULL; char *new_filename = NULL; int region_type = -1, inputfreq = 0; unsigned int value = 0; unsigned int pchstrap = 0; unsigned int new_density = 0; enum spi_frequency spifreq = SPI_FREQUENCY_20MHZ; static const struct option long_options[] = { {"dump", 0, NULL, 'd'}, {"layout", 1, NULL, 'f'}, {"extract", 0, NULL, 'x'}, {"inject", 1, NULL, 'i'}, {"newlayout", 1, NULL, 'n'}, {"output", 1, NULL, 'O'}, {"spifreq", 1, NULL, 's'}, {"density", 1, NULL, 'D'}, {"chip", 1, NULL, 'C'}, {"altmedisable", 1, NULL, 'M'}, {"em100", 0, NULL, 'e'}, {"lock", 0, NULL, 'l'}, {"read", 0, NULL, 'r'}, {"unlock", 0, NULL, 'u'}, {"version", 0, NULL, 'v'}, {"help", 0, NULL, 'h'}, {"platform", 0, NULL, 'p'}, {"validate", 0, NULL, 't'}, {"setpchstrap", 1, NULL, 'S'}, {"newvalue", 1, NULL, 'V'}, {0, 0, 0, 0} }; while ((opt = getopt_long(argc, argv, "S:V:df:D:C:M:xi:n:O:s:p:elruvth?", long_options, &option_index)) != EOF) { switch (opt) { case 'd': mode_dump = 1; break; case 'S': mode_setstrap = 1; pchstrap = strtoul(optarg, NULL, 0); break; case 'V': value = strtoul(optarg, NULL, 0); break; case 'f': mode_layout = 1; layout_fname = strdup(optarg); if (!layout_fname) { fprintf(stderr, "No layout file specified\n"); print_usage(argv[0]); exit(EXIT_FAILURE); } break; case 'x': mode_extract = 1; break; case 'i': // separate type and file name region_type_string = strdup(optarg); region_fname = strchr(region_type_string, ':'); if (!region_fname) { print_usage(argv[0]); exit(EXIT_FAILURE); } region_fname[0] = '\0'; region_fname++; // Descriptor, BIOS, ME, GbE, Platform // valid type? if (!strcasecmp("Descriptor", region_type_string)) region_type = 0; else if (!strcasecmp("BIOS", region_type_string)) region_type = 1; else if (!strcasecmp("ME", region_type_string)) region_type = 2; else if (!strcasecmp("GbE", region_type_string)) region_type = 3; else if (!strcasecmp("Platform", region_type_string)) region_type = 4; else if (!strcasecmp("res1", region_type_string)) region_type = 5; else if (!strcasecmp("res2", region_type_string)) region_type = 6; else if (!strcasecmp("res3", region_type_string)) region_type = 7; else if (!strcasecmp("EC", region_type_string)) region_type = 8; if (region_type == -1) { fprintf(stderr, "No such region type: '%s'\n\n", region_type_string); print_usage(argv[0]); exit(EXIT_FAILURE); } mode_inject = 1; break; case 'n': mode_newlayout = 1; layout_fname = strdup(optarg); if (!layout_fname) { fprintf(stderr, "No layout file specified\n"); print_usage(argv[0]); exit(EXIT_FAILURE); } break; case 'O': new_filename = strdup(optarg); if (!new_filename) { fprintf(stderr, "No output filename specified\n"); print_usage(argv[0]); exit(EXIT_FAILURE); } break; case 'D': mode_density = 1; new_density = strtoul(optarg, NULL, 0); switch (new_density) { case 512: new_density = COMPONENT_DENSITY_512KB; break; case 1: new_density = COMPONENT_DENSITY_1MB; break; case 2: new_density = COMPONENT_DENSITY_2MB; break; case 4: new_density = COMPONENT_DENSITY_4MB; break; case 8: new_density = COMPONENT_DENSITY_8MB; break; case 16: new_density = COMPONENT_DENSITY_16MB; break; case 32: new_density = COMPONENT_DENSITY_32MB; break; case 64: new_density = COMPONENT_DENSITY_64MB; break; case 0: new_density = COMPONENT_DENSITY_UNUSED; break; default: printf("error: Unknown density\n"); print_usage(argv[0]); exit(EXIT_FAILURE); } break; case 'C': selected_chip = strtol(optarg, NULL, 0); if (selected_chip > 2) { fprintf(stderr, "error: Invalid chip selection\n"); print_usage(argv[0]); exit(EXIT_FAILURE); } break; case 'M': mode_altmedisable = 1; altmedisable = strtol(optarg, NULL, 0); if (altmedisable > 1) { fprintf(stderr, "error: Illegal value\n"); print_usage(argv[0]); exit(EXIT_FAILURE); } break; case 's': // Parse the requested SPI frequency inputfreq = strtol(optarg, NULL, 0); switch (inputfreq) { case 17: spifreq = SPI_FREQUENCY_17MHZ; break; case 20: spifreq = SPI_FREQUENCY_20MHZ; break; case 30: spifreq = SPI_FREQUENCY_50MHZ_30MHZ; break; case 33: spifreq = SPI_FREQUENCY_33MHZ; break; case 48: spifreq = SPI_FREQUENCY_48MHZ; break; case 50: spifreq = SPI_FREQUENCY_50MHZ_30MHZ; break; default: fprintf(stderr, "Invalid SPI Frequency: %d\n", inputfreq); print_usage(argv[0]); exit(EXIT_FAILURE); } mode_spifreq = 1; break; case 'e': mode_em100 = 1; break; case 'l': mode_locked = 1; if (mode_unlocked == 1) { fprintf(stderr, "Locking/Unlocking FD and ME are mutually exclusive\n"); exit(EXIT_FAILURE); } break; case 'r': mode_read = 1; break; case 'u': mode_unlocked = 1; if (mode_locked == 1) { fprintf(stderr, "Locking/Unlocking FD and ME are mutually exclusive\n"); exit(EXIT_FAILURE); } break; case 'p': if (!strcmp(optarg, "aplk")) { platform = PLATFORM_APL; } else if (!strcmp(optarg, "cnl")) { platform = PLATFORM_CNL; } else if (!strcmp(optarg, "ehl")) { platform = PLATFORM_EHL; } else if (!strcmp(optarg, "glk")) { platform = PLATFORM_GLK; } else if (!strcmp(optarg, "icl")) { platform = PLATFORM_ICL; } else if (!strcmp(optarg, "jsl")) { platform = PLATFORM_JSL; } else if (!strcmp(optarg, "sklkbl")) { platform = PLATFORM_SKLKBL; } else if (!strcmp(optarg, "tgl")) { platform = PLATFORM_TGL; } else if (!strcmp(optarg, "adl")) { platform = PLATFORM_ADL; } else { fprintf(stderr, "Unknown platform: %s\n", optarg); exit(EXIT_FAILURE); } fprintf(stderr, "Platform is: %s\n", optarg); break; case 't': mode_validate = 1; break; case 'v': print_version(); exit(EXIT_SUCCESS); break; case 'h': case '?': default: print_usage(argv[0]); exit(EXIT_SUCCESS); break; } } if ((mode_dump + mode_layout + mode_extract + mode_inject + mode_setstrap + mode_newlayout + (mode_spifreq | mode_em100 | mode_unlocked | mode_locked) + mode_altmedisable + mode_validate) > 1) { fprintf(stderr, "You may not specify more than one mode.\n\n"); print_usage(argv[0]); exit(EXIT_FAILURE); } if ((mode_dump + mode_layout + mode_extract + mode_inject + mode_setstrap + mode_newlayout + mode_spifreq + mode_em100 + mode_locked + mode_unlocked + mode_density + mode_altmedisable + mode_validate) == 0) { fprintf(stderr, "You need to specify a mode.\n\n"); print_usage(argv[0]); exit(EXIT_FAILURE); } if (optind + 1 != argc) { fprintf(stderr, "You need to specify a file.\n\n"); print_usage(argv[0]); exit(EXIT_FAILURE); } char *filename = argv[optind]; int bios_fd = open(filename, O_RDONLY | O_BINARY); if (bios_fd == -1) { perror("Could not open file"); exit(EXIT_FAILURE); } struct stat buf; if (fstat(bios_fd, &buf) == -1) { perror("Could not stat file"); exit(EXIT_FAILURE); } int size = buf.st_size; printf("File %s is %d bytes\n", filename, size); char *image = malloc(size); if (!image) { printf("Out of memory.\n"); exit(EXIT_FAILURE); } if (read(bios_fd, image, size) != size) { perror("Could not read file"); exit(EXIT_FAILURE); } close(bios_fd); // generate new filename if (new_filename == NULL) { new_filename = (char *) malloc((strlen(filename) + 5) * sizeof(char)); if (!new_filename) { printf("Out of memory.\n"); exit(EXIT_FAILURE); } // - 5: leave room for ".new\0" strcpy(new_filename, filename); strcat(new_filename, ".new"); } check_ifd_version(image, size); if (mode_dump) dump_fd(image, size); if (mode_layout) dump_layout(image, size, layout_fname); if (mode_extract) write_regions(image, size); if (mode_validate) validate_layout(image, size); if (mode_inject) inject_region(new_filename, image, size, region_type, region_fname); if (mode_newlayout) new_layout(new_filename, image, size, layout_fname); if (mode_spifreq) set_spi_frequency(new_filename, image, size, spifreq); if (mode_density) set_chipdensity(new_filename, image, size, new_density); if (mode_em100) set_em100_mode(new_filename, image, size); if (mode_locked) lock_descriptor(new_filename, image, size); if (mode_read) enable_cpu_read_me(new_filename, image, size); if (mode_unlocked) unlock_descriptor(new_filename, image, size); if (mode_setstrap) { fpsba_t *fpsba = find_fpsba(image, size); const fdbar_t *fdb = find_fd(image, size); set_pchstrap(fpsba, fdb, pchstrap, value); write_image(new_filename, image, size); } if (mode_altmedisable) { fpsba_t *fpsba = find_fpsba(image, size); fmsba_t *fmsba = find_fmsba(image, size); fpsba_set_altmedisable(fpsba, fmsba, altmedisable); write_image(new_filename, image, size); } free(new_filename); free(image); return 0; }