/* SPDX-License-Identifier: GPL-2.0-only */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <commonlib/endian.h> #include "elfparsing.h" #include "common.h" #include "cbfs.h" #include "fv.h" #include "coff.h" #include "fdt.h" /* serialize the seg array into the buffer. * The buffer is assumed to be large enough. */ void xdr_segs(struct buffer *output, struct cbfs_payload_segment *segs, int nseg) { struct buffer outheader; int i; outheader.data = output->data; outheader.size = 0; for(i = 0; i < nseg; i++){ xdr_be.put32(&outheader, segs[i].type); xdr_be.put32(&outheader, segs[i].compression); xdr_be.put32(&outheader, segs[i].offset); xdr_be.put64(&outheader, segs[i].load_addr); xdr_be.put32(&outheader, segs[i].len); xdr_be.put32(&outheader, segs[i].mem_len); } } void xdr_get_seg(struct cbfs_payload_segment *out, struct cbfs_payload_segment *in) { struct buffer inheader; inheader.data = (void *)in; inheader.size = sizeof(*in); out->type = xdr_be.get32(&inheader); out->compression = xdr_be.get32(&inheader); out->offset = xdr_be.get32(&inheader); out->load_addr = xdr_be.get64(&inheader); out->len = xdr_be.get32(&inheader); out->mem_len = xdr_be.get32(&inheader); } int parse_elf_to_payload(const struct buffer *input, struct buffer *output, enum cbfs_compression algo) { Elf64_Phdr *phdr; Elf64_Ehdr ehdr; Elf64_Shdr *shdr; char *header; char *strtab; int headers; int segments = 1; int isize = 0, osize = 0; int doffset = 0; struct cbfs_payload_segment *segs = NULL; int i; int ret = 0; comp_func_ptr compress = compression_function(algo); if (!compress) return -1; if (elf_headers(input, &ehdr, &phdr, &shdr) < 0) return -1; DEBUG("start: parse_elf_to_payload\n"); headers = ehdr.e_phnum; header = input->data; strtab = &header[shdr[ehdr.e_shstrndx].sh_offset]; /* Count the number of headers - look for the .notes.pinfo * section */ for (i = 0; i < ehdr.e_shnum; i++) { char *name; if (i == ehdr.e_shstrndx) continue; if (shdr[i].sh_size == 0) continue; name = (char *)(strtab + shdr[i].sh_name); if (!strcmp(name, ".note.pinfo")) { segments++; isize += (unsigned int)shdr[i].sh_size; } } /* Now, regular headers - we only care about PT_LOAD headers, * because that's what we're actually going to load */ for (i = 0; i < headers; i++) { if (phdr[i].p_type != PT_LOAD) continue; /* Empty segments are never interesting */ if (phdr[i].p_memsz == 0) continue; isize += phdr[i].p_filesz; segments++; } /* Allocate and initialize the segment header array */ segs = calloc(segments, sizeof(*segs)); if (segs == NULL) { ret = -1; goto out; } /* Allocate a block of memory to store the data in */ if (buffer_create(output, (segments * sizeof(*segs)) + isize, input->name) != 0) { ret = -1; goto out; } memset(output->data, 0, output->size); doffset = (segments * sizeof(*segs)); /* set up for output marshaling. This is a bit * tricky as we are marshaling the headers at the front, * and the data starting after the headers. We need to convert * the headers to the right format but the data * passes through unchanged. Unlike most XDR code, * we are doing these two concurrently. The doffset is * used to compute the address for the raw data, and the * outheader is used to marshal the headers. To make it simpler * for The Reader, we set up the headers in a separate array, * then marshal them all at once to the output. */ segments = 0; for (i = 0; i < ehdr.e_shnum; i++) { char *name; if (i == ehdr.e_shstrndx) continue; if (shdr[i].sh_size == 0) continue; name = (char *)(strtab + shdr[i].sh_name); if (!strcmp(name, ".note.pinfo")) { segs[segments].type = PAYLOAD_SEGMENT_PARAMS; segs[segments].load_addr = 0; segs[segments].len = (unsigned int)shdr[i].sh_size; segs[segments].offset = doffset; memcpy((unsigned long *)(output->data + doffset), &header[shdr[i].sh_offset], shdr[i].sh_size); doffset += segs[segments].len; osize += segs[segments].len; segments++; } } for (i = 0; i < headers; i++) { if (phdr[i].p_type != PT_LOAD) continue; if (phdr[i].p_memsz == 0) continue; if (phdr[i].p_filesz == 0) { segs[segments].type = PAYLOAD_SEGMENT_BSS; segs[segments].load_addr = phdr[i].p_paddr; segs[segments].mem_len = phdr[i].p_memsz; segs[segments].offset = doffset; segments++; continue; } if (phdr[i].p_flags & PF_X) segs[segments].type = PAYLOAD_SEGMENT_CODE; else segs[segments].type = PAYLOAD_SEGMENT_DATA; segs[segments].load_addr = phdr[i].p_paddr; segs[segments].mem_len = phdr[i].p_memsz; segs[segments].offset = doffset; /* If the compression failed or made the section is larger, use the original stuff */ int len; if (compress((char *)&header[phdr[i].p_offset], phdr[i].p_filesz, output->data + doffset, &len) || (unsigned int)len > phdr[i].p_filesz) { WARN("Compression failed or would make the data bigger " "- disabled.\n"); segs[segments].compression = 0; segs[segments].len = phdr[i].p_filesz; memcpy(output->data + doffset, &header[phdr[i].p_offset], phdr[i].p_filesz); } else { segs[segments].compression = algo; segs[segments].len = len; } doffset += segs[segments].len; osize += segs[segments].len; segments++; } segs[segments].type = PAYLOAD_SEGMENT_ENTRY; segs[segments++].load_addr = ehdr.e_entry; output->size = (segments * sizeof(*segs)) + osize; xdr_segs(output, segs, segments); out: if (segs) free(segs); if (shdr) free(shdr); if (phdr) free(phdr); return ret; } int parse_flat_binary_to_payload(const struct buffer *input, struct buffer *output, uint32_t loadaddress, uint32_t entrypoint, enum cbfs_compression algo) { comp_func_ptr compress; struct cbfs_payload_segment segs[2] = { {0} }; int doffset, len = 0; compress = compression_function(algo); if (!compress) return -1; DEBUG("start: parse_flat_binary_to_payload\n"); if (buffer_create(output, (sizeof(segs) + input->size), input->name) != 0) return -1; memset(output->data, 0, output->size); doffset = (2 * sizeof(*segs)); /* Prepare code segment */ segs[0].type = PAYLOAD_SEGMENT_CODE; segs[0].load_addr = loadaddress; segs[0].mem_len = input->size; segs[0].offset = doffset; if (!compress(input->data, input->size, output->data + doffset, &len) && (unsigned int)len < input->size) { segs[0].compression = algo; segs[0].len = len; } else { WARN("Compression failed or would make the data bigger " "- disabled.\n"); segs[0].compression = 0; segs[0].len = input->size; memcpy(output->data + doffset, input->data, input->size); } /* prepare entry point segment */ segs[1].type = PAYLOAD_SEGMENT_ENTRY; segs[1].load_addr = entrypoint; output->size = doffset + segs[0].len; xdr_segs(output, segs, 2); return 0; } int parse_fv_to_payload(const struct buffer *input, struct buffer *output, enum cbfs_compression algo) { comp_func_ptr compress; struct cbfs_payload_segment segs[2] = { {0} }; int doffset, len = 0; firmware_volume_header_t *fv; firmware_volume_ext_header_t *fvh_ext; ffs_file_header_t *fh; common_section_header_t *cs; dos_header_t *dh; coff_header_t *ch; int dh_offset; uint32_t loadaddress = 0; uint32_t entrypoint = 0; compress = compression_function(algo); if (!compress) return -1; DEBUG("start: parse_fv_to_payload\n"); fv = (firmware_volume_header_t *)input->data; if (fv->signature != FV_SIGNATURE) { INFO("Not a UEFI firmware volume.\n"); return -1; } fh = (ffs_file_header_t *)(input->data + fv->header_length); if (fv->ext_header_offs != 0) { fvh_ext = (firmware_volume_ext_header_t *)((uintptr_t)fv + fv->ext_header_offs); fh = (ffs_file_header_t *)((uintptr_t)fvh_ext + fvh_ext->ext_header_size); fh = (ffs_file_header_t *)(((uintptr_t)fh + 7) & ~7); } while (fh->file_type == FILETYPE_PAD) { unsigned long offset = (fh->size[2] << 16) | (fh->size[1] << 8) | fh->size[0]; DEBUG("skipping %lu bytes of FV padding\n", offset); fh = (ffs_file_header_t *)(((uintptr_t)fh) + offset); } if (fh->file_type != FILETYPE_SEC) { ERROR("Not a usable UEFI firmware volume.\n"); INFO("First file in first FV not a SEC core.\n"); return -1; } cs = (common_section_header_t *)&fh[1]; while (cs->section_type == SECTION_RAW) { unsigned long offset = (cs->size[2] << 16) | (cs->size[1] << 8) | cs->size[0]; DEBUG("skipping %lu bytes of section padding\n", offset); cs = (common_section_header_t *)(((uintptr_t)cs) + offset); } if (cs->section_type != SECTION_PE32) { ERROR("Not a usable UEFI firmware volume.\n"); INFO("Section type not PE32.\n"); return -1; } dh = (dos_header_t *)&cs[1]; if (dh->signature != DOS_MAGIC) { ERROR("Not a usable UEFI firmware volume.\n"); INFO("DOS header signature wrong.\n"); return -1; } dh_offset = (unsigned long)dh - (unsigned long)input->data; DEBUG("dos header offset = %x\n", dh_offset); ch = (coff_header_t *)(((uintptr_t)dh)+dh->e_lfanew); if (ch->machine == MACHINE_TYPE_X86) { pe_opt_header_32_t *ph; ph = (pe_opt_header_32_t *)&ch[1]; if (ph->signature != PE_HDR_32_MAGIC) { WARN("PE header signature incorrect.\n"); return -1; } DEBUG("image base %x\n", ph->image_addr); DEBUG("entry point %x\n", ph->entry_point); loadaddress = ph->image_addr - dh_offset; entrypoint = ph->image_addr + ph->entry_point; } else if (ch->machine == MACHINE_TYPE_X64 || ch->machine == MACHINE_TYPE_ARM64) { pe_opt_header_64_t *ph; ph = (pe_opt_header_64_t *)&ch[1]; if (ph->signature != PE_HDR_64_MAGIC) { WARN("PE header signature incorrect.\n"); return -1; } DEBUG("image base %lx\n", (unsigned long)ph->image_addr); DEBUG("entry point %x\n", ph->entry_point); loadaddress = ph->image_addr - dh_offset; entrypoint = ph->image_addr + ph->entry_point; } else { ERROR("Machine type not x86, x64, or arm64.\n"); return -1; } if (buffer_create(output, (sizeof(segs) + input->size), input->name) != 0) return -1; memset(output->data, 0, output->size); doffset = (sizeof(segs)); /* Prepare code segment */ segs[0].type = PAYLOAD_SEGMENT_CODE; segs[0].load_addr = loadaddress; segs[0].mem_len = input->size; segs[0].offset = doffset; if (!compress(input->data, input->size, output->data + doffset, &len) && (unsigned int)len < input->size) { segs[0].compression = algo; segs[0].len = len; } else { WARN("Compression failed or would make the data bigger " "- disabled.\n"); segs[0].compression = 0; segs[0].len = input->size; memcpy(output->data + doffset, input->data, input->size); } /* prepare entry point segment */ segs[1].type = PAYLOAD_SEGMENT_ENTRY; segs[1].load_addr = entrypoint; output->size = doffset + segs[0].len; xdr_segs(output, segs, 2); return 0; } int parse_fit_to_payload(const struct buffer *input, struct buffer *output, enum cbfs_compression algo) { struct fdt_header *fdt_h; DEBUG("start: parse_fit_to_payload\n"); fdt_h = buffer_get(input); if (read_be32(&fdt_h->magic) != FDT_HEADER_MAGIC) { INFO("Not a FIT payload.\n"); return -1; } /** * For developers: * Compress the kernel binary you're sourcing in your its-script * manually with LZ4 or LZMA and add 'compression = "lz4"' or "lzma" to * the kernel@1 node in the its-script before assembling the image with * mkimage. */ if (algo != CBFS_COMPRESS_NONE) { ERROR("FIT images don't support whole-image compression," " compress the kernel component instead!\n") return -1; } if (buffer_create(output, buffer_size(input), input->name) != 0) return -1; memcpy(buffer_get(output), buffer_get(input), buffer_size(input)); DEBUG("done\n"); return 0; }