/**
* @file
*
* Southbridge Initial routine
*
*
*
* @xrefitem bom "File Content Label" "Release Content"
* @e project: CIMx-SB
* @e sub-project:
* @e \$Revision:$ @e \$Date:$
*
*/
/*;********************************************************************************
;
; Copyright (c) 2011, Advanced Micro Devices, Inc.
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the distribution.
; * Neither the name of Advanced Micro Devices, Inc. nor the names of
; its contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
; ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
; WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
; DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
; DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
; (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
; ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;
;*********************************************************************************/
#include "SbPlatform.h"
#include "cbtypes.h"
#include "AmdSbLib.h"
//
// Declaration of local functions
//
VOID abcfgTbl (IN ABTBLENTRY* pABTbl);
VOID A13ResumeResetTwoSecondRtcWakeup (void);
/*--------------------------- Documentation Pages ---------------------------*/
/**
* @page LegacyInterfaceCalls Legacy Interface Calls
*
@subpage SB_POWERON_INIT_Page "SB_POWERON_INIT" | |
* @subpage SB_BEFORE_PCI_INIT_Page "SB_BEFORE_PCI_INIT" | |
* @subpage SB_AFTER_PCI_INIT_Page "SB_AFTER_PCI_INIT" | |
* @subpage SB_LATE_POST_INIT_Page "SB_LATE_POST_INIT" | |
* @subpage SB_BEFORE_PCI_RESTORE_INIT_Page "SB_BEFORE_PCI_RESTORE_INIT" | |
* @subpage SB_AFTER_PCI_RESTORE_INIT_Page "SB_AFTER_PCI_RESTORE_INIT" | |
* @subpage SB_SMM_SERVICE_Page "SB_SMM_SERVICE" | |
* @subpage SB_SMM_ACPION_Page "SB_SMM_ACPION" | |
*
* @page LegacyInterfaceCallOuts Legacy Interface CallOuts
* @subpage CB_SBGPP_RESET_ASSERT_Page CB_SBGPP_RESET_ASSERT
* | @subpage CB_SBGPP_RESET_DEASSERT_Page CB_SBGPP_RESET_DEASSERT
*
*/
/**
* sbEarlyPostByteInitTable - PCI device registers initial during early POST.
*
*/
REG8MASK sbEarlyPostByteInitTable[] =
{
// SMBUS Device (Bus 0, Dev 20, Func 0)
{0x00, SMBUS_BUS_DEV_FUN, 0},
{SB_CFG_REG10, 0X00, (SBCIMx_Version & 0xFF)}, //Program the version information
{SB_CFG_REG11, 0X00, (SBCIMx_Version >> 8)},
{0xFF, 0xFF, 0xFF},
// IDE Device (Bus 0, Dev 20, Func 1)
{0x00, IDE_BUS_DEV_FUN, 0},
{SB_IDE_REG62 + 1, ~BIT0, BIT5}, // Enabling IDE Explicit Pre-Fetch IDE PCI Config 0x62[8]=0
// Allow MSI capability of IDE controller to be visible. IDE PCI Config 0x62[13]=1
{0xFF, 0xFF, 0xFF},
// Azalia Device (Bus 0, Dev 20, Func 2)
{0x00, AZALIA_BUS_DEV_FUN, 0},
{SB_AZ_REG4C, ~BIT0, BIT0},
{0xFF, 0xFF, 0xFF},
// LPC Device (Bus 0, Dev 20, Func 3)
{0x00, LPC_BUS_DEV_FUN, 0},
{SB_LPC_REG40, ~BIT2, BIT2}, // RPR Enabling LPC DMA Function 0x40[2]=1b 0x78[0]=0b
{SB_LPC_REG48, 0x00, BIT0 + BIT1 + BIT2},
{SB_LPC_REG78, 0xFC, 00}, // RPR Enabling LPC DMA Function 0x40[2]=1b 0x78[0]=0b / Disables MSI capability
{SB_LPC_REGBB, ~BIT0, BIT0 + BIT3 + BIT4 + BIT5}, // Enabled SPI Prefetch from HOST.
{0xFF, 0xFF, 0xFF},
// PCIB Bridge (Bus 0, Dev 20, Func 4)
{0x00, PCIB_BUS_DEV_FUN, 0},
{SB_PCIB_REG40, 0xFF, BIT5}, // RPR PCI-bridge Subtractive Decode
{SB_PCIB_REG4B, 0xFF, BIT7}, //
{SB_PCIB_REG66, 0xFF, BIT4}, // RPR Enabling One-Prefetch-Channel Mode, PCIB_PCI_config 0x64 [20]
{SB_PCIB_REG65, 0xFF, BIT7}, // RPR proper operation of CLKRUN#.
{SB_PCIB_REG0D, 0x00, 0x40}, // Setting Latency Timers to 0x40, Enables the PCIB to retain ownership
{SB_PCIB_REG1B, 0x00, 0x40}, // of the bus on the Primary side and on the Secondary side when GNT# is deasserted.
{SB_PCIB_REG66 + 1, 0xFF, BIT1}, // RPR Enable PCI bus GNT3#..
{0xFF, 0xFF, 0xFF},
// SATA Device (Bus 0, Dev 17, Func 0)
{0x00, SATA_BUS_DEV_FUN, 0},
{SB_SATA_REG44, 0xff, BIT0}, // RPR Enables the SATA watchdog timer register prior to the SATA BIOS post
{SB_SATA_REG44 + 2, 0, 0x20}, // RPR SATA PCI Watchdog timer setting
// [SB01923] Set timer out to 0x20 to fix IDE to SATA Bridge dropping drive issue.
{0xFF, 0xFF, 0xFF},
};
/**
* sbPmioEPostInitTable - Southbridge ACPI MMIO initial during POST.
*
*/
AcpiRegWrite sbPmioEPostInitTable[] =
{
{00, 00, 0xB0, 0xAC}, // Signature
// HPET workaround
{PMIO_BASE >> 8, SB_PMIOA_REG54 + 3, 0xFC, BIT0 + BIT1},
{PMIO_BASE >> 8, SB_PMIOA_REG54 + 2, 0x7F, BIT7},
{PMIO_BASE >> 8, SB_PMIOA_REG54 + 2, 0x7F, 0x00},
// End of HPET workaround
// Enable Hudson-2 A12 ACPI bits at PMIO 0xC0 [30, 10:3]
// ClrAllStsInThermalEvent 3 Set to 1 to allow ASF remote power down/power cycle, Thermal event, Fan slow event to clear all the Gevent status and enabled bits. The bit should be set to 1 all the time.
// UsbGoodClkDlyEn 4 Set to 1 to delay de-assertion of Usb clk by 6 Osc clk. The bit should be set to 1 all the time.
// ForceNBCPUPwr 5 Set to 1 to force CPU pwrGood to be toggled along with NB pwrGood.
// MergeUsbPerReq 6 Set to 1 to merge usb perdical traffic into usb request as one of break event.
// IMCWatchDogRstEn 7 Set to 1 to allow IMC watchdog timer to reset entire acpi block. The bit should be set to 1 when IMC is enabled.
// GeventStsFixEn 8 1: Gevent status is not reset by its enable bit. 0: Gevent status is reset by its enable bit.
// PmeTimerFixEn 9 Set to 1 to reset Pme Timer when going to sleep state.
// UserRst2EcEn 10 Set to 1 to route user reset event to Ec. The bit should be set to 1 when IMC is enabled.
// Smbus0ClkSEn 30 Set to 1 to enable SMBus0 controller clock stretch support.
{PMIO_BASE >> 8, SB_PMIOA_REGC4, ~BIT2, BIT2},
{PMIO_BASE >> 8, SB_PMIOA_REGC0, 0, 0xF9},
{PMIO_BASE >> 8, SB_PMIOA_REGC0 + 1, 0x04, 0x03},
// RtcSts 19-17 RTC_STS set only in Sleep State.
// GppPme 20 Set to 1 to enable PME request from SB GPP.
// Pcireset 22 Set to 1 to allow SW to reset PCIe.
{PMIO_BASE >> 8, SB_PMIOA_REGC2, 0x20, 0x58},
{PMIO_BASE >> 8, SB_PMIOA_REGC2 + 1, 0, 0x40},
{PMIO_BASE >> 8, SB_PMIOA_REGC2, ~(BIT4), BIT4},
{PMIO_BASE >> 8, SB_PMIOA_REGCC, 0xF8, 0x01},
{PMIO_BASE >> 8, SB_PMIOA_REG74, 0x00, BIT0 + BIT1 + BIT2 + BIT4},
{PMIO_BASE >> 8, SB_PMIOA_REG74 + 3, ~BIT5, 0},
{PMIO_BASE >> 8, SB_PMIOA_REGDE + 1, ~(BIT0 + BIT1), BIT0 + BIT1},
{PMIO_BASE >> 8, SB_PMIOA_REGDE, ~BIT4, BIT4},
{PMIO_BASE >> 8, SB_PMIOA_REGBA, ~BIT3, BIT3},
{PMIO_BASE >> 8, SB_PMIOA_REGBA + 1, ~BIT6, BIT6},
{PMIO_BASE >> 8, SB_PMIOA_REGBC, ~BIT1, BIT1},
{PMIO_BASE >> 8, SB_PMIOA_REGED, ~(BIT4 + BIT0 + BIT1), 0},
//RPR Hiding Flash Controller PM_IO 0xDC[7] = 0x0 & PM_IO 0xDC [1:0]=0x01
{PMIO_BASE >> 8, SB_PMIOA_REGDC, 0x7C, BIT0},
{SMI_BASE >> 8, SB_SMI_Gevent1, 0, 1},
{SMI_BASE >> 8, SB_SMI_Gevent3, 0, 3},
{SMI_BASE >> 8, SB_SMI_Gevent4, 0, 4},
{SMI_BASE >> 8, SB_SMI_Gevent5, 0, 5},
{SMI_BASE >> 8, SB_SMI_Gevent6, 0, 6},
{SMI_BASE >> 8, SB_SMI_Gevent23, 0, 23},
{SMI_BASE >> 8, SB_SMI_xHC0Pme, 0, 11},
{SMI_BASE >> 8, SB_SMI_xHC1Pme, 0, 11},
{SMI_BASE >> 8, SB_SMI_Usbwakup0, 0, 11},
{SMI_BASE >> 8, SB_SMI_Usbwakup1, 0, 11},
#ifndef USB_LOGO_SUPPORT
{SMI_BASE >> 8, SB_SMI_Usbwakup2, 0, 11},
{SMI_BASE >> 8, SB_SMI_Usbwakup3, 0, 11},
#endif
{SMI_BASE >> 8, SB_SMI_IMCGevent0, 0, 12},
{SMI_BASE >> 8, SB_SMI_FanThGevent, 0, 13},
{SMI_BASE >> 8, SB_SMI_SBGppPme0, 0, 15},
{SMI_BASE >> 8, SB_SMI_SBGppPme1, 0, 16},
{SMI_BASE >> 8, SB_SMI_SBGppPme2, 0, 17},
{SMI_BASE >> 8, SB_SMI_SBGppPme3, 0, 18},
{SMI_BASE >> 8, SB_SMI_GecPme, 0, 19},
{SMI_BASE >> 8, SB_SMI_CIRPme, 0, 28},
{SMI_BASE >> 8, SB_SMI_Gevent8, 0, 24},
{SMI_BASE >> 8, SB_SMI_AzaliaPme, 0, 27},
{SMI_BASE >> 8, SB_SMI_SataGevent0, 0, 30},
{SMI_BASE >> 8, SB_SMI_SataGevent1, 0, 31},
{SMI_BASE >> 8, SB_SMI_REG08, 0xE7, 0},
{SMI_BASE >> 8, SB_SMI_REG0C + 2, ~BIT3, BIT3},
{SMI_BASE >> 8, SB_SMI_TWARN, 0, 9},
// RPR CG PLL CMOX Clock Driver Setting for power saving
{MISC_BASE >> 8, SB_MISC_REG18 + 0x06, 0, 0xE0},
{MISC_BASE >> 8, SB_MISC_REG18 + 0x07, 0, 0x1F},
//{SERIAL_DEBUG_BASE >> 8, SB_SDB_REG74, 0, 0},
{0xFF, 0xFF, 0xFF, 0xFF},
};
/**
* abTblEntry800 - AB-Link Configuration Table for Hudson-2
*
*/
ABTBLENTRY abTblEntry800[] =
{
// RPR Enable downstream posted transactions to pass non-posted transactions.
{ABCFG, SB_ABCFG_REG10090, BIT8 + BIT16, BIT8 + BIT16},
// RPR Enable Hudson-2 to issue memory read/write requests in the upstream direction.
{AXCFG, SB_AB_REG04, BIT2, BIT2},
// RPR Enabling IDE/PCIB Prefetch for Performance Enhancement
// PCIB prefetch ABCFG 0x10060 [20] = 1 ABCFG 0x10064 [20] = 1
{ABCFG, SB_ABCFG_REG10060, BIT20, BIT20}, // PCIB prefetch enable
{ABCFG, SB_ABCFG_REG10064, BIT20, BIT20}, // PCIB prefetch enable
// RPR Controls the USB OHCI controller prefetch used for enhancing performance of ISO out devices.
// RPR Setting B-Link Prefetch Mode (ABCFG 0x80 [18:17] = 11)
{ABCFG, SB_ABCFG_REG80, BIT0 + BIT17 + BIT18, BIT0 + BIT17 + BIT18},
// RPR Enabled SMI ordering enhancement. ABCFG 0x90[21]
// RPR 7.7 USB Delay A-Link Express L1 State. ABCFG 0x90[16]
{ABCFG, SB_ABCFG_REG90, BIT21 + BIT16, BIT21 + BIT16},
// RPR Disable the credit variable in the downstream arbitration equation
// RPR Register bit to qualify additional address bits into downstream register programming. (A12 BIT1 default is set)
{ABCFG, SB_ABCFG_REG9C, BIT0, BIT0},
// RPR Enabling Detection of Upstream Interrupts ABCFG 0x94 [20] = 1
// ABCFG 0x94 [19:0] = cpu interrupt delivery address [39:20]
{ABCFG, SB_ABCFG_REG94, BIT20, BIT20 + 0x00FEE},
// RPR Programming cycle delay for AB and BIF clock gating
// RPR Enable the AB and BIF clock-gating logic.
// RPR Enable the A-Link int_arbiter enhancement to allow the A-Link bandwidth to be used more efficiently
// RPR Enable the requester ID for upstream traffic. [16]: SB/NB link [17]: GPP
{ABCFG, SB_ABCFG_REG10054, 0x00FFFFFF, 0x010407FF},
{ABCFG, SB_ABCFG_REG98, 0xFFFC00FF, 0x00034700},
{ABCFG, SB_ABCFG_REG54, 0x00FF0000, 0x00040000},
// RPR Non-Posted Memory Write Support
{AXINDC, SB_AX_INDXC_REG10, BIT9, BIT9},
// RPR 4.18 UMI L1 Configuration
//Step 1: AXINDC_Reg 0x02[0] = 0x1 Set REGS_DLP_IGNORE_IN_L1_EN to ignore DLLPs during L1 so that txclk can be turned off.
//Step 2: AXINDP_Reg 0x02[15] = 0x1 Sets REGS_LC_ALLOW_TX_L1_CONTROL to allow TX to prevent LC from going to L1 when there are outstanding completions.
{AXINDC, SB_AX_INDXC_REG02, BIT0, BIT0},
{AXINDP, SB_AX_INDXP_REG02, BIT15, BIT15},
{ABCFG, 0, 0, (UINT8) 0xFF}, // This dummy entry is to clear ab index
{ (UINT8)0xFF, (UINT8)0xFF, (UINT8)0xFF, (UINT8)0xFF},
};
/**
* SbPcieOrderRule - AB-Link Configuration Table for ablink Post Pass Np Downstream/Upstream Feature
*
*/
ABTBLENTRY SbPcieOrderRule[] =
{
// abPostPassNpDownStreamTbl
{ABCFG, SB_ABCFG_REG10060, BIT31, BIT31},
{ABCFG, SB_ABCFG_REG1009C, BIT4 + BIT5, BIT4 + BIT5},
{ABCFG, SB_ABCFG_REG9C, BIT2 + BIT3 + BIT4 + BIT5 + BIT6 + BIT7, BIT2 + BIT3 + BIT4 + BIT5 + BIT6 + BIT7},
{ABCFG, SB_ABCFG_REG90, BIT21 + BIT22 + BIT23, BIT21 + BIT22 + BIT23},
{ABCFG, SB_ABCFG_REGF0, BIT6 + BIT5, BIT6 + BIT5},
{AXINDC, SB_AX_INDXC_REG02, BIT9, BIT9},
{ABCFG, SB_ABCFG_REG10090, BIT9 + BIT10 + BIT11 + BIT12, BIT9 + BIT10 + BIT11 + BIT12},
// abPostPassNpUpStreamTbl
{ABCFG, SB_ABCFG_REG58, BIT10, BIT10},
{ABCFG, SB_ABCFG_REGF0, BIT3 + BIT4, BIT3 + BIT4},
{ABCFG, SB_ABCFG_REG54, BIT1, BIT1},
{ (UINT8)0xFF, (UINT8)0xFF, (UINT8)0xFF, (UINT8)0xFF},
};
/**
* Table for SD controller capability register
*
*
*
*
*/
UINT32 sdCap[] =
{
0x00000000, //
0x039FD972, //
0x839ED972, //
0x839AD972, //
0x839DD972, //
0x839CD972, //
0x8398D972, //
};
/**
* Table for Spread Spectrum
*
* RPR 12.9 Internal Clock Generator Spread Profile - to set default value to 0.363%.
*
*
*/
SB_SPREAD_SPECTRUM_ENTRY SpreadParameterTable[] =
{
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // Disabled
{1, 0x318, 0, 0x6F83, 0x90, 0, 0x07, 0, 1, 1},// -3630 ppm :1:Default
{1, 0x318, 0, 0x7AE1, 0x9F, 0, 0x0D, 0, 1, 1},// -4000 ppm :2
{1, 0x318, 0, 0x77CF, 0x9B, 0, 0x0B, 0, 1, 1},// -3900 ppm :3
{1, 0x318, 0, 0x74BC, 0x94, 0, 0x0A, 0, 1, 1},// -3800 ppm :4
{1, 0x318, 0, 0x71AA, 0x93, 0, 0x08, 0, 1, 1},// -3700 ppm :5
{1, 0x318, 0, 0x6FD2, 0x90, 0, 0x07, 0, 1, 1},// -3640 ppm :6
{1, 0x318, 0, 0x6F83, 0x90, 0, 0x07, 0, 1, 1},// -3630 ppm :7
{1, 0x318, 0, 0x6F35, 0x8F, 0, 0x07, 0, 1, 1},// -3620 ppm :8
{1, 0x318, 0, 0x6EE6, 0x8F, 0, 0x07, 0, 1, 1},// -3610 ppm :9
{1, 0x318, 0, 0x6E98, 0x8F, 0, 0x07, 0, 1, 1},// -3600 ppm :10
{1, 0x318, 0, 0x6E49, 0x8E, 0, 0x07, 0, 1, 1},// -3590 ppm :11
{1, 0x018, 0, 0x6666, 0x83, 0, 0x00, 0, 0, 1} // -3500 ppm :12
};
/**
* commonInitEarlyBoot - Config Southbridge SMBUS/ACPI/IDE/LPC/PCIB.
*
* This settings should be done during S3 resume also
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
commonInitEarlyBoot (
IN AMDSBCFG* pConfig
)
{
UINT32 abValue;
UINT16 dwTempVar;
SB_CPUID_DATA CpuId;
UINT8 cimNativepciesupport;
UINT8 cimIrConfig;
UINT8 Data;
UINT8 cimALinkClkGateOff;
UINT8 cimBLinkClkGateOff;
cimNativepciesupport = (UINT8) pConfig->NativePcieSupport;
cimIrConfig = (UINT8) pConfig->IrConfig;
cimALinkClkGateOff = (UINT8) pConfig->ALinkClkGateOff;
cimBLinkClkGateOff = (UINT8) pConfig->BLinkClkGateOff;
#if SB_CIMx_PARAMETER == 0
cimNativepciesupport = cimNativepciesupportDefault;
cimIrConfig = cimIrConfigDefault;
#endif
//Clear hwmSbtsiAutoPollStarted
pConfig->hwm.hwmSbtsiAutoPollStarted = FALSE;
//Ac Loss Control
AcLossControl (pConfig->PwrFailShadow);
//SB VGA Init
// OBS194249 Cobia_Nutmeg_DP-VGA Electrical SI validation_Lower RGB Luminance level BGADJ=0x1F & DACADJ=0x1B
// Removed for OBS194249 causes display issue in Windows
// SbVgaInit ();
//IR init Logical device 0x05
if ( cimIrConfig ) {
EnterEcConfig ();
RWEC8 (0x07, 0x00, 0x05); //Select logical device 05, IR controller
RWEC8 (0x60, 0x00, 0x05); //Set Base Address to 550h
RWEC8 (0x61, 0x00, 0x50);
RWEC8 (0x70, 0xF0, 0x05); //Set IRQ to 05h
RWEC8 (0x30, 0x00, 0x01); //Enable logical device 5, IR controller
Data = 0xAB;
WriteIO (0x550, AccWidthUint8, &Data);
ReadIO (0x551, AccWidthUint8, &Data);
Data = (((Data & 0xFC ) | 0x20) | cimIrConfig);
WriteIO (0x551, AccWidthUint8, &Data);
// Data = 0xCA;
// WriteIO (0x550, AccWidthUint8, &Data);
// Data = 0x81;
// WriteIO (0x551, AccWidthUint8, &Data);
ExitEcConfig ();
Data = 0xA0; // EC APIC index
WriteIO (SB_IOMAP_REGC00, AccWidthUint8, &Data);
Data = 0x05; // IRQ5
WriteIO (SB_IOMAP_REGC01, AccWidthUint8, &Data);
} else {
EnterEcConfig ();
//if (pConfig->Sdb != 1 ) {
//RWMEM (ACPI_MMIO_BASE + SERIAL_DEBUG_BASE + 0x04, AccWidthUint8, 0, 0);
//}
RWEC8 (0x07, 0x00, 0x05); //Select logical device 05, IR controller
RWEC8 (0x30, 0x00, 0x00); //Disable logical device 5, IR controller
ExitEcConfig ();
}
TRACE ((DMSG_SB_TRACE, "CIMx - Entering commonInitEarlyBoot \n"));
CpuidRead (0x01, &CpuId);
//
// SB CFG programming
//
//Make BAR registers of smbus visible.
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGC8 + 1, AccWidthUint8, ~BIT6, 0);
//Early post initialization of pci config space
programPciByteTable ((REG8MASK*) FIXUP_PTR (&sbEarlyPostByteInitTable[0]), sizeof (sbEarlyPostByteInitTable) / sizeof (REG8MASK) );
if ( pConfig->BuildParameters.SmbusSsid != 0 ) {
RWPCI ((SMBUS_BUS_DEV_FUN << 16) + SB_CFG_REG2C, AccWidthUint32 | S3_SAVE, 0x00, pConfig->BuildParameters.SmbusSsid);
}
//Make BAR registers of smbus invisible.
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGC8 + 1, AccWidthUint8, ~BIT6, BIT6);
//
// LPC CFG programming
//
// SSID for LPC Controller
if (pConfig->BuildParameters.LpcSsid != 0 ) {
RWPCI ((LPC_BUS_DEV_FUN << 16) + SB_LPC_REG2C, AccWidthUint32 | S3_SAVE, 0x00, pConfig->BuildParameters.LpcSsid);
}
// LPC MSI
if ( pConfig->BuildParameters.LpcMsi) {
RWPCI ((LPC_BUS_DEV_FUN << 16) + SB_LPC_REG78, AccWidthUint32 | S3_SAVE, ~BIT1, BIT1);
}
//
// PCIB CFG programming
//
//Disable or Enable PCI Clks based on input
Data = ~(pConfig->PciClks);
RWPCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG42, AccWidthUint8 | S3_SAVE, ~(BIT5 + BIT4 + BIT3 + BIT2), (Data & 0x0F) << 2 );
RWPCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG4A, AccWidthUint8 | S3_SAVE, ~(BIT3 + BIT2 + BIT1 + BIT0), Data >> 4 );
// PCIB MSI
if ( pConfig->BuildParameters.PcibMsi) {
RWPCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG40, AccWidthUint8 | S3_SAVE, ~BIT3, BIT3);
}
if ( pConfig->SlowSpeedABlinkClock ) {
RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG40, AccWidthUint8, ~BIT1, BIT1);
} else {
RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG40, AccWidthUint8, ~BIT1, 0);
}
//
// AB CFG programming
//
// Read Arbiter address, Arbiter address is in PMIO 6Ch
ReadMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG6C, AccWidthUint16, &dwTempVar);
RWIO (dwTempVar, AccWidthUint8, 0, 0); // Write 0 to enable the arbiter
abLinkInitBeforePciEnum (pConfig); // Set ABCFG registers
// AB MSI
if ( pConfig->BuildParameters.AbMsi) {
abValue = readAlink (SB_ABCFG_REG94 | (UINT32) (ABCFG << 29));
abValue = abValue | BIT20;
writeAlink (SB_ABCFG_REG94 | (UINT32) (ABCFG << 29), abValue);
}
//
// SB Specific Function programming
//
// PCIE Native setting
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGBA + 1, AccWidthUint8, ~BIT14, 0);
if ( pConfig->NativePcieSupport == 1) {
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG74 + 3, AccWidthUint8, ~(BIT3 + BIT1 + BIT0), BIT3 + BIT2 + BIT0);
} else {
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG74 + 3, AccWidthUint8, ~(BIT3 + BIT1 + BIT0), BIT3 + BIT2);
}
#ifdef ACPI_SLEEP_TRAP
// Set SLP_TYPE as SMI event
RWMEM (ACPI_MMIO_BASE + SMI_BASE + SB_SMI_REGB0, AccWidthUint8, ~(BIT2 + BIT3), BIT2);
// Disabled SLP function for S1/S3/S4/S5
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGBE, AccWidthUint8, ~BIT5, 0x00);
// Set S state transition disabled (BIT0) force ACPI to send SMI message when writing to SLP_TYP Acpi register. (BIT1)
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG08 + 3, AccWidthUint8, ~(BIT0 + BIT1), BIT1);
// Enabled Global Smi ( BIT7 clear as 0 to enable )
RWMEM (ACPI_MMIO_BASE + SMI_BASE + SB_SMI_REG98 + 3 , AccWidthUint8, ~BIT7, 0x00);
#endif
// Set Stutter timer settings
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80 + 1, AccWidthUint8, ~(BIT3 + BIT4), BIT3 + BIT4);
// Set LDTSTP# duration to 10us for HydraD CPU, or when HT link is 200MHz
if ((pConfig->AnyHT200MhzLink) || ((CpuId.EAX_Reg & 0x00ff00f0) == 0x100080) || ((CpuId.EAX_Reg & 0x00ff00f0) == 0x100090) || ((CpuId.EAX_Reg & 0x00ff00f0) == 0x1000A0)) {
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG94, AccWidthUint8, 0, 0x0A);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80 + 3, AccWidthUint8, 0xFE, 0x28);
} else {
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG94, AccWidthUint8, 0, 0x01);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80 + 3, AccWidthUint8, 0xFE, 0x20);
}
// A/B Clock Gate-OFF
if ( (IsSbA12Plus ()) && ( cimALinkClkGateOff || cimBLinkClkGateOff )) {
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG04 + 2, AccWidthUint8, ~(BIT0), BIT0);
}
if ( cimALinkClkGateOff ) {
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x2E, AccWidthUint8, 0xFE, BIT0);
} else {
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x2E, AccWidthUint8, 0xFE, 0x00);
}
if ( cimBLinkClkGateOff ) {
if ( IsSbA11 () ) {
// RPR13.7 B-Link Clock Gating Threshold for A11 only
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x2D, AccWidthUint8, 0xEF, 0x10); //A11 Only
}
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x2E, AccWidthUint8, 0xFD, BIT1);
} else {
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x2E, AccWidthUint8, 0xFD, 0x00);
}
// RPR SSC will provide better jitter margin
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x13, AccWidthUint8, 0xFC, 0x01);
// Set ACPIMMIO by OEM Input table
programSbAcpiMmioTbl ((AcpiRegWrite *) (pConfig->OEMPROGTBL.OemProgrammingTablePtr_Ptr));
// 2.9 NB Power Good Control on System Reset
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGBF, AccWidthUint8, ~ (BIT0), 0);
// 2.10 Extend SerIrq request
RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG50, AccWidthUint32, ~ (BIT29), (BIT29));
// 2.13 Clear status of SATA PERR
Data = BIT6;
WriteMEM (ACPI_MMIO_BASE + SMI_BASE + SB_SMI_REG3C, AccWidthUint8, &Data);
Data = BIT7;
WriteMEM (ACPI_MMIO_BASE + SMI_BASE + SB_SMI_REG84 + 2, AccWidthUint8, &Data);
if (IsSbA13Plus ()) {
// 2.14 Enable Delayed SLP_S3/S5 to the Board
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGC0 + 1, AccWidthUint8, 0xFF, BIT2);
// 2.15 Enable C-State Wake-up before Warm Reset
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGBE, AccWidthUint8, ~ (BIT0), BIT0);
// 3.16 Disable LPC A-Link Cycle Bypass
RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG50, AccWidthUint32, ~ (BIT19), (BIT19));
}
//RPR 3.5 Enabling LPCCLK0 Power-down Function
//OBS261463 Torpedo-IMC Fan Control-System stops somewhere when running S3
if ((!isImcEnabled ()) && (IsSbA13Plus ())) {
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD2, AccWidthUint8, ~ (BIT3), BIT3);
} else {
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD2, AccWidthUint8, ~ (BIT3), 0);
}
TRACE ((DMSG_SB_TRACE, "CIMx - Exiting commonInitEarlyBoot \n"));
}
/**
* abSpecialSetBeforePciEnum - Special setting ABCFG registers before PCI emulation.
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
abSpecialSetBeforePciEnum (
IN AMDSBCFG* pConfig
)
{
UINT32 abValue;
abValue = readAlink (SB_ABCFG_REGC0 | (UINT32) (ABCFG << 29));
abValue &= 0xf0;
if ( pConfig->SbPcieOrderRule && abValue ) {
abValue = readAlink (SB_RCINDXC_REG02 | (UINT32) (RCINDXC << 29));
abValue = abValue | BIT9;
writeAlink (SB_RCINDXC_REG02 | (UINT32) (RCINDXC << 29), abValue);
}
}
/**
* commonInitEarlyPost - Config Southbridge SMBUS/ACPI/IDE/LPC/PCIB.
*
* This settings might not program during S3 resume
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
commonInitEarlyPost (
IN AMDSBCFG* pConfig
)
{
UINT8 dbPortStatus;
UINT8 Data;
UINT32 Data32;
UINT8 cimSpreadSpectrum;
UINT8 maxSpreadEntry;
AMDSBCFG* pTmp;
pTmp = pConfig;
maxSpreadEntry = (sizeof SpreadParameterTable) / (sizeof (SB_SPREAD_SPECTRUM_ENTRY));
cimSpreadSpectrum = pConfig->SpreadSpectrum;
#if SB_CIMx_PARAMETER == 0
cimSpreadSpectrum = cimSpreadSpectrumDefault;
#endif
programSbAcpiMmioTbl ((AcpiRegWrite*) FIXUP_PTR (&sbPmioEPostInitTable[0]));
// Turn on and configure LPC clock (48MHz)
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x28, AccWidthUint32, ~(BIT21 + BIT20 + BIT19), 2 << 19);
RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG40, AccWidthUint8, ~BIT7, 0);
if ( cimSpreadSpectrum ) {
if ( IsSbA11 () ) {
// Misc_Reg_40[25]=1 -> allow to change spread profile
// Misc_Reg19=83 -> new spread profile
// Misc_Reg[12:10]=9975be
// Misc_Reg0B=91
// Misc_Reg09=21
// Misc_Misc_Reg_08[0]=1 -> enable spread
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x43, AccWidthUint8, ~BIT1, BIT1);
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x19, AccWidthUint8, 0, 0x83);
getChipSysMode (&dbPortStatus);
if ( ((dbPortStatus & ChipSysIntClkGen) != ChipSysIntClkGen) ) {
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x1A, AccWidthUint8, ~(BIT5 + BIT6 + BIT7), 0x80);
}
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x12, AccWidthUint8, 0, 0x99);
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x11, AccWidthUint8, 0, 0x75);
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x10, AccWidthUint8, 0, 0xBE);
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x0B, AccWidthUint8, 0, 0x91);
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x09, AccWidthUint8, 0, 0x21);
}
if ( cimSpreadSpectrum >= maxSpreadEntry ) {
cimSpreadSpectrum = 1;
}
if ( IsSbA12Plus () ) {
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x40, AccWidthUint32, (UINT32) (~(0x1 << 25)), ( SpreadParameterTable[cimSpreadSpectrum].P_40_25 << 25));
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccWidthUint32, (UINT32) (~(0x1 << 0)), (0x0 << 0));
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x18, AccWidthUint32, (UINT32) (~(0x7FF << 5)), (SpreadParameterTable[cimSpreadSpectrum].P_18_15_5 << 5));
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x18, AccWidthUint32, (UINT32) (~(0xF << 16)), (SpreadParameterTable[cimSpreadSpectrum].P_18_19_16 << 16));
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x10, AccWidthUint32, (UINT32) (~(0xFFFF << 8)), (SpreadParameterTable[cimSpreadSpectrum].P_10_23_8 << 8));
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x10, AccWidthUint32, (UINT32) (~(0xFF << 0)), (SpreadParameterTable[cimSpreadSpectrum].P_10_7_0 << 0));
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x1C, AccWidthUint32, (UINT32) (~(0x3F << 0)), (SpreadParameterTable[cimSpreadSpectrum].P_1C_5_0 << 0));
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccWidthUint32, (UINT32) (~(0xF << 28)), (SpreadParameterTable[cimSpreadSpectrum].P_08_31_28 << 28));
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccWidthUint32, (UINT32) (~(0x1 << 7)), (SpreadParameterTable[cimSpreadSpectrum].P_08_7 << 7));
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccWidthUint32, (UINT32) (~(0x1 << 8)), (SpreadParameterTable[cimSpreadSpectrum].P_08_8 << 8));
RWMEM (ACPI_MMIO_BASE + MISC_BASE + 0x10, AccWidthUint32, (UINT32) (~(0x3 << 24)), (SpreadParameterTable[cimSpreadSpectrum].P_10_25_24 << 24));
}
if ( IsExternalClockMode () ) {
RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG08, AccWidthUint8, 0xFE, 0x00);
} else {
RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG08, AccWidthUint8, 0xFE, 0x01);
}
} else {
RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG08, AccWidthUint8, 0xFE, 0x00);
}
// SD Configuration
if ( pConfig->sdConfig ) {
//OBS263741 TTP1000D: SD Host Controller can't be enabled after disabling it in BIOS setup.
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD3, AccWidthUint8, 0xBF, 0x40);
RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG41, AccWidthUint8, 0xF1, 0x48);
RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG42, AccWidthUint8, 0xFE, 0x00);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGE7, AccWidthUint8, 0x00, 0x12);
// INT#A SD resource
Data = 0x97; // Azalia APIC index
WriteIO (SB_IOMAP_REGC00, AccWidthUint8, &Data);
Data = 0x10; // IRQ16 (INTA#)
WriteIO (SB_IOMAP_REGC01, AccWidthUint8, &Data);
ReadPCI ((SD_BUS_DEV_FUN << 16) + SD_PCI_REGA4, AccWidthUint32, &Data32);
Data32 |= BIT31 + BIT24 + BIT18 + BIT16; //ADMA
if ( pConfig->sdConfig == 2) {
Data32 &= ~(BIT16 + BIT24); //DMA
} else if ( pConfig->sdConfig == 3) {
Data32 &= ~(BIT16 + BIT18 + BIT24); //PIO
}
Data32 &= ~(BIT17 + BIT23); //clear bitwidth
Data32 |= (pConfig->sdSpeed << 17) + (pConfig->sdBitwidth << 23);
RWPCI ((SD_BUS_DEV_FUN << 16) + SD_PCI_REGA4, AccWidthUint32 | S3_SAVE, 0, Data32);
//SB02544: SD: Some SD cards cannot be detected in HIGH speed mode
if ( IsSbA12Plus () ) {
RWPCI ((SD_BUS_DEV_FUN << 16) + SD_PCI_REGB0, AccWidthUint32 | S3_SAVE, (UINT32) (~ (0x03 << 10)), (UINT32) (0x03 << 10));
}
//BUG260949 There isn't code that set SSID of SD Controller in Hudson CIMX
ReadPCI ((SD_BUS_DEV_FUN << 16) + SD_PCI_REG00, AccWidthUint32, &Data32);
RWPCI ((SD_BUS_DEV_FUN << 16) + SD_PCI_REG2C, AccWidthUint32 | S3_SAVE, 0, Data32);
} else {
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD3, AccWidthUint8, 0xBF, 0x00);
}
// RPR PLL 100Mhz Reference Clock Buffer setting for internal clock generator mode (BIT5)
// RPR OSC Clock setting for internal clock generator mode (BIT6)
getChipSysMode (&dbPortStatus);
if ( ((dbPortStatus & ChipSysIntClkGen) == ChipSysIntClkGen) ) {
RWMEM (ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG04 + 1, AccWidthUint8, ~(BIT5 + BIT6), BIT5 + BIT6);
}
// Set ASF SMBUS master function enabled here (temporary)
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG28, AccWidthUint16 | S3_SAVE, ~(BIT0 + BIT2), BIT0 + BIT2);
programSbAcpiMmioTbl ((AcpiRegWrite *) (pConfig->OEMPROGTBL.OemProgrammingTablePtr_Ptr));
#ifndef NO_EC_SUPPORT
// Software IMC enable
if (((pConfig->BuildParameters.ImcEnableOverWrite == 1) && ((dbPortStatus & ChipSysEcEnable) == 0)) || ((pConfig->BuildParameters.ImcEnableOverWrite == 2) && ((dbPortStatus & ChipSysEcEnable) == ChipSysEcEnable))) {
if (validateImcFirmware (pConfig)) {
softwareToggleImcStrapping (pConfig);
}
}
#endif
}
/**
* abLinkInitBeforePciEnum - Set ABCFG registers before PCI emulation.
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
abLinkInitBeforePciEnum (
IN AMDSBCFG* pConfig
)
{
UINT32 cimResetCpuOnSyncFlood;
ABTBLENTRY *pAbTblPtr;
AMDSBCFG* Temp;
cimResetCpuOnSyncFlood = pConfig->ResetCpuOnSyncFlood;
#if SB_CIMx_PARAMETER == 0
cimResetCpuOnSyncFlood = cimResetCpuOnSyncFloodDefault;
#endif
Temp = pConfig;
if ( pConfig->SbPcieOrderRule == 1 ) {
pAbTblPtr = (ABTBLENTRY *) FIXUP_PTR (&SbPcieOrderRule[0]);
abcfgTbl (pAbTblPtr);
}
if ( pConfig->SbPcieOrderRule == 2 ) {
rwAlink (SB_ABCFG_REG10090 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x7 << 10), (UINT32) (0x7 << 10));
rwAlink (SB_ABCFG_REG58 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1F << 11), (UINT32) (0x1C << 11));
rwAlink (SB_ABCFG_REGB4 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x3 << 0), (UINT32) (0x3 << 0));
}
pAbTblPtr = (ABTBLENTRY *) FIXUP_PTR (&abTblEntry800[0]);
abcfgTbl (pAbTblPtr);
if ( cimResetCpuOnSyncFlood ) {
rwAlink (SB_ABCFG_REG10050 | (UINT32) (ABCFG << 29), ~BIT2, BIT2);
}
if ( pConfig->AbClockGating ) {
rwAlink (SB_ABCFG_REG10054 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16));
rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16));
rwAlink (SB_ABCFG_REG10054 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 24), (UINT32) (0x1 << 24));
rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 24), (UINT32) (0x1 << 24));
} else {
rwAlink (SB_ABCFG_REG10054 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 24), (UINT32) (0x0 << 24));
rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 24), (UINT32) (0x0 << 24));
}
if ( pConfig->GppClockGating ) {
rwAlink (SB_ABCFG_REG98 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xF << 12), (UINT32) (0x4 << 12));
rwAlink (SB_ABCFG_REG98 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xF << 8), (UINT32) (0x7 << 8));
rwAlink (SB_ABCFG_REG90 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 0), (UINT32) (0x1 << 0));
} else {
rwAlink (SB_ABCFG_REG98 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xF << 8), (UINT32) (0x0 << 8));
rwAlink (SB_ABCFG_REG90 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 0), (UINT32) (0x0 << 0));
}
if ( pConfig->L1TimerOverwrite ) {
rwAlink (SB_ABCFG_REG90 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x7 << 12), (UINT32) (pConfig->L1TimerOverwrite << 12));
rwAlink (SB_ABCFG_REG90 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 15), (UINT32) (0x1 << 15));
}
if ( pConfig->UmiLinkWidth ) {
// rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16));
}
if ( pConfig->UmiDynamicSpeedChange ) {
rwAlink ((UINT32) SB_AX_INDXP_REGA4, ~ (UINT32) (0x1 << 0), (UINT32) (0x1 << 0));
rwAlink ((UINT32) SB_AX_CFG_REG88, ~ (UINT32) (0xF << 0), (UINT32) (0x2 << 0));
rwAlink ((UINT32) SB_AX_INDXP_REGA4, ~ (UINT32) (0x1 << 18), (UINT32) (0x1 << 18));
}
if ( pConfig->PcieRefClockOverclocking ) {
// rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16));
}
if ( pConfig->SbAlinkGppTxDriverStrength ) {
rwAlink (SB_ABCFG_REGA8 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x3 << 18), (UINT32) ((pConfig->SbAlinkGppTxDriverStrength - 1) << 18));
rwAlink (SB_ABCFG_REGA0 | (UINT32) (ABCFG << 29), ~ (UINT32) (0x1 << 8), (UINT32) (0x1 << 8));
}
if ( pConfig->PcieAER ) {
// rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16));
}
if ( pConfig->PcieRAS ) {
// rwAlink (SB_ABCFG_REG54 | (UINT32) (ABCFG << 29), ~ (UINT32) (0xFF << 16), (UINT32) (0x4 << 16));
}
}
/**
* abcfgTbl - Program ABCFG by input table.
*
*
* @param[in] pABTbl ABCFG config table.
*
*/
VOID
abcfgTbl (
IN ABTBLENTRY* pABTbl
)
{
UINT32 ddValue;
while ( (pABTbl->regType) != 0xFF ) {
TRACE ((DMSG_SB_TRACE, "RegType: %X, RegNumber: %X, AndMask = %X, OrMask = %X \n", pABTbl->regType, pABTbl->regIndex, pABTbl->regMask, pABTbl->regData));
if ( pABTbl->regType == AXINDC ) {
ddValue = 0x30 | (pABTbl->regType << 29);
writeAlink (ddValue, (pABTbl->regIndex & 0x00FFFFFF));
ddValue = 0x34 | (pABTbl->regType << 29);
writeAlink (ddValue, ((readAlink (ddValue)) & (0xFFFFFFFF^ (pABTbl->regMask))) | pABTbl->regData);
} else if ( pABTbl->regType == AXINDP ) {
ddValue = 0x38 | (pABTbl->regType << 29);
writeAlink (ddValue, (pABTbl->regIndex & 0x00FFFFFF));
ddValue = 0x3C | (pABTbl->regType << 29);
writeAlink (ddValue, ((readAlink (ddValue)) & (0xFFFFFFFF^ (pABTbl->regMask))) | pABTbl->regData);
} else {
ddValue = pABTbl->regIndex | (pABTbl->regType << 29);
writeAlink (ddValue, ((readAlink (ddValue)) & (0xFFFFFFFF^ (pABTbl->regMask))) | pABTbl->regData);
}
++pABTbl;
}
//Clear ALink Access Index
ddValue = 0;
WriteIO (ALINK_ACCESS_INDEX, AccWidthUint32 | S3_SAVE, &ddValue);
TRACE ((DMSG_SB_TRACE, "Exiting abcfgTbl\n"));
}
/**
* commonInitLateBoot - Prepare Southbridge register setting to boot to OS.
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
commonInitLateBoot (
IN AMDSBCFG* pConfig
)
{
UINT8 dbValue;
UINT32 ddVar;
UINT8 NStBit;
UINT8 NSBit;
UINT8 indexValue;
// We need to do the following setting in late post also because some bios core pci enumeration changes these values
// programmed during early post.
// RPR 4.5 Master Latency Timer
dbValue = 0x40;
WritePCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG0D, AccWidthUint8, &dbValue);
WritePCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG1B, AccWidthUint8, &dbValue);
//RPR 6.4 CLKRUN#
// SB P2P AutoClock control settings.
// ddVar = (pConfig->PcibAutoClkCtrlLow) | (pConfig->PcibAutoClkCtrlLow);
if ( pConfig->ClockRun ) {
ReadMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG54, AccWidthUint8, &dbValue);
NStBit = dbValue & 0x03;
NSBit = (dbValue & 0x3F ) >> 2;
ddVar = (4 + (NStBit * 2) + (( 17 + NSBit) * 3) + 4) | 0x01;
if ( IsSbA12Plus () ) {
ddVar = 9; //4 clocks
}
WritePCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG4C, AccWidthUint32, &ddVar);
}
ddVar = (pConfig->PcibClkStopOverride);
RWPCI ((PCIB_BUS_DEV_FUN << 16) + SB_PCIB_REG50, AccWidthUint16, 0x3F, (UINT16) (ddVar << 6));
RWPCI ((LPC_BUS_DEV_FUN << 16) + SB_LPC_REGBB, AccWidthUint8, 0xBF | S3_SAVE, BIT3 + BIT4 + BIT5);
if ( IsGCPU () ) {
GcpuRelatedSetting (pConfig);
} else {
c3PopupSetting (pConfig);
}
//[RPR 2.12] Mt C1E Enable
MtC1eEnable (pConfig);
RWPCI ((0xC1 << 16) + 0xBC, AccWidthUint8, 0x7f, 0x80);
//if (pConfig->Sdb == 1 ) {
//RWMEM (ACPI_MMIO_BASE + SERIAL_DEBUG_BASE + SB_SDB_REG00, AccWidthUint8, 0xFF, 0x05);
//}
if ( pConfig->XhciSwitch == 1 ) {
ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x10, AccWidthUint8, &dbValue);
indexValue = XHCI_REGISTER_BAR00;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x11, AccWidthUint8, &dbValue);
indexValue = XHCI_REGISTER_BAR01;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x12, AccWidthUint8, &dbValue);
indexValue = XHCI_REGISTER_BAR02;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x13, AccWidthUint8, &dbValue);
indexValue = XHCI_REGISTER_BAR03;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x04, AccWidthUint8, &dbValue);
indexValue = XHCI_REGISTER_04H;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x0C, AccWidthUint8, &dbValue);
indexValue = XHCI_REGISTER_0CH;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI_BUS_DEV_FUN << 16) + 0x3C, AccWidthUint8, &dbValue);
indexValue = XHCI_REGISTER_3CH;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x10, AccWidthUint8, &dbValue);
indexValue = XHCI1_REGISTER_BAR00;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x11, AccWidthUint8, &dbValue);
indexValue = XHCI1_REGISTER_BAR01;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x12, AccWidthUint8, &dbValue);
indexValue = XHCI1_REGISTER_BAR02;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x13, AccWidthUint8, &dbValue);
indexValue = XHCI1_REGISTER_BAR03;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x04, AccWidthUint8, &dbValue);
indexValue = XHCI1_REGISTER_04H;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x0C, AccWidthUint8, &dbValue);
indexValue = XHCI1_REGISTER_0CH;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
ReadPCI ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x3C, AccWidthUint8, &dbValue);
indexValue = XHCI1_REGISTER_3CH;
WriteIO (SB_IOMAP_REGCD4, AccWidthUint8, &indexValue);
WriteIO (SB_IOMAP_REGCD5, AccWidthUint8, &dbValue);
}
}
/**
* hpetInit - Program Southbridge HPET function
*
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
* @param[in] pStaticOptions Platform build configuration table.
*
*/
VOID
hpetInit (
IN AMDSBCFG* pConfig,
IN BUILDPARAM *pStaticOptions
)
{
DESCRIPTION_HEADER* pHpetTable;
UINT8 cimHpetTimer;
UINT8 cimHpetMsiDis;
cimHpetTimer = (UINT8) pConfig->HpetTimer;
cimHpetMsiDis = (UINT8) pConfig->HpetMsiDis;
#if SB_CIMx_PARAMETER == 0
cimHpetTimer = cimHpetTimerDefault;
cimHpetMsiDis = cimHpetMsiDisDefault;
#endif
pHpetTable = NULL;
if ( cimHpetTimer == TRUE ) {
//Program the HPET BAR address
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG50, AccWidthUint32 | S3_SAVE, 0xFFFFF800, pStaticOptions->HpetBase);
//Enabling decoding of HPET MMIO
//Enable HPET MSI support
//Enable High Precision Event Timer (also called Multimedia Timer) interrupt
if ( cimHpetMsiDis == FALSE ) {
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG50, AccWidthUint32 | S3_SAVE, 0xFFFFF800, BIT0 + BIT1 + BIT2 + BIT3 + BIT4);
#ifdef SB_TIMER_TICK_INTERVAL_WA
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG50, AccWidthUint32 | S3_SAVE, 0xFFFFF800, BIT0 + BIT1);
#endif
} else {
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG50, AccWidthUint32 | S3_SAVE, 0xFFFFF800, BIT0 + BIT1);
}
} else {
if ( ! (pConfig->S3Resume) ) {
pHpetTable = (DESCRIPTION_HEADER*) ACPI_LocateTable (Int32FromChar('T', 'E', 'P', 'H'));
}
if ( pHpetTable != NULL ) {
pHpetTable->Signature = Int32FromChar('H', 'P', 'E', 'T');
}
}
}
/**
* c3PopupSetting - Program Southbridge C state function
*
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
c3PopupSetting (
IN AMDSBCFG* pConfig
)
{
AMDSBCFG* Temp;
UINT8 dbValue;
Temp = pConfig;
dbValue = getNumberOfCpuCores ();
#define NON_SUPPORT_PREVIOUS_C3 TRUE
#ifndef NON_SUPPORT_PREVIOUS_C3
if (dbValue > 1) {
//PM 0x80[2]=1, For system with dual core CPU, set this bit to 1 to automatically clear BM_STS when the C3 state is being initiated.
//PM 0x80[1]=1, For system with dual core CPU, set this bit to 1 and BM_STS will cause C3 to wakeup regardless of BM_RLD
//PM 0x7E[6]=1, Enable pop-up for C3. For internal bus mastering or BmReq# from the NB, the SB will de-assert
//LDTSTP# (pop-up) to allow DMA traffic, then assert LDTSTP# again after some idle time.
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint8 | S3_SAVE, ~(BIT1 + BIT2), (BIT1 + BIT2));
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7E, AccWidthUint8 | S3_SAVE, ~BIT6, BIT6);
}
//SB800 needs to changed for RD790 support
//PM 0x80 [8] = 0 for system with RS780
//Note: RS690 north bridge has AllowLdtStop built for both display and PCIE traffic to wake up the HT link.
//BmReq# needs to be ignored otherwise may cause LDTSTP# not to toggle.
//PM_IO 0x80[3]=1, Ignore BM_STS_SET message from NB
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT9 + BIT8 + BIT7 + BIT4 + BIT3 + BIT2 + BIT1 + BIT0), 0x21F);
//LdtStartTime = 10h for minimum LDTSTP# de-assertion duration of 16us in StutterMode. This is to guarantee that
//the HT link has been safely reconnected before it can be disconnected again. If C3 pop-up is enabled, the 16us also
//serves as the minimum idle time before LDTSTP# can be asserted again. This allows DMA to finish before the HT
//link is disconnected.
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG94 + 2, AccWidthUint8, 0, 0x10);
//This setting provides 16us delay before the assertion of LDTSTOP# when C3 is entered. The
//delay will allow USB DMA to go on in a continuous manner
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG98 + 1, AccWidthUint8, 0, 0x10);
// Not in the RPR so far, it's hand writing from ASIC
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7C, AccWidthUint8 | S3_SAVE, 0, 0x85);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7C + 1, AccWidthUint8 | S3_SAVE, 0, 0x01);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7E + 1, AccWidthUint8 | S3_SAVE, ~(BIT7 + BIT5), BIT7 + BIT5);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG88 + 1, AccWidthUint8 | S3_SAVE, ~BIT4, BIT4);
// RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG94, AccWidthUint8, 0, 0x10);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG98 + 3, AccWidthUint8, 0, 0x10);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGB4 + 1, AccWidthUint8, 0, 0x0B);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG88, AccWidthUint8 | S3_SAVE, ~(BIT4 + BIT5), BIT4 + BIT5);
#else
//RPR2.4 C-State and VID/FID Change
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG88, AccWidthUint8 | S3_SAVE, ~(BIT5), BIT5);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT2), BIT2);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT1), BIT1);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7E, AccWidthUint8 | S3_SAVE, ~(BIT6), BIT6);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG94, AccWidthUint8 | S3_SAVE, 0, 0x01);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG89, AccWidthUint8 | S3_SAVE, ~BIT4, BIT4);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG88, AccWidthUint8 | S3_SAVE, ~BIT4, BIT4);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG9B, AccWidthUint8 | S3_SAVE, ~(BIT6 + BIT5 + BIT4), BIT4);
//RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT10), BIT10);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG9B, AccWidthUint8 | S3_SAVE, ~(BIT1 + BIT0), 0);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG96, AccWidthUint8 | S3_SAVE, 0, 0x10);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG99, AccWidthUint8 | S3_SAVE, 0, 0x10);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG8E, AccWidthUint8 | S3_SAVE, 0, 0x80);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG97, AccWidthUint8 | S3_SAVE, ~(BIT1 + BIT0), 0);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT4), BIT4);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT9), BIT9);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~(BIT7), 0);
#endif
}
/**
* GcpuRelatedSetting - Program GCPU C related function
*
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
GcpuRelatedSetting (
IN AMDSBCFG* pConfig
)
{
UINT8 cimAcDcMsg;
UINT8 cimTimerTickTrack;
UINT8 cimClockInterruptTag;
UINT8 cimOhciTrafficHanding;
UINT8 cimEhciTrafficHanding;
UINT8 cimFusionMsgCMultiCore;
UINT8 cimFusionMsgCStage;
UINT32 ddValue;
cimAcDcMsg = (UINT8) pConfig->AcDcMsg;
cimTimerTickTrack = (UINT8) pConfig->TimerTickTrack;
cimClockInterruptTag = (UINT8) pConfig->ClockInterruptTag;
cimOhciTrafficHanding = (UINT8) pConfig->OhciTrafficHanding;
cimEhciTrafficHanding = (UINT8) pConfig->EhciTrafficHanding;
cimFusionMsgCMultiCore = (UINT8) pConfig->FusionMsgCMultiCore;
cimFusionMsgCStage = (UINT8) pConfig->FusionMsgCStage;
#if SB_CIMx_PARAMETER == 0
cimAcDcMsg = cimAcDcMsgDefault;
cimTimerTickTrack = cimTimerTickTrackDefault;
cimClockInterruptTag = cimClockInterruptTagDefault;
cimOhciTrafficHanding = cimOhciTrafficHandingDefault;
cimEhciTrafficHanding = cimEhciTrafficHandingDefault;
cimFusionMsgCMultiCore = cimFusionMsgCMultiCoreDefault;
cimFusionMsgCStage = cimFusionMsgCStageDefault;
#endif
ReadMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGA0, AccWidthUint32 | S3_SAVE, &ddValue);
ddValue = ddValue & 0xC07F00A0;
if ( cimAcDcMsg ) {
ddValue = ddValue | BIT0;
}
if ( cimTimerTickTrack ) {
ddValue = ddValue | BIT1;
}
if ( cimClockInterruptTag ) {
ddValue = ddValue | BIT10;
}
if ( cimOhciTrafficHanding ) {
ddValue = ddValue | BIT13;
}
if ( cimEhciTrafficHanding ) {
ddValue = ddValue | BIT15;
}
if ( cimFusionMsgCMultiCore ) {
ddValue = ddValue | BIT23;
}
if ( cimFusionMsgCMultiCore ) {
ddValue = (ddValue | (BIT6 + BIT4 + BIT3 + BIT2));
}
WriteMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGA0, AccWidthUint32 | S3_SAVE, &ddValue);
}
/**
* MtC1eEnable - Program Mt C1E Enable Function
*
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
MtC1eEnable (
IN AMDSBCFG* pConfig
)
{
if ( pConfig->MtC1eEnable ) {
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7A, AccWidthUint16 | S3_SAVE, ~ BIT15, BIT15);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG7A, AccWidthUint16 | S3_SAVE, ~ (BIT3 + BIT2 + BIT1 + BIT0), 0x01);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~ BIT13, BIT13);
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG80, AccWidthUint16 | S3_SAVE, ~ BIT7, BIT7);
}
}
#ifndef NO_EC_SUPPORT
/**
* validateImcFirmware - Validate IMC Firmware.
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
* @retval TRUE Pass
* @retval FALSE Failed
*/
BOOLEAN
validateImcFirmware (
IN AMDSBCFG* pConfig
)
{
UINT32 ImcSig;
UINT32 ImcSigAddr;
UINT32 ImcAddr;
UINT32 CurAddr;
UINT32 ImcBinSig0;
UINT32 ImcBinSig1;
UINT16 ImcBinSig2;
UINT8 dbIMCChecksume;
UINT8 dbIMC;
ImcAddr = 0;
// Software IMC enable
ImcSigAddr = 0x80000; // start from 512k to 64M
ImcSig = 0x0; //
while ( ( ImcSig != 0x55aa55aa ) && ( ImcSigAddr <= 0x4000000 ) ) {
CurAddr = 0xffffffff - ImcSigAddr + 0x20001;
ReadMEM (CurAddr, AccWidthUint32, &ImcSig);
ReadMEM ((CurAddr + 4), AccWidthUint32, &ImcAddr);
ImcSigAddr <<= 1;
}
dbIMCChecksume = 0xff;
if ( ImcSig == 0x55aa55aa ) {
// "_AMD_IMC_C" at offset 0x2000 of the binary
ReadMEM ((ImcAddr + 0x2000), AccWidthUint32, &ImcBinSig0);
ReadMEM ((ImcAddr + 0x2004), AccWidthUint32, &ImcBinSig1);
ReadMEM ((ImcAddr + 0x2008), AccWidthUint16, &ImcBinSig2);
if ((ImcBinSig0 == 0x444D415F) && (ImcBinSig1 == 0x434D495F) && (ImcBinSig2 == 0x435F) ) {
dbIMCChecksume = 0;
for ( CurAddr = ImcAddr; CurAddr < ImcAddr + 0x10000; CurAddr++ ) {
ReadMEM (CurAddr, AccWidthUint8, &dbIMC);
dbIMCChecksume = dbIMCChecksume + dbIMC;
}
}
}
if ( dbIMCChecksume ) {
return FALSE;
} else {
return TRUE;
}
}
/**
* softwareToggleImcStrapping - Software Toggle IMC Firmware Strapping.
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
softwareToggleImcStrapping (
IN AMDSBCFG* pConfig
)
{
UINT8 dbValue;
UINT8 dbPortStatus;
UINT32 abValue;
UINT32 abValue1;
getChipSysMode (&dbPortStatus);
ReadPMIO (SB_PMIOA_REGBF, AccWidthUint8, &dbValue);
//if ( (dbValue & (BIT6 + BIT7)) != 0xC0 ) { // PwrGoodOut =1, PwrGoodEnB=1
//The strapStatus register is not mapped into StrapOveride not in the same bit position. The following is difference.
//StrapStatus StrapOverride
// bit4 bit17
// bit6 bit12
// bit12 bit15
// bit15 bit16
// bit16 bit18
ReadMEM ((ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG80), AccWidthUint32, &abValue);
abValue1 = abValue & (~ (BIT4 + BIT6 + BIT17 + BIT12 + BIT15 + BIT16 + BIT18));
if (abValue & BIT4) {
abValue1 = (abValue1 & ~BIT4) | BIT17;
}
if (abValue & BIT6) {
abValue1 = (abValue1 & ~BIT6) | BIT12;
}
if (abValue & BIT12) {
abValue1 = (abValue1 & ~BIT12) | BIT15;
}
if (abValue & BIT15) {
abValue1 = (abValue1 & ~BIT15) | BIT16;
}
if (abValue & BIT16) {
abValue1 = (abValue1 & ~BIT16) | BIT18;
}
abValue1 |= BIT31; // Overwrite enable
if ((dbPortStatus & ChipSysEcEnable) == 0) {
abValue1 |= BIT2; // bit2- EcEnableStrap
} else {
abValue1 &= ~BIT2; // bit2=0 EcEnableStrap
}
WriteMEM ((ACPI_MMIO_BASE + MISC_BASE + SB_MISC_REG84), AccWidthUint32, &abValue1);
dbValue |= (BIT6 + BIT7); // PwrGoodOut =1, PwrGoodEnB=1
WritePMIO (SB_PMIOA_REGBF, AccWidthUint8, &dbValue);
dbValue = 06;
WriteIO (0xcf9, AccWidthUint8, &dbValue);
SbStall (0xffffffff);
}
#endif
/**
* A13ResumeResetTwoSecondRtcWakeup - A13 Resume Reset 2 Seconds
* RTC Wakeup
*
*
*
* @retval Nothing
*
*/
VOID
A13ResumeResetTwoSecondRtcWakeup (
void
)
{
if ( IsSbA13Plus () ) {
//Configure RTC clocks and power failure to "off"
ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG57) |= 0x03;
ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG56) |= 0x80;
ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG56) &= 0x7f;
ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REG5B) = 0x04;
//set 2 seconds RTC wake up
ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x00) = 0;
ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x01) = 2;
ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x02) = 0;
ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x03) = 0;
ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x04) = 0;
ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x05) = 0;
ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x0d) = 0x80;
ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_BASE + 0x0b) |= 0x22;
//Do ResumeReset by SB A13 ECO
WriteIo8 (0x80, 0xef);
ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD6) |= 0x40;
do {
WriteIo8 (0x80, 0xfe);
} while ( ACPIMMIO8 (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGD6) );
}
}
/**
* StressResetModeLate - Stress Reset Mode
*
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
StressResetModeLate (
IN AMDSBCFG* pConfig
)
{
switch ( pConfig->StressResetMode ) {
case 1:
WriteIo8 ((UINT16) (0x64), 0xFE);
break;
case 2:
WriteIo8 ((UINT16) (0xCF9), 0x06);
break;
case 3:
WriteIo8 ((UINT16) (0xCF9), 0x0E);
break;
case 4:
A13ResumeResetTwoSecondRtcWakeup ();
return;
default:
return;
}
while (pConfig->StressResetMode) {
}
}
/**
* CheckEfuse - Check Efuse
*
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
CheckEfuse (
IN AMDSBCFG* pConfig
)
{
UINT8 EfuseIndex;
UINT8 EfuseFailureCount;
pConfig->EfuseRemainder = 0;
pConfig->EfuseSum = 0;
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGC8, AccWidthUint8, ~BIT5, BIT5);
for ( EfuseIndex = 0; EfuseIndex < 0x20; EfuseIndex ++ ) {
pConfig->EfuseByte [EfuseIndex] = getEfuseByte (EfuseIndex);
}
RWMEM (ACPI_MMIO_BASE + PMIO_BASE + SB_PMIOA_REGC8, AccWidthUint8, ~BIT5, 0);
for ( EfuseIndex = 0x10; EfuseIndex < 0x20; EfuseIndex ++ ) {
pConfig->EfuseSum = pConfig->EfuseSum + pConfig->EfuseByte [EfuseIndex];
pConfig->EfuseRemainder = (((pConfig->EfuseRemainder) << 8) + pConfig->EfuseByte [0x2f - EfuseIndex]) % 0xc1;
}
pConfig->EfuseSum = (UINT8) (0x100 - pConfig->EfuseSum);
if (!(( pConfig->EfuseByte [0x0e] == 0 ) && ( pConfig->EfuseByte [0x0f] == 0 ))) {
if (( pConfig->EfuseRemainder != pConfig->EfuseByte [0x0e] ) || ( pConfig->EfuseSum != pConfig->EfuseByte [0x0f])) {
EfuseFailureCount = ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_RAM_BASE + 0x0D);
if ( EfuseFailureCount == 0xff ) {
EfuseFailureCount = 0;
ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_RAM_BASE + 0x0D) = 0;
}
if ( EfuseFailureCount < 2 ) {
EfuseFailureCount++;
ACPIMMIO8 (ACPI_MMIO_BASE + CMOS_RAM_BASE + 0x0D) = EfuseFailureCount;
A13ResumeResetTwoSecondRtcWakeup ();
}
}
}
}
/**
* ValidateFchVariant - Validate FCH Variant
*
*
*
* @param[in] pConfig Southbridge configuration structure pointer.
*
*/
VOID
ValidateFchVariant (
IN AMDSBCFG* pConfig
)
{
UINT8 XhciEfuse;
UINT8 PcieEfuse;
UINT8 FchVariantEfuse;
switch ( pConfig->FchVariant ) {
case FCH_M3T:
//Disable Devices for M3T
pConfig->GecConfig = 1;
pConfig->hwm.hwmEnable = 0;
pConfig->sdConfig = 0;
pConfig->IrConfig = 0;
// pConfig->USBMODE.UsbMode.Ohci3 = 0;
// pConfig->USBMODE.UsbMode.Ehci3 = 0;
break;
default:
break;
}
// add Efuse checking for Xhci enable/disable
XhciEfuse = XHCI_EFUSE_LOCATION;
getEfuseStatus (&XhciEfuse);
if ((XhciEfuse & (BIT0 + BIT1)) == (BIT0 + BIT1)) {
pConfig->XhciSwitch = 0;
}
// add Efuse checking for PCIE Gen2 enable
PcieEfuse = PCIE_FORCE_GEN1_EFUSE_LOCATION;
getEfuseStatus (&PcieEfuse);
if ( PcieEfuse & BIT0 ) {
pConfig->NbSbGen2 = 0;
pConfig->GppGen2 = 0;
}
FchVariantEfuse = FCH_Variant_EFUSE_LOCATION;
getEfuseStatus (&FchVariantEfuse);
if ((FchVariantEfuse == 0x07) || (FchVariantEfuse == 0x08)) {
pConfig->NbSbGen2 = 0;
}
}
/**
* Is GCPU?
*
*
* @retval TRUE or FALSE
*
*/
BOOLEAN
IsGCPU (
OUT VOID
)
{
UINT8 ExtendedFamily;
UINT8 ExtendedModel;
UINT8 BaseFamily;
UINT8 BaseModel;
UINT8 Stepping;
UINT8 Family;
UINT8 Model;
SB_CPUID_DATA CpuId;
CpuidRead (0x01, &CpuId);
ExtendedFamily = (UINT8) ((CpuId.EAX_Reg >> 20) & 0xff);
ExtendedModel = (UINT8) ((CpuId.EAX_Reg >> 16) & 0xf);
BaseFamily = (UINT8) ((CpuId.EAX_Reg >> 8) & 0xf);
BaseModel = (UINT8) ((CpuId.EAX_Reg >> 4) & 0xf);
Stepping = (UINT8) ((CpuId.EAX_Reg >> 0) & 0xf);
Family = BaseFamily + ExtendedFamily;
Model = (ExtendedModel >> 4) + BaseModel;
if ( (Family == 0x12) || \
(Family == 0x14) || \
(Family == 0x16) || \
((Family == 0x15) && ((Model == 0x10) || (Model == 0x30))) ) {
return TRUE;
} else {
return FALSE;
}
}
/**
* Is UMI One Lane GEN1 Mode?
*
*
* @retval TRUE or FALSE
*
*/
BOOLEAN
IsUmiOneLaneGen1Mode (
OUT VOID
)
{
UINT32 abValue;
abValue = readAlink ((UINT32) (SB_AX_CFG_REG68));
abValue >>= 16;
if (((abValue & 0x0f) == 1) && ((abValue & 0x03f0) == 0x0010)) {
return (TRUE);
} else {
return (FALSE);
}
}
/**
* Record SMI Status
*
*
* @retval Nothing
*
*/
VOID
RecordSmiStatus (
OUT VOID
)
{
UINTN i;
UINT8 SwSmiValue;
ACPIMMIO8 (0xfed80320) |= 0x01;
for ( i = 0; i < 20; i++ ) {
ACPIMMIO8 (0xfed10020 + i) = ACPIMMIO8 (0xfed80280 + i);
}
SwSmiValue = ReadIo8 (0xb0);
ACPIMMIO8 (0xfed10040) = SwSmiValue;
}
|