/* * This file is part of the flashrom project. * * Copyright (C) 2008 Stefan Wildemann * Copyright (C) 2008 Claus Gindhart * Copyright (C) 2008 Dominik Geyer * Copyright (C) 2008 coresystems GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ /* * This module is designed for supporting the devices * ST M25P40 * ST M25P80 * ST M25P16 * ST M25P32 already tested * ST M25P64 * AT 25DF321 already tested * */ #include #include #include #include #include #include "flash.h" #include "spi.h" /* ICH9 controller register definition */ #define ICH9_REG_FADDR 0x08 /* 32 Bits */ #define ICH9_REG_FDATA0 0x10 /* 64 Bytes */ #define ICH9_REG_SSFS 0x90 /* 08 Bits */ #define SSFS_SCIP 0x00000001 #define SSFS_CDS 0x00000004 #define SSFS_FCERR 0x00000008 #define SSFS_AEL 0x00000010 #define ICH9_REG_SSFC 0x91 /* 24 Bits */ #define SSFC_SCGO 0x00000200 #define SSFC_ACS 0x00000400 #define SSFC_SPOP 0x00000800 #define SSFC_COP 0x00001000 #define SSFC_DBC 0x00010000 #define SSFC_DS 0x00400000 #define SSFC_SME 0x00800000 #define SSFC_SCF 0x01000000 #define SSFC_SCF_20MHZ 0x00000000 #define SSFC_SCF_33MHZ 0x01000000 #define ICH9_REG_PREOP 0x94 /* 16 Bits */ #define ICH9_REG_OPTYPE 0x96 /* 16 Bits */ #define ICH9_REG_OPMENU 0x98 /* 64 Bits */ // ICH9R SPI commands #define SPI_OPCODE_TYPE_READ_NO_ADDRESS 0 #define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS 1 #define SPI_OPCODE_TYPE_READ_WITH_ADDRESS 2 #define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS 3 // ICH7 registers #define ICH7_REG_SPIS 0x00 /* 16 Bits */ #define SPIS_SCIP 0x00000001 #define SPIS_CDS 0x00000004 #define SPIS_FCERR 0x00000008 /* VIA SPI is compatible with ICH7, but maxdata to transfer is 16 bytes. DATA byte count on ICH7 is 8:13, on VIA 8:11 bit 12 is port select CS0 CS1 bit 13 is FAST READ enable bit 7 is used with fast read and one shot controls CS de-assert? */ #define ICH7_REG_SPIC 0x02 /* 16 Bits */ #define SPIC_SCGO 0x0002 #define SPIC_ACS 0x0004 #define SPIC_SPOP 0x0008 #define SPIC_DS 0x4000 #define ICH7_REG_SPIA 0x04 /* 32 Bits */ #define ICH7_REG_SPID0 0x08 /* 64 Bytes */ #define ICH7_REG_PREOP 0x54 /* 16 Bits */ #define ICH7_REG_OPTYPE 0x56 /* 16 Bits */ #define ICH7_REG_OPMENU 0x58 /* 64 Bits */ /* ICH SPI configuration lock-down. May be set during chipset enabling. */ int ichspi_lock = 0; typedef struct _OPCODE { uint8_t opcode; //This commands spi opcode uint8_t spi_type; //This commands spi type uint8_t atomic; //Use preop: (0: none, 1: preop0, 2: preop1 } OPCODE; /* Opcode definition: * Preop 1: Write Enable * Preop 2: Write Status register enable * * OP 0: Write address * OP 1: Read Address * OP 2: ERASE block * OP 3: Read Status register * OP 4: Read ID * OP 5: Write Status register * OP 6: chip private (read JDEC id) * OP 7: Chip erase */ typedef struct _OPCODES { uint8_t preop[2]; OPCODE opcode[8]; } OPCODES; static OPCODES *curopcodes = NULL; /* HW access functions */ static inline uint32_t REGREAD32(int X) { volatile uint32_t regval; regval = *(volatile uint32_t *)((uint8_t *) spibar + X); return regval; } static inline uint16_t REGREAD16(int X) { volatile uint16_t regval; regval = *(volatile uint16_t *)((uint8_t *) spibar + X); return regval; } #define REGWRITE32(X,Y) (*(uint32_t *)((uint8_t *)spibar+X)=Y) #define REGWRITE16(X,Y) (*(uint16_t *)((uint8_t *)spibar+X)=Y) #define REGWRITE8(X,Y) (*(uint8_t *)((uint8_t *)spibar+X)=Y) /* Common SPI functions */ static inline int find_opcode(OPCODES *op, uint8_t opcode); static inline int find_preop(OPCODES *op, uint8_t preop); static int generate_opcodes(struct flashchip * flash, OPCODES * op); static int program_opcodes(OPCODES * op); int ich_check_opcodes(struct flashchip * flash); static int run_opcode(OPCODE op, uint32_t offset, uint8_t datalength, uint8_t * data); static int ich_spi_read_page(struct flashchip *flash, uint8_t * buf, int offset, int maxdata); static int ich_spi_write_page(struct flashchip *flash, uint8_t * bytes, int offset, int maxdata); OPCODES O_ST_M25P = { { JEDEC_WREN, 0}, { {JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 1}, // Write Byte {JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data {JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 1}, // Erase Sector {JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg {JEDEC_RES, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Resume Deep Power-Down {JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 1}, // Write Status Register {JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID {JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 1}, // Bulk erase } }; OPCODES O_EXISTING = {}; static inline int find_opcode(OPCODES *op, uint8_t opcode) { int a; for (a = 0; a < 8; a++) { if (op->opcode[a].opcode == opcode) return a; } return -1; } static inline int find_preop(OPCODES *op, uint8_t preop) { int a; for (a = 0; a < 2; a++) { if (op->preop[a] == preop) return a; } return -1; } static int generate_opcodes(struct flashchip * flash, OPCODES * op) { int a, b, i; uint16_t preop, optype; uint32_t opmenu[2]; struct preop_opcode_pair *pair; if (op == NULL) { printf_debug("\n%s: null OPCODES pointer!\n", __FUNCTION__); return -1; } switch (flashbus) { case BUS_TYPE_ICH7_SPI: case BUS_TYPE_VIA_SPI: preop = REGREAD16(ICH7_REG_PREOP); optype = REGREAD16(ICH7_REG_OPTYPE); opmenu[0] = REGREAD32(ICH7_REG_OPMENU); opmenu[1] = REGREAD32(ICH7_REG_OPMENU + 4); break; case BUS_TYPE_ICH9_SPI: preop = REGREAD16(ICH9_REG_PREOP); optype = REGREAD16(ICH9_REG_OPTYPE); opmenu[0] = REGREAD32(ICH9_REG_OPMENU); opmenu[1] = REGREAD32(ICH9_REG_OPMENU + 4); break; default: printf_debug("%s: unsupported chipset\n", __FUNCTION__); return -1; } op->preop[0] = (uint8_t) preop; op->preop[1] = (uint8_t) (preop >> 8); for (a = 0; a < 8; a++) { op->opcode[a].spi_type = (uint8_t) (optype & 0x3); optype >>= 2; } for (a = 0; a < 4; a++) { op->opcode[a].opcode = (uint8_t) (opmenu[0] & 0xff); opmenu[0] >>= 8; } for (a = 4; a < 8; a++) { op->opcode[a].opcode = (uint8_t) (opmenu[1] & 0xff); opmenu[1] >>= 8; } /* atomic (link opcode with required pre-op) */ for (a = 4; a < 8; a++) op->opcode[a].atomic = 0; pair = flash->preop_opcode_pairs; if (pair) { for (i = 0; pair[i].opcode; i++) { a = find_opcode(op, pair[i].opcode); b = find_preop(op, pair[i].preop); if ((a != -1) && (b != -1)) op->opcode[a].atomic = (uint8_t) ++b; } } return 0; } int program_opcodes(OPCODES * op) { uint8_t a; uint16_t preop, optype; uint32_t opmenu[2]; /* Program Prefix Opcodes */ preop = 0; /* 0:7 Prefix Opcode 1 */ preop = (op->preop[0]); /* 8:16 Prefix Opcode 2 */ preop |= ((uint16_t) op->preop[1]) << 8; /* Program Opcode Types 0 - 7 */ optype = 0; for (a = 0; a < 8; a++) { optype |= ((uint16_t) op->opcode[a].spi_type) << (a * 2); } /* Program Allowable Opcodes 0 - 3 */ opmenu[0] = 0; for (a = 0; a < 4; a++) { opmenu[0] |= ((uint32_t) op->opcode[a].opcode) << (a * 8); } /*Program Allowable Opcodes 4 - 7 */ opmenu[1] = 0; for (a = 4; a < 8; a++) { opmenu[1] |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8); } switch (flashbus) { case BUS_TYPE_ICH7_SPI: case BUS_TYPE_VIA_SPI: REGWRITE16(ICH7_REG_PREOP, preop); REGWRITE16(ICH7_REG_OPTYPE, optype); REGWRITE32(ICH7_REG_OPMENU, opmenu[0]); REGWRITE32(ICH7_REG_OPMENU + 4, opmenu[1]); break; case BUS_TYPE_ICH9_SPI: REGWRITE16(ICH9_REG_PREOP, preop); REGWRITE16(ICH9_REG_OPTYPE, optype); REGWRITE32(ICH9_REG_OPMENU, opmenu[0]); REGWRITE32(ICH9_REG_OPMENU + 4, opmenu[1]); break; default: printf_debug("%s: unsupported chipset\n", __FUNCTION__); return -1; } return 0; } /* This function generates OPCODES from or programs OPCODES to the chipset * according to its SPI configuration lock. * * It should be called in the ICH7/ICH9/VIA part of each operation driver(i.e. * probe, read, erase, write, etc.) before any command is sent. */ int ich_check_opcodes(struct flashchip * flash) { int rc = 0; OPCODES *curopcodes_done; if (curopcodes) return 0; if (ichspi_lock) { printf_debug("Generating OPCODES... "); curopcodes_done = &O_EXISTING; rc = generate_opcodes(flash, curopcodes_done); } else { printf_debug("Programming OPCODES... "); curopcodes_done = &O_ST_M25P; rc = program_opcodes(curopcodes_done); } if (rc) { curopcodes = NULL; printf_debug("failed\n"); return 1; } else { curopcodes = curopcodes_done; printf_debug("done\n"); return 0; } } static int ich7_run_opcode(OPCODE op, uint32_t offset, uint8_t datalength, uint8_t * data, int maxdata) { int write_cmd = 0; int timeout; uint32_t temp32 = 0; uint16_t temp16; uint32_t a; uint64_t opmenu; int opcode_index; /* Is it a write command? */ if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) || (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) { write_cmd = 1; } /* Programm Offset in Flash into FADDR */ REGWRITE32(ICH7_REG_SPIA, (offset & 0x00FFFFFF)); /* SPI addresses are 24 BIT only */ /* Program data into FDATA0 to N */ if (write_cmd && (datalength != 0)) { temp32 = 0; for (a = 0; a < datalength; a++) { if ((a % 4) == 0) { temp32 = 0; } temp32 |= ((uint32_t) data[a]) << ((a % 4) * 8); if ((a % 4) == 3) { REGWRITE32(ICH7_REG_SPID0 + (a - (a % 4)), temp32); } } if (((a - 1) % 4) != 3) { REGWRITE32(ICH7_REG_SPID0 + ((a - 1) - ((a - 1) % 4)), temp32); } } /* Assemble SPIS */ temp16 = 0; /* clear error status registers */ temp16 |= (SPIS_CDS + SPIS_FCERR); REGWRITE16(ICH7_REG_SPIS, temp16); /* Assemble SPIC */ temp16 = 0; if (datalength != 0) { temp16 |= SPIC_DS; temp16 |= ((uint32_t) ((datalength - 1) & (maxdata - 1))) << 8; } /* Select opcode */ opmenu = REGREAD32(ICH7_REG_OPMENU); opmenu |= ((uint64_t)REGREAD32(ICH7_REG_OPMENU + 4)) << 32; for (opcode_index=0; opcode_index<8; opcode_index++) { if((opmenu & 0xff) == op.opcode) { break; } opmenu >>= 8; } if (opcode_index == 8) { printf_debug("Opcode %x not found.\n", op.opcode); return 1; } temp16 |= ((uint16_t) (opcode_index & 0x07)) << 4; /* Handle Atomic */ if (op.atomic != 0) { /* Select atomic command */ temp16 |= SPIC_ACS; /* Select prefix opcode */ if ((op.atomic - 1) == 1) { /*Select prefix opcode 2 */ temp16 |= SPIC_SPOP; } } /* Start */ temp16 |= SPIC_SCGO; /* write it */ REGWRITE16(ICH7_REG_SPIC, temp16); /* wait for cycle complete */ timeout = 1000 * 60; // 60s is a looong timeout. while (((REGREAD16(ICH7_REG_SPIS) & SPIS_CDS) == 0) && --timeout) { myusec_delay(1000); } if (!timeout) { printf_debug("timeout\n"); } if ((REGREAD16(ICH7_REG_SPIS) & SPIS_FCERR) != 0) { printf_debug("Transaction error!\n"); return 1; } if ((!write_cmd) && (datalength != 0)) { for (a = 0; a < datalength; a++) { if ((a % 4) == 0) { temp32 = REGREAD32(ICH7_REG_SPID0 + (a)); } data[a] = (temp32 & (((uint32_t) 0xff) << ((a % 4) * 8))) >> ((a % 4) * 8); } } return 0; } static int ich9_run_opcode(OPCODE op, uint32_t offset, uint8_t datalength, uint8_t * data) { int write_cmd = 0; int timeout; uint32_t temp32; uint32_t a; uint64_t opmenu; int opcode_index; /* Is it a write command? */ if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) || (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) { write_cmd = 1; } /* Programm Offset in Flash into FADDR */ REGWRITE32(ICH9_REG_FADDR, (offset & 0x00FFFFFF)); /* SPI addresses are 24 BIT only */ /* Program data into FDATA0 to N */ if (write_cmd && (datalength != 0)) { temp32 = 0; for (a = 0; a < datalength; a++) { if ((a % 4) == 0) { temp32 = 0; } temp32 |= ((uint32_t) data[a]) << ((a % 4) * 8); if ((a % 4) == 3) { REGWRITE32(ICH9_REG_FDATA0 + (a - (a % 4)), temp32); } } if (((a - 1) % 4) != 3) { REGWRITE32(ICH9_REG_FDATA0 + ((a - 1) - ((a - 1) % 4)), temp32); } } /* Assemble SSFS + SSFC */ temp32 = 0; /* clear error status registers */ temp32 |= (SSFS_CDS + SSFS_FCERR); /* USE 20 MhZ */ temp32 |= SSFC_SCF_20MHZ; if (datalength != 0) { uint32_t datatemp; temp32 |= SSFC_DS; datatemp = ((uint32_t) ((datalength - 1) & 0x3f)) << (8 + 8); temp32 |= datatemp; } /* Select opcode */ opmenu = REGREAD32(ICH9_REG_OPMENU); opmenu |= ((uint64_t)REGREAD32(ICH9_REG_OPMENU + 4)) << 32; for (opcode_index=0; opcode_index<8; opcode_index++) { if((opmenu & 0xff) == op.opcode) { break; } opmenu >>= 8; } if (opcode_index == 8) { printf_debug("Opcode %x not found.\n", op.opcode); return 1; } temp32 |= ((uint32_t) (opcode_index & 0x07)) << (8 + 4); /* Handle Atomic */ if (op.atomic != 0) { /* Select atomic command */ temp32 |= SSFC_ACS; /* Selct prefix opcode */ if ((op.atomic - 1) == 1) { /*Select prefix opcode 2 */ temp32 |= SSFC_SPOP; } } /* Start */ temp32 |= SSFC_SCGO; /* write it */ REGWRITE32(ICH9_REG_SSFS, temp32); /*wait for cycle complete */ timeout = 1000 * 60; // 60s is a looong timeout. while (((REGREAD32(ICH9_REG_SSFS) & SSFS_CDS) == 0) && --timeout) { myusec_delay(1000); } if (!timeout) { printf_debug("timeout\n"); } if ((REGREAD32(ICH9_REG_SSFS) & SSFS_FCERR) != 0) { printf_debug("Transaction error!\n"); return 1; } if ((!write_cmd) && (datalength != 0)) { for (a = 0; a < datalength; a++) { if ((a % 4) == 0) { temp32 = REGREAD32(ICH9_REG_FDATA0 + (a)); } data[a] = (temp32 & (((uint32_t) 0xff) << ((a % 4) * 8))) >> ((a % 4) * 8); } } return 0; } static int run_opcode(OPCODE op, uint32_t offset, uint8_t datalength, uint8_t * data) { switch (flashbus) { case BUS_TYPE_VIA_SPI: return ich7_run_opcode(op, offset, datalength, data, 16); case BUS_TYPE_ICH7_SPI: return ich7_run_opcode(op, offset, datalength, data, 64); case BUS_TYPE_ICH9_SPI: return ich9_run_opcode(op, offset, datalength, data); default: printf_debug("%s: unsupported chipset\n", __FUNCTION__); } /* If we ever get here, something really weird happened */ return -1; } static int ich_spi_read_page(struct flashchip *flash, uint8_t * buf, int offset, int maxdata) { int page_size = flash->page_size; uint32_t remaining = flash->page_size; int a; printf_debug("ich_spi_read_page: offset=%d, number=%d, buf=%p\n", offset, page_size, buf); for (a = 0; a < page_size; a += maxdata) { if (remaining < maxdata) { if (spi_nbyte_read(offset + (page_size - remaining), &buf[page_size - remaining], remaining)) { printf_debug("Error reading"); return 1; } remaining = 0; } else { if (spi_nbyte_read(offset + (page_size - remaining), &buf[page_size - remaining], maxdata)) { printf_debug("Error reading"); return 1; } remaining -= maxdata; } } return 0; } static int ich_spi_write_page(struct flashchip *flash, uint8_t * bytes, int offset, int maxdata) { int page_size = flash->page_size; uint32_t remaining = page_size; int a; printf_debug("ich_spi_write_page: offset=%d, number=%d, buf=%p\n", offset, page_size, bytes); for (a = 0; a < page_size; a += maxdata) { if (remaining < maxdata) { if (run_opcode (curopcodes->opcode[0], offset + (page_size - remaining), remaining, &bytes[page_size - remaining]) != 0) { printf_debug("Error writing"); return 1; } remaining = 0; } else { if (run_opcode (curopcodes->opcode[0], offset + (page_size - remaining), maxdata, &bytes[page_size - remaining]) != 0) { printf_debug("Error writing"); return 1; } remaining -= maxdata; } } return 0; } int ich_spi_read(struct flashchip *flash, uint8_t * buf) { int i, rc = 0; int total_size = flash->total_size * 1024; int page_size = flash->page_size; int maxdata = 64; if (flashbus == BUS_TYPE_VIA_SPI) { maxdata = 16; } for (i = 0; (i < total_size / page_size) && (rc == 0); i++) { rc = ich_spi_read_page(flash, (void *)(buf + i * page_size), i * page_size, maxdata); } return rc; } int ich_spi_write(struct flashchip *flash, uint8_t * buf) { int i, j, rc = 0; int total_size = flash->total_size * 1024; int page_size = flash->page_size; int erase_size = 64 * 1024; int maxdata = 64; spi_disable_blockprotect(); printf("Programming page: \n"); for (i = 0; i < total_size / erase_size; i++) { /* FIMXE: call the chip-specific spi_block_erase_XX instead. * For this, we need to add a block erase function to * struct flashchip. */ rc = spi_block_erase_d8(flash, i * erase_size); if (rc) { printf("Error erasing block at 0x%x\n", i); break; } if (flashbus == BUS_TYPE_VIA_SPI) maxdata = 16; for (j = 0; j < erase_size / page_size; j++) { ich_spi_write_page(flash, (void *)(buf + (i * erase_size) + (j * page_size)), (i * erase_size) + (j * page_size), maxdata); } } printf("\n"); return rc; } int ich_spi_command(unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr) { int a; int opcode_index = -1; const unsigned char cmd = *writearr; OPCODE *opcode; uint32_t addr = 0; uint8_t *data; int count; /* program opcodes if not already done */ if (curopcodes == NULL) { printf_debug("Programming OPCODES... "); curopcodes = &O_ST_M25P; program_opcodes(curopcodes); printf_debug("done\n"); } /* find cmd in opcodes-table */ for (a = 0; a < 8; a++) { if ((curopcodes->opcode[a]).opcode == cmd) { opcode_index = a; break; } } /* unknown / not programmed command */ if (opcode_index == -1) { printf_debug("Invalid OPCODE 0x%02x\n", cmd); return 1; } opcode = &(curopcodes->opcode[opcode_index]); /* if opcode-type requires an address */ if (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS || opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) { addr = (writearr[1] << 16) | (writearr[2] << 8) | (writearr[3] << 0); } /* translate read/write array/count */ if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) { data = (uint8_t *) (writearr + 1); count = writecnt - 1; } else if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) { data = (uint8_t *) (writearr + 4); count = writecnt - 4; } else { data = (uint8_t *) readarr; count = readcnt; } if (run_opcode(*opcode, addr, count, data) != 0) { printf_debug("run OPCODE 0x%02x failed\n", opcode->opcode); return 1; } return 0; }