/* * This file is part of the coreboot project. * * Copyright 2014 Google Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include "../chromeos.h" #include "misc.h" #define TODO_BLOCK_SIZE 1024 static int is_slot_a(struct vb2_context *ctx) { return !(ctx->flags & VB2_CONTEXT_FW_SLOT_B); } /* exports */ void vb2ex_printf(const char *func, const char *fmt, ...) { va_list args; printk(BIOS_INFO, "VB2:%s() ", func); va_start(args, fmt); vprintk(BIOS_INFO, fmt, args); va_end(args); return; } int vb2ex_tpm_clear_owner(struct vb2_context *ctx) { uint32_t rv; printk(BIOS_INFO, "Clearing TPM owner\n"); rv = tpm_clear_and_reenable(); if (rv) return VB2_ERROR_EX_TPM_CLEAR_OWNER; return VB2_SUCCESS; } int vb2ex_read_resource(struct vb2_context *ctx, enum vb2_resource_index index, uint32_t offset, void *buf, uint32_t size) { struct vboot_region region; switch (index) { case VB2_RES_GBB: vboot_locate_region("GBB", ®ion); break; case VB2_RES_FW_VBLOCK: if (is_slot_a(ctx)) vboot_locate_region("VBLOCK_A", ®ion); else vboot_locate_region("VBLOCK_B", ®ion); break; default: return VB2_ERROR_EX_READ_RESOURCE_INDEX; } if (offset + size > region.size) return VB2_ERROR_EX_READ_RESOURCE_SIZE; if (vboot_get_region(region.offset_addr + offset, size, buf) == NULL) return VB2_ERROR_UNKNOWN; return VB2_SUCCESS; } /* No-op stubs that can be overridden by SoCs with hardware crypto support. */ __attribute__((weak)) int vb2ex_hwcrypto_digest_init(enum vb2_hash_algorithm hash_alg, uint32_t data_size) { return VB2_ERROR_EX_HWCRYPTO_UNSUPPORTED; } __attribute__((weak)) int vb2ex_hwcrypto_digest_extend(const uint8_t *buf, uint32_t size) { BUG(); /* Should never get called if init() returned an error. */ return VB2_ERROR_UNKNOWN; } __attribute__((weak)) int vb2ex_hwcrypto_digest_finalize(uint8_t *digest, uint32_t digest_size) { BUG(); /* Should never get called if init() returned an error. */ return VB2_ERROR_UNKNOWN; } static int hash_body(struct vb2_context *ctx, struct vboot_region *fw_main) { uint64_t load_ts; uint32_t expected_size; MAYBE_STATIC uint8_t block[TODO_BLOCK_SIZE]; size_t block_size = sizeof(block); uintptr_t offset; int rv; /* * Since loading the firmware and calculating its hash is intertwined, * we use this little trick to measure them separately and pretend it * was first loaded and then hashed in one piece with the timestamps. * (This split won't make sense with memory-mapped media like on x86.) */ load_ts = timestamp_get(); timestamp_add(TS_START_HASH_BODY, load_ts); expected_size = fw_main->size; offset = fw_main->offset_addr; /* Start the body hash */ rv = vb2api_init_hash(ctx, VB2_HASH_TAG_FW_BODY, &expected_size); if (rv) return rv; /* Extend over the body */ while (expected_size) { uint64_t temp_ts; void *b; if (block_size > expected_size) block_size = expected_size; temp_ts = timestamp_get(); b = vboot_get_region(offset, block_size, block); if (b == NULL) return VB2_ERROR_UNKNOWN; load_ts += timestamp_get() - temp_ts; rv = vb2api_extend_hash(ctx, b, block_size); if (rv) return rv; expected_size -= block_size; offset += block_size; } timestamp_add(TS_DONE_LOADING, load_ts); timestamp_add_now(TS_DONE_HASHING); /* Check the result (with RSA signature verification) */ rv = vb2api_check_hash(ctx); if (rv) return rv; timestamp_add_now(TS_END_HASH_BODY); return VB2_SUCCESS; } static int locate_firmware(struct vb2_context *ctx, struct vboot_region *fw_main) { if (is_slot_a(ctx)) vboot_locate_region("FW_MAIN_A", fw_main); else vboot_locate_region("FW_MAIN_B", fw_main); if (fw_main->size < 0) return 1; return 0; } /** * Save non-volatile and/or secure data if needed. */ static void save_if_needed(struct vb2_context *ctx) { if (ctx->flags & VB2_CONTEXT_NVDATA_CHANGED) { printk(BIOS_INFO, "Saving nvdata\n"); save_vbnv(ctx->nvdata); ctx->flags &= ~VB2_CONTEXT_NVDATA_CHANGED; } if (ctx->flags & VB2_CONTEXT_SECDATA_CHANGED) { printk(BIOS_INFO, "Saving secdata\n"); antirollback_write_space_firmware(ctx); ctx->flags &= ~VB2_CONTEXT_SECDATA_CHANGED; } } static uint32_t extend_pcrs(struct vb2_context *ctx) { return tpm_extend_pcr(ctx, 0, BOOT_MODE_PCR) || tpm_extend_pcr(ctx, 1, HWID_DIGEST_PCR); } /** * Verify and select the firmware in the RW image * * TODO: Avoid loading a stage twice (once in hash_body & again in load_stage). * when per-stage verification is ready. */ void verstage_main(void) { struct vb2_context ctx; struct vboot_region fw_main; struct vb2_working_data *wd = vboot_get_working_data(); int rv; timestamp_add_now(TS_START_VBOOT); /* Set up context and work buffer */ memset(&ctx, 0, sizeof(ctx)); ctx.workbuf = vboot_get_work_buffer(wd); ctx.workbuf_size = wd->buffer_size; /* Read nvdata from a non-volatile storage */ read_vbnv(ctx.nvdata); /* Read secdata from TPM. Initialize TPM if secdata not found. We don't * check the return value here because vb2api_fw_phase1 will catch * invalid secdata and tell us what to do (=reboot). */ timestamp_add_now(TS_START_TPMINIT); antirollback_read_space_firmware(&ctx); timestamp_add_now(TS_END_TPMINIT); if (get_developer_mode_switch()) ctx.flags |= VB2_CONTEXT_FORCE_DEVELOPER_MODE; if (get_recovery_mode_switch()) { clear_recovery_mode_switch(); ctx.flags |= VB2_CONTEXT_FORCE_RECOVERY_MODE; } /* Do early init (set up secdata and NVRAM, load GBB) */ printk(BIOS_INFO, "Phase 1\n"); rv = vb2api_fw_phase1(&ctx); if (rv) { printk(BIOS_INFO, "Recovery requested (%x)\n", rv); /* If we need recovery mode, leave firmware selection now */ save_if_needed(&ctx); extend_pcrs(&ctx); /* ignore failures */ timestamp_add_now(TS_END_VBOOT); return; } /* Determine which firmware slot to boot (based on NVRAM) */ printk(BIOS_INFO, "Phase 2\n"); rv = vb2api_fw_phase2(&ctx); if (rv) { printk(BIOS_INFO, "Reboot requested (%x)\n", rv); save_if_needed(&ctx); vboot_reboot(); } /* Try that slot (verify its keyblock and preamble) */ printk(BIOS_INFO, "Phase 3\n"); timestamp_add_now(TS_START_VERIFY_SLOT); rv = vb2api_fw_phase3(&ctx); timestamp_add_now(TS_END_VERIFY_SLOT); if (rv) { printk(BIOS_INFO, "Reboot requested (%x)\n", rv); save_if_needed(&ctx); vboot_reboot(); } printk(BIOS_INFO, "Phase 4\n"); rv = locate_firmware(&ctx, &fw_main); if (rv) die("Failed to read FMAP to locate firmware"); rv = hash_body(&ctx, &fw_main); save_if_needed(&ctx); if (rv) { printk(BIOS_INFO, "Reboot requested (%x)\n", rv); vboot_reboot(); } rv = extend_pcrs(&ctx); if (rv) { printk(BIOS_WARNING, "Failed to extend TPM PCRs (%#x)\n", rv); vb2api_fail(&ctx, VB2_RECOVERY_RO_TPM_U_ERROR, rv); save_if_needed(&ctx); vboot_reboot(); } /* Lock TPM */ rv = antirollback_lock_space_firmware(); if (rv) { printk(BIOS_INFO, "Failed to lock TPM (%x)\n", rv); vb2api_fail(&ctx, VB2_RECOVERY_RO_TPM_L_ERROR, 0); save_if_needed(&ctx); vboot_reboot(); } printk(BIOS_INFO, "Slot %c is selected\n", is_slot_a(&ctx) ? 'A' : 'B'); vb2_set_selected_region(wd, &fw_main); timestamp_add_now(TS_END_VBOOT); } #if IS_ENABLED(CONFIG_RETURN_FROM_VERSTAGE) void main(void) { console_init(); exception_init(); verstage_main(); } #endif