/* * CBFS Image Manipulation * * Copyright (C) 2013 The Chromium OS Authors. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA */ #include #include #include #include #include #include "common.h" #include "cbfs_image.h" /* The file name align is not defined in CBFS spec -- only a preference by * (old) cbfstool. */ #define CBFS_FILENAME_ALIGN (16) /* To make CBFS more friendly to ROM, fill -1 (0xFF) instead of zero. */ #define CBFS_CONTENT_DEFAULT_VALUE (-1) /* Type and format */ struct typedesc_t { uint32_t type; const char *name; }; static const struct typedesc_t types_cbfs_entry[] = { {CBFS_COMPONENT_STAGE, "stage"}, {CBFS_COMPONENT_PAYLOAD, "payload"}, {CBFS_COMPONENT_OPTIONROM, "optionrom"}, {CBFS_COMPONENT_BOOTSPLASH, "bootsplash"}, {CBFS_COMPONENT_RAW, "raw"}, {CBFS_COMPONENT_VSA, "vsa"}, {CBFS_COMPONENT_MBI, "mbi"}, {CBFS_COMPONENT_MICROCODE, "microcode"}, {CBFS_COMPONENT_CMOS_DEFAULT, "cmos_default"}, {CBFS_COMPONENT_CMOS_LAYOUT, "cmos_layout"}, {CBFS_COMPONENT_DELETED, "deleted"}, {CBFS_COMPONENT_NULL, "null"}, {0, NULL}, }; static const struct typedesc_t types_cbfs_compression[] = { {CBFS_COMPRESS_NONE, "none"}, {CBFS_COMPRESS_LZMA, "LZMA"}, {0, NULL}, }; static uint32_t align_up(uint32_t value, uint32_t align) { if (value % align) value += align - (value % align); return value; } static uint32_t lookup_type_by_name(const struct typedesc_t *desc, const char *name, uint32_t default_value) { int i; for (i = 0; desc[i].name; i++) if (strcmp(desc[i].name, name) == 0) return desc[i].type; return default_value; } static const char *lookup_name_by_type(const struct typedesc_t *desc, uint32_t type, const char *default_value) { int i; for (i = 0; desc[i].name; i++) if (desc[i].type == type) return desc[i].name; return default_value; } uint32_t get_cbfs_entry_type(const char *name, uint32_t default_value) { return lookup_type_by_name(types_cbfs_entry, name, default_value); } const char *get_cbfs_entry_type_name(uint32_t type) { return lookup_name_by_type(types_cbfs_entry, type, "(unknown)"); } uint32_t get_cbfs_compression(const char *name, uint32_t unknown) { return lookup_type_by_name(types_cbfs_compression, name, unknown); } /* CBFS image */ static int cbfs_calculate_file_header_size(const char *name) { return (sizeof(struct cbfs_file) + align_up(strlen(name) + 1, CBFS_FILENAME_ALIGN)); } static int cbfs_fix_legacy_size(struct cbfs_image *image, char *hdr_loc) { // A bug in old cbfstool may produce extra few bytes (by alignment) and // cause cbfstool to overwrite things after free space -- which is // usually CBFS header on x86. We need to workaround that. struct cbfs_file *entry, *first = NULL, *last = NULL; for (first = entry = cbfs_find_first_entry(image); entry && cbfs_is_valid_entry(image, entry); entry = cbfs_find_next_entry(image, entry)) { last = entry; } if ((char *)first < (char *)hdr_loc && (char *)entry > (char *)hdr_loc) { WARN("CBFS image was created with old cbfstool with size bug. " "Fixing size in last entry...\n"); last->len = htonl(ntohl(last->len) - image->header->align); DEBUG("Last entry has been changed from 0x%x to 0x%x.\n", cbfs_get_entry_addr(image, entry), cbfs_get_entry_addr(image, cbfs_find_next_entry(image, last))); } return 0; } void cbfs_put_header(void *dest, const struct cbfs_header *header) { struct buffer outheader; outheader.data = dest; outheader.size = 0; xdr_be.put32(&outheader, header->magic); xdr_be.put32(&outheader, header->version); xdr_be.put32(&outheader, header->romsize); xdr_be.put32(&outheader, header->bootblocksize); xdr_be.put32(&outheader, header->align); xdr_be.put32(&outheader, header->offset); xdr_be.put32(&outheader, header->architecture); } void cbfs_get_header(struct cbfs_header *header, const void *src) { struct buffer outheader; outheader.data = (void *)src; /* We're not modifying the data */ outheader.size = 0; header->magic = xdr_be.get32(&outheader); header->version = xdr_be.get32(&outheader); header->romsize = xdr_be.get32(&outheader); header->bootblocksize = xdr_be.get32(&outheader); header->align = xdr_be.get32(&outheader); header->offset = xdr_be.get32(&outheader); header->architecture = xdr_be.get32(&outheader); } int cbfs_image_create(struct cbfs_image *image, uint32_t myarch, size_t size, uint32_t align, struct buffer *bootblock, int32_t bootblock_offset, int32_t header_offset, int32_t entries_offset) { struct cbfs_header header; struct cbfs_file *entry; uint32_t cbfs_len; size_t entry_header_len; void *header_loc; DEBUG("cbfs_image_create: bootblock=0x%x+0x%zx, " "header=0x%x+0x%zx, entries_offset=0x%x\n", bootblock_offset, bootblock->size, header_offset, sizeof(header), entries_offset); if (buffer_create(&image->buffer, size, "(new)") != 0) return -1; if ((image->header = malloc(sizeof(*image->header))) == NULL) return -1; memset(image->buffer.data, CBFS_CONTENT_DEFAULT_VALUE, size); // Adjust legcay top-aligned address to ROM offset. if (IS_TOP_ALIGNED_ADDRESS(entries_offset)) entries_offset += (int32_t)size; if (IS_TOP_ALIGNED_ADDRESS(bootblock_offset)) bootblock_offset += (int32_t)size; if (IS_TOP_ALIGNED_ADDRESS(header_offset)) header_offset += (int32_t) size; DEBUG("cbfs_create_image: (real offset) bootblock=0x%x, " "header=0x%x, entries_offset=0x%x\n", bootblock_offset, header_offset, entries_offset); if (align == 0) align = 64; // default align size. // Prepare bootblock if (bootblock_offset + bootblock->size > size) { ERROR("Bootblock (0x%x+0x%zx) exceed ROM size (0x%zx)\n", bootblock_offset, bootblock->size, size); return -1; } if (entries_offset > bootblock_offset && entries_offset < bootblock->size) { ERROR("Bootblock (0x%x+0x%zx) overlap CBFS data (0x%x)\n", bootblock_offset, bootblock->size, entries_offset); return -1; } memcpy(image->buffer.data + bootblock_offset, bootblock->data, bootblock->size); // Prepare header if (header_offset + sizeof(header) > size) { ERROR("Header (0x%x+0x%zx) exceed ROM size (0x%zx)\n", header_offset, sizeof(header), size); return -1; } image->header->magic = CBFS_HEADER_MAGIC; image->header->version = CBFS_HEADER_VERSION; image->header->romsize = size; image->header->bootblocksize = bootblock->size; image->header->align = align; image->header->offset = entries_offset; image->header->architecture = myarch; header_loc = (image->buffer.data + header_offset); cbfs_put_header(header_loc, image->header); // Prepare entries if (align_up(entries_offset, align) != entries_offset) { ERROR("Offset (0x%x) must be aligned to 0x%x.\n", entries_offset, align); return -1; } entry_header_len = cbfs_calculate_file_header_size(""); if (entries_offset + entry_header_len > size) { ERROR("Offset (0x%x+0x%zx) exceed ROM size(0x%zx)\n", entries_offset, entry_header_len, size); return -1; } entry = (struct cbfs_file *)(image->buffer.data + entries_offset); // To calculate available length, find // e = min(bootblock, header, size) where e > entries_offset. cbfs_len = size; if (bootblock_offset > entries_offset && bootblock_offset < cbfs_len) cbfs_len = bootblock_offset; if (header_offset > entries_offset && header_offset < cbfs_len) cbfs_len = header_offset; cbfs_len -= entries_offset + align + entry_header_len; cbfs_create_empty_entry(image, entry, cbfs_len, ""); LOG("Created CBFS image (capacity = %d bytes)\n", cbfs_len); return 0; } int cbfs_image_from_file(struct cbfs_image *image, const char *filename) { void *header_loc; if (buffer_from_file(&image->buffer, filename) != 0) return -1; DEBUG("read_cbfs_image: %s (%zd bytes)\n", image->buffer.name, image->buffer.size); header_loc = cbfs_find_header(image->buffer.data, image->buffer.size); if (!header_loc) { ERROR("%s does not have CBFS master header.\n", filename); cbfs_image_delete(image); return -1; } if ((image->header = malloc(sizeof(*image->header))) == NULL) return -1; cbfs_get_header(image->header, header_loc); cbfs_fix_legacy_size(image, header_loc); return 0; } int cbfs_image_write_file(struct cbfs_image *image, const char *filename) { assert(image && image->buffer.data); return buffer_write_file(&image->buffer, filename); } int cbfs_image_delete(struct cbfs_image *image) { if (image == NULL) return 0; buffer_delete(&image->buffer); image->header = NULL; return 0; } /* Tries to add an entry with its data (CBFS_SUBHEADER) at given offset. */ static int cbfs_add_entry_at(struct cbfs_image *image, struct cbfs_file *entry, uint32_t size, const char *name, uint32_t type, const void *data, uint32_t content_offset) { struct cbfs_file *next = cbfs_find_next_entry(image, entry); uint32_t addr = cbfs_get_entry_addr(image, entry), addr_next = cbfs_get_entry_addr(image, next); uint32_t header_size = cbfs_calculate_file_header_size(name), min_entry_size = cbfs_calculate_file_header_size(""); uint32_t len, target; uint32_t align = image->header->align; target = content_offset - header_size; if (target % align) target -= target % align; if (target < addr) { ERROR("No space to hold cbfs_file header."); return -1; } // Process buffer BEFORE content_offset. if (target - addr > min_entry_size) { DEBUG("|min|...|header|content|... \n"); len = target - addr - min_entry_size; cbfs_create_empty_entry(image, entry, len, ""); if (verbose > 1) cbfs_print_entry_info(image, entry, stderr); entry = cbfs_find_next_entry(image, entry); addr = cbfs_get_entry_addr(image, entry); } len = size + (content_offset - addr - header_size); cbfs_create_empty_entry(image, entry, len, name); if (len != size) { DEBUG("|..|header|content|... \n"); DEBUG("before: offset=0x%x, len=0x%x\n", ntohl(entry->offset), ntohl(entry->len)); // TODO reset expanded name buffer to 0xFF. entry->offset = htonl(ntohl(entry->offset) + (len - size)); entry->len = htonl(size); DEBUG("after: offset=0x%x, len=0x%x\n", ntohl(entry->offset), ntohl(entry->len)); } // Ready to fill data into entry. assert(ntohl(entry->len) == size); entry->type = htonl(type); DEBUG("content_offset: 0x%x, entry location: %x\n", content_offset, (int)((char*)CBFS_SUBHEADER(entry) - image->buffer.data)); assert((char*)CBFS_SUBHEADER(entry) - image->buffer.data == content_offset); memcpy(CBFS_SUBHEADER(entry), data, size); if (verbose > 1) cbfs_print_entry_info(image, entry, stderr); // Process buffer AFTER entry. entry = cbfs_find_next_entry(image, entry); addr = cbfs_get_entry_addr(image, entry); assert(addr < addr_next); if (addr_next - addr < min_entry_size) { DEBUG("No space after content to keep CBFS structure.\n"); return -1; } len = addr_next - addr - min_entry_size; cbfs_create_empty_entry(image, entry, len, ""); if (verbose > 1) cbfs_print_entry_info(image, entry, stderr); return 0; } int cbfs_add_entry(struct cbfs_image *image, struct buffer *buffer, const char *name, uint32_t type, uint32_t content_offset) { uint32_t entry_type; uint32_t addr, addr_next; struct cbfs_file *entry, *next; uint32_t header_size, need_size, new_size; header_size = cbfs_calculate_file_header_size(name); need_size = header_size + buffer->size; DEBUG("cbfs_add_entry('%s'@0x%x) => need_size = %u+%zu=%u\n", name, content_offset, header_size, buffer->size, need_size); if (IS_TOP_ALIGNED_ADDRESS(content_offset)) { // legacy cbfstool takes top-aligned address. uint32_t theromsize = image->header->romsize; INFO("Converting top-aligned address 0x%x to offset: 0x%x\n", content_offset, content_offset + theromsize); content_offset += theromsize; } // Merge empty entries. DEBUG("(trying to merge empty entries...)\n"); cbfs_walk(image, cbfs_merge_empty_entry, NULL); for (entry = cbfs_find_first_entry(image); entry && cbfs_is_valid_entry(image, entry); entry = cbfs_find_next_entry(image, entry)) { entry_type = ntohl(entry->type); if (entry_type != CBFS_COMPONENT_NULL) continue; addr = cbfs_get_entry_addr(image, entry); next = cbfs_find_next_entry(image, entry); addr_next = cbfs_get_entry_addr(image, next); DEBUG("cbfs_add_entry: space at 0x%x+0x%x(%d) bytes\n", addr, addr_next - addr, addr_next - addr); /* Will the file fit? Don't yet worry if we have space for a new * "empty" entry. We take care of that later. */ if (addr + need_size > addr_next) continue; // Can we simply put object here? if (!content_offset || content_offset == addr + header_size) { DEBUG("Filling new entry data (%zd bytes).\n", buffer->size); cbfs_create_empty_entry(image, entry, buffer->size, name); entry->type = htonl(type); memcpy(CBFS_SUBHEADER(entry), buffer->data, buffer->size); if (verbose) cbfs_print_entry_info(image, entry, stderr); // setup new entry DEBUG("Setting new empty entry.\n"); entry = cbfs_find_next_entry(image, entry); new_size = (cbfs_get_entry_addr(image, next) - cbfs_get_entry_addr(image, entry)); /* Entry was added and no space for new "empty" entry */ if (new_size < cbfs_calculate_file_header_size("")) { DEBUG("No need for new \"empty\" entry\n"); /* No need to increase the size of the just * stored file to extend to next file. Alignment * of next file takes care of this. */ return 0; } new_size -= cbfs_calculate_file_header_size(""); DEBUG("new size: %d\n", new_size); cbfs_create_empty_entry(image, entry, new_size, ""); if (verbose) cbfs_print_entry_info(image, entry, stderr); return 0; } // We need to put content here, and the case is really // complicated... assert(content_offset); if (addr_next < content_offset) { DEBUG("Not for specified offset yet"); continue; } else if (addr > content_offset) { DEBUG("Exceed specified content_offset."); break; } else if (addr + header_size > content_offset) { ERROR("Not enough space for header.\n"); break; } else if (content_offset + buffer->size > addr_next) { ERROR("Not enough space for content.\n"); break; } // TODO there are more few tricky cases that we may // want to fit by altering offset. DEBUG("section 0x%x+0x%x for content_offset 0x%x.\n", addr, addr_next - addr, content_offset); if (cbfs_add_entry_at(image, entry, buffer->size, name, type, buffer->data, content_offset) == 0) { return 0; } break; } ERROR("Could not add [%s, %zd bytes (%zd KB)@0x%x]; too big?\n", buffer->name, buffer->size, buffer->size / 1024, content_offset); return -1; } struct cbfs_file *cbfs_get_entry(struct cbfs_image *image, const char *name) { struct cbfs_file *entry; for (entry = cbfs_find_first_entry(image); entry && cbfs_is_valid_entry(image, entry); entry = cbfs_find_next_entry(image, entry)) { if (strcasecmp(CBFS_NAME(entry), name) == 0) { DEBUG("cbfs_get_entry: found %s\n", name); return entry; } } return NULL; } int cbfs_export_entry(struct cbfs_image *image, const char *entry_name, const char *filename) { struct cbfs_file *entry = cbfs_get_entry(image, entry_name); struct buffer buffer; if (!entry) { ERROR("File not found: %s\n", entry_name); return -1; } LOG("Found file %.30s at 0x%x, type %.12s, size %d\n", entry_name, cbfs_get_entry_addr(image, entry), get_cbfs_entry_type_name(ntohl(entry->type)), ntohl(entry->len)); if (ntohl(entry->type) != CBFS_COMPONENT_RAW) { WARN("Only 'raw' files are safe to extract.\n"); } buffer.data = CBFS_SUBHEADER(entry); buffer.size = ntohl(entry->len); buffer.name = (char *)"(cbfs_export_entry)"; if (buffer_write_file(&buffer, filename) != 0) { ERROR("Failed to write %s into %s.\n", entry_name, filename); return -1; } INFO("Successfully dumped the file to: %s\n", filename); return 0; } int cbfs_remove_entry(struct cbfs_image *image, const char *name) { struct cbfs_file *entry, *next; size_t len; entry = cbfs_get_entry(image, name); if (!entry) { ERROR("CBFS file %s not found.\n", name); return -1; } next = cbfs_find_next_entry(image, entry); assert(next); DEBUG("cbfs_remove_entry: Removed %s @ 0x%x\n", CBFS_NAME(entry), cbfs_get_entry_addr(image, entry)); entry->type = htonl(CBFS_COMPONENT_DELETED); len = (cbfs_get_entry_addr(image, next) - cbfs_get_entry_addr(image, entry)); entry->offset = htonl(cbfs_calculate_file_header_size("")); entry->len = htonl(len - ntohl(entry->offset)); memset(CBFS_NAME(entry), 0, ntohl(entry->offset) - sizeof(*entry)); memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE, ntohl(entry->len)); return 0; } int cbfs_print_header_info(struct cbfs_image *image) { char *name = strdup(image->buffer.name); assert(image && image->header); printf("%s: %zd kB, bootblocksize %d, romsize %d, offset 0x%x\n" "alignment: %d bytes\n\n", basename(name), image->buffer.size / 1024, image->header->bootblocksize, image->header->romsize, image->header->offset, image->header->align); free(name); return 0; } static int cbfs_print_stage_info(struct cbfs_stage *stage, FILE* fp) { fprintf(fp, " %s compression, entry: 0x%" PRIx64 ", load: 0x%" PRIx64 ", " "length: %d/%d\n", lookup_name_by_type(types_cbfs_compression, stage->compression, "(unknown)"), stage->entry, stage->load, stage->len, stage->memlen); return 0; } static int cbfs_print_payload_segment_info(struct cbfs_payload_segment *payload, FILE *fp) { switch(payload->type) { case PAYLOAD_SEGMENT_CODE: case PAYLOAD_SEGMENT_DATA: fprintf(fp, " %s (%s compression, offset: 0x%x, " "load: 0x%" PRIx64 ", length: %d/%d)\n", (payload->type == PAYLOAD_SEGMENT_CODE ? "code " : "data"), lookup_name_by_type(types_cbfs_compression, ntohl(payload->compression), "(unknown)"), ntohl(payload->offset), ntohll(payload->load_addr), ntohl(payload->len), ntohl(payload->mem_len)); break; case PAYLOAD_SEGMENT_ENTRY: fprintf(fp, " entry (0x%" PRIx64 ")\n", ntohll(payload->load_addr)); break; case PAYLOAD_SEGMENT_BSS: fprintf(fp, " BSS (address 0x%016" PRIx64 ", " "length 0x%x)\n", ntohll(payload->load_addr), ntohl(payload->len)); break; case PAYLOAD_SEGMENT_PARAMS: fprintf(fp, " parameters\n"); break; default: fprintf(fp, " 0x%x (%s compression, offset: 0x%x, " "load: 0x%" PRIx64 ", length: %d/%d\n", payload->type, lookup_name_by_type(types_cbfs_compression, payload->compression, "(unknown)"), ntohl(payload->offset), ntohll(payload->load_addr), ntohl(payload->len), ntohl(payload->mem_len)); break; } return 0; } int cbfs_print_entry_info(struct cbfs_image *image, struct cbfs_file *entry, void *arg) { const char *name = CBFS_NAME(entry); struct cbfs_payload_segment *payload; FILE *fp = (FILE *)arg; if (!cbfs_is_valid_entry(image, entry)) { ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n", cbfs_get_entry_addr(image, entry)); return -1; } if (!fp) fp = stdout; fprintf(fp, "%-30s 0x%-8x %-12s %d\n", *name ? name : "(empty)", cbfs_get_entry_addr(image, entry), get_cbfs_entry_type_name(ntohl(entry->type)), ntohl(entry->len)); if (!verbose) return 0; DEBUG(" cbfs_file=0x%x, offset=0x%x, content_address=0x%x+0x%x\n", cbfs_get_entry_addr(image, entry), ntohl(entry->offset), cbfs_get_entry_addr(image, entry) + ntohl(entry->offset), ntohl(entry->len)); /* note the components of the subheader may be in host order ... */ switch (ntohl(entry->type)) { case CBFS_COMPONENT_STAGE: cbfs_print_stage_info((struct cbfs_stage *) CBFS_SUBHEADER(entry), fp); break; case CBFS_COMPONENT_PAYLOAD: payload = (struct cbfs_payload_segment *) CBFS_SUBHEADER(entry); while (payload) { cbfs_print_payload_segment_info(payload, fp); if (payload->type == PAYLOAD_SEGMENT_ENTRY) break; else payload ++; } break; default: break; } return 0; } int cbfs_print_directory(struct cbfs_image *image) { cbfs_print_header_info(image); printf("%-30s %-10s %-12s Size\n", "Name", "Offset", "Type"); cbfs_walk(image, cbfs_print_entry_info, NULL); return 0; } int cbfs_merge_empty_entry(struct cbfs_image *image, struct cbfs_file *entry, void *arg) { struct cbfs_file *next; uint32_t type, addr, last_addr; type = ntohl(entry->type); if (type == CBFS_COMPONENT_DELETED) { // Ready to be recycled. type = CBFS_COMPONENT_NULL; entry->type = htonl(type); } if (type != CBFS_COMPONENT_NULL) return 0; next = cbfs_find_next_entry(image, entry); while (next && cbfs_is_valid_entry(image, next)) { type = ntohl(next->type); if (type == CBFS_COMPONENT_DELETED) { type = CBFS_COMPONENT_NULL; next->type = htonl(type); } if (type != CBFS_COMPONENT_NULL) return 0; addr = cbfs_get_entry_addr(image, entry); last_addr = cbfs_get_entry_addr( image, cbfs_find_next_entry(image, next)); // Now, we find two deleted/empty entries; try to merge now. DEBUG("join_empty_entry: combine 0x%x+0x%x and 0x%x+0x%x.\n", cbfs_get_entry_addr(image, entry), ntohl(entry->len), cbfs_get_entry_addr(image, next), ntohl(next->len)); cbfs_create_empty_entry(image, entry, (last_addr - addr - cbfs_calculate_file_header_size("")), ""); DEBUG("new empty entry: length=0x%x\n", ntohl(entry->len)); next = cbfs_find_next_entry(image, entry); } return 0; } int cbfs_walk(struct cbfs_image *image, cbfs_entry_callback callback, void *arg) { int count = 0; struct cbfs_file *entry; for (entry = cbfs_find_first_entry(image); entry && cbfs_is_valid_entry(image, entry); entry = cbfs_find_next_entry(image, entry)) { count ++; if (callback(image, entry, arg) != 0) break; } return count; } struct cbfs_header *cbfs_find_header(char *data, size_t size) { size_t offset; int found = 0; uint32_t x86sig; struct cbfs_header *header, *result = NULL; // Try x86 style (check signature in bottom) header first. x86sig = *(uint32_t *)(data + size - sizeof(uint32_t)); offset = (x86sig + (uint32_t)size); DEBUG("x86sig: 0x%x, offset: 0x%zx\n", x86sig, offset); if (offset >= size - sizeof(*header) || ntohl(((struct cbfs_header *)(data + offset))->magic) != CBFS_HEADER_MAGIC) offset = 0; for (; offset + sizeof(*header) < size; offset++) { header = (struct cbfs_header *)(data + offset); if (ntohl(header->magic) !=(CBFS_HEADER_MAGIC)) continue; if (ntohl(header->version) != CBFS_HEADER_VERSION1 && ntohl(header->version) != CBFS_HEADER_VERSION2) { // Probably not a real CBFS header? continue; } found++; result = header; } if (found > 1) { ERROR("multiple (%d) CBFS headers found!\n", found); result = NULL; } return result; } struct cbfs_file *cbfs_find_first_entry(struct cbfs_image *image) { assert(image && image->header); return (struct cbfs_file *)(image->buffer.data + image->header->offset); } struct cbfs_file *cbfs_find_next_entry(struct cbfs_image *image, struct cbfs_file *entry) { uint32_t addr = cbfs_get_entry_addr(image, entry); int align = image->header->align; assert(entry && cbfs_is_valid_entry(image, entry)); addr += ntohl(entry->offset) + ntohl(entry->len); addr = align_up(addr, align); return (struct cbfs_file *)(image->buffer.data + addr); } uint32_t cbfs_get_entry_addr(struct cbfs_image *image, struct cbfs_file *entry) { assert(image && image->buffer.data && entry); return (int32_t)((char *)entry - image->buffer.data); } int cbfs_is_valid_entry(struct cbfs_image *image, struct cbfs_file *entry) { return (entry && (char *)entry >= image->buffer.data && (char *)entry + sizeof(entry->magic) < image->buffer.data + image->buffer.size && memcmp(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic)) == 0); } int cbfs_create_empty_entry(struct cbfs_image *image, struct cbfs_file *entry, size_t len, const char *name) { memset(entry, CBFS_CONTENT_DEFAULT_VALUE, sizeof(*entry)); memcpy(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic)); entry->type = htonl(CBFS_COMPONENT_NULL); entry->len = htonl(len); entry->checksum = 0; // TODO Build a checksum algorithm. entry->offset = htonl(cbfs_calculate_file_header_size(name)); memset(CBFS_NAME(entry), 0, ntohl(entry->offset) - sizeof(*entry)); strcpy(CBFS_NAME(entry), name); memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE, len); return 0; } /* Finds a place to hold whole data in same memory page. */ static int is_in_same_page(uint32_t start, uint32_t size, uint32_t page) { if (!page) return 1; return (start / page) == (start + size - 1) / page; } /* Tests if data can fit in a range by given offset: * start ->| header_len | offset (+ size) |<- end */ static int is_in_range(uint32_t start, uint32_t end, uint32_t header_len, uint32_t offset, uint32_t size) { return (offset >= start + header_len && offset + size <= end); } int32_t cbfs_locate_entry(struct cbfs_image *image, const char *name, uint32_t size, uint32_t page_size, uint32_t align) { struct cbfs_file *entry; size_t need_len; uint32_t addr, addr_next, addr2, addr3, offset, header_len; /* Default values: allow fitting anywhere in ROM. */ if (!page_size) page_size = image->header->romsize; if (!align) align = 1; if (size > page_size) ERROR("Input file size (%d) greater than page size (%d).\n", size, page_size); if (page_size % image->header->align) WARN("%s: Page size (%#x) not aligned with CBFS image (%#x).\n", __func__, page_size, image->header->align); /* TODO Old cbfstool always assume input is a stage file (and adding * sizeof(cbfs_stage) for header. We should fix that by adding "-t" * (type) param in future. For right now, we assume cbfs_stage is the * largest structure and add it into header size. */ assert(sizeof(struct cbfs_stage) >= sizeof(struct cbfs_payload)); header_len = (cbfs_calculate_file_header_size(name) + sizeof(struct cbfs_stage)); need_len = header_len + size; // Merge empty entries to build get max available space. cbfs_walk(image, cbfs_merge_empty_entry, NULL); /* Three cases of content location on memory page: * case 1. * | PAGE 1 | PAGE 2 | * |
| Fit. Return start of content. * * case 2. * | PAGE 1 | PAGE 2 | * |
| Fits when we shift content to align * shift-> |
| | at starting of PAGE 2. * * case 3. (large content filling whole page) * | PAGE 1 | PAGE 2 | PAGE 3 | * |
< content > | Can't fit. If we shift content to * |trial->
< content > | PAGE 2, header can't fit in free * | shift->
space, so we must use PAGE 3. * * The returned address can be then used as "base-address" (-b) in add-* * commands (will be re-calculated and positioned by cbfs_add_entry_at). * For stage targets, the address is also used to re-link stage before * being added into CBFS. */ for (entry = cbfs_find_first_entry(image); entry && cbfs_is_valid_entry(image, entry); entry = cbfs_find_next_entry(image, entry)) { uint32_t type = ntohl(entry->type); if (type != CBFS_COMPONENT_NULL) continue; addr = cbfs_get_entry_addr(image, entry); addr_next = cbfs_get_entry_addr(image, cbfs_find_next_entry( image, entry)); if (addr_next - addr < need_len) continue; offset = align_up(addr + header_len, align); if (is_in_same_page(offset, size, page_size) && is_in_range(addr, addr_next, header_len, offset, size)) { DEBUG("cbfs_locate_entry: FIT (PAGE1)."); return offset; } addr2 = align_up(addr, page_size); offset = align_up(addr2, align); if (is_in_range(addr, addr_next, header_len, offset, size)) { DEBUG("cbfs_locate_entry: OVERLAP (PAGE2)."); return offset; } /* Assume page_size >= header_len so adding one page will * definitely provide the space for header. */ assert(page_size >= header_len); addr3 = addr2 + page_size; offset = align_up(addr3, align); if (is_in_range(addr, addr_next, header_len, offset, size)) { DEBUG("cbfs_locate_entry: OVERLAP+ (PAGE3)."); return offset; } } return -1; }