/* * cbfs-mkstage * * Copyright (C) 2008 Jordan Crouse * 2009 coresystems GmbH * written by Patrick Georgi * Copyright (C) 2012 Google, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA */ #include #include #include #include "common.h" #include "cbfs.h" #include "elf.h" static unsigned int idemp(unsigned int x) { return x; } /* This is a wrapper around the swab32() macro to make it * usable for the current implementation of parse_elf_to_stage() */ static unsigned int swap32(unsigned int x) { return swab32(x); } unsigned int (*elf32_to_native) (unsigned int) = idemp; /* returns size of result, or -1 if error */ int parse_elf_to_stage(const struct buffer *input, struct buffer *output, comp_algo algo, uint32_t *location) { Elf32_Phdr *phdr; Elf32_Ehdr *ehdr = (Elf32_Ehdr *)input->data; char *header, *buffer; int headers; int i; struct cbfs_stage *stage; unsigned int data_start, data_end, mem_end; int elf_bigendian = 0; comp_func_ptr compress = compression_function(algo); if (!compress) return -1; DEBUG("start: parse_elf_to_stage(location=0x%x)\n", *location); if (!iself((unsigned char *)input->data)) { ERROR("The stage file is not in ELF format!\n"); return -1; } // The tool may work in architecture-independent way. if (arch != CBFS_ARCHITECTURE_UNKNOWN && !((ehdr->e_machine == EM_ARM) && (arch == CBFS_ARCHITECTURE_ARMV7)) && !((ehdr->e_machine == EM_386) && (arch == CBFS_ARCHITECTURE_X86))) { ERROR("The stage file has the wrong architecture\n"); return -1; } if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB) { elf_bigendian = 1; } if (elf_bigendian != is_big_endian()) { elf32_to_native = swap32; } headers = ehdr->e_phnum; header = (char *)ehdr; phdr = (Elf32_Phdr *) & header[elf32_to_native(ehdr->e_phoff)]; /* Now, regular headers - we only care about PT_LOAD headers, * because thats what we're actually going to load */ data_start = 0xFFFFFFFF; data_end = 0; mem_end = 0; for (i = 0; i < headers; i++) { unsigned int start, mend, rend; if (elf32_to_native(phdr[i].p_type) != PT_LOAD) continue; /* Empty segments are never interesting */ if (elf32_to_native(phdr[i].p_memsz) == 0) continue; /* BSS */ start = elf32_to_native(phdr[i].p_paddr); mend = start + elf32_to_native(phdr[i].p_memsz); rend = start + elf32_to_native(phdr[i].p_filesz); if (start < data_start) data_start = start; if (rend > data_end) data_end = rend; if (mend > mem_end) mem_end = mend; } if (data_start < *location) { data_start = *location; } if (data_end <= data_start) { ERROR("data ends before it starts. Make sure the " "ELF file is correct and resides in ROM space.\n"); exit(1); } /* allocate an intermediate buffer for the data */ buffer = calloc(data_end - data_start, 1); if (buffer == NULL) { ERROR("Unable to allocate memory: %m\n"); return -1; } /* Copy the file data into the buffer */ for (i = 0; i < headers; i++) { unsigned int l_start, l_offset = 0; if (elf32_to_native(phdr[i].p_type) != PT_LOAD) continue; if (elf32_to_native(phdr[i].p_memsz) == 0) continue; l_start = elf32_to_native(phdr[i].p_paddr); if (l_start < *location) { l_offset = *location - l_start; l_start = *location; } memcpy(buffer + (l_start - data_start), &header[elf32_to_native(phdr[i].p_offset)+l_offset], elf32_to_native(phdr[i].p_filesz)-l_offset); } /* Now make the output buffer */ if (buffer_create(output, sizeof(*stage) + data_end - data_start, input->name) != 0) { ERROR("Unable to allocate memory: %m\n"); return -1; } memset(output->data, 0, output->size); stage = (struct cbfs_stage *)output->data; stage->load = data_start; /* FIXME: htonll */ stage->memlen = mem_end - data_start; stage->compression = algo; stage->entry = ehdr->e_entry; /* FIXME: htonll */ compress(buffer, data_end - data_start, (output->data + sizeof(*stage)), (int *)&stage->len); free(buffer); if (*location) *location -= sizeof(struct cbfs_stage); output->size = sizeof(*stage) + stage->len; return 0; }